QUEUES

· A queue is a list from which items may be deleted at one end (front) and into which items may be inserted at the other end (rear)

· Similar to checkout line in a grocery store - first come first served.

· It is referred to as a first-in-first-out (FIFO) data structure.

· Queues have many applications in computer systems:

· jobs in a single processor computer

· print spooling

· information packets in computer networks.

· Primitive operations

enqueue (q, x): inserts item x at the rear of the queue q

x = dequeue (q): removes the front element from q and returns its value.

isEmpty(q) : true if the queue is empty, otherwise false.

Example

enqueue(q, ‘A’);

enqueue(q, ‘B’);

enqueue(q, ‘C’);

x = dequeue(q);

enqueue(q, ‘D’);

enqueue(q, ‘E’);

x= dequeue (q) -> x= ‘A’

Linked List Implementation

We need to keep two pointers: front and rear

struct queueNode{

char data;

struct queueNode * next;

};

struct queue{

struct queueNode *front;

struct queueNode *rear;

};

Inserting a node:

void enqueue(struct queue *q, char value)

{

struct queueNode * newPtr;

newPtr = malloc(sizeof(struct queueNode));

if (newPtr != NULL) {

newPtr->data = value;

newPtr->next = NULL;

if (isEmpty(*q))

q->front = newPtr;

else

q->rear->next = newPtr;

q->rear = newPtr;

}

else

printf("%c is not inserted. No memory "

"available.\n", value);

}

char dequeue(struct queue *q)

{

char value;

struct queueNode * tempPtr;

value = q->front->data;

tempPtr = q->front;

q->front = q->front->next;

if (q->front == NULL)

q->rear = NULL;

free (tempPtr);

return value;

}

int isEmpty(struct queue q)

{

return q.front == NULL;

}

Array Implementation

A huge array and two variables (indices) front and rear to point the first and the last elements of the queue.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

	5
	3
	8
	11
	9
	4
	
	
	
	
	
	
	
	
	

struct queue{

int items[MAX];

int front;

int rear;

};

struct queue q;

Initially:

q.rear = -1;

q.front = 0;

/* queue is empty when rear < front */

· Addition and deletion are simple.

· Good if the queue is often emptied.

· Disadvantage: needs a huge array.

Ignoring overflow and underflow, insert and remove can be implemented as:

/* number of elements in the queue = rear – front + 1 */

enqueue(q, x):

q.rear = q.rear +1;

q.items[q.rear] = x;

x = dequeue(q):

x = q.items[q.front];

q.front = q.front + 1;

Problems with this representation:

Although there is space we may not be able to add a new item. An attempt will cause an overflow.

	0
	1
	2
	3
	4

	
	
	C
	D
	E

It is possible to have an empty queue yet no new item can be inserted.

A Solution: Circular Array

· A good method to implement queues (efficient use of space) is to view the array as if it is a circular array.

equivalently:

· when we pass the MAX-1, we return to 0.

· to increment index in a circular array:

if (i == MAX-1)

i = 0;

else i = i+ 1;
(i.e. use % operator)

· The condition rear < front is no longer valid as a test for empty queue.

· One solution: Keep a counter that holds the number of elements in the queue.

struct queue{

int count;

int front;

int rear;

int items[max];

};

void function initialize (struct queue *q)

{

q->count = 0;

q->front = 0;

q->rear = -1;

}

int isEmpty(struct queue q)

{

return (q.count == 0);

}

int isFull(struct queue q)

{

return (q.count == max);

}

void enqueue(struct queue *q, int x)

{

if (q-> count == max)

printf(“%d is not inserted. Queue is ”

“full.\n”, x);

else{

q->count = q->count + 1;

q->rear = (q->rear + 1) % max;

q->items[rear] = x;

}

}

int dequeue(struct queue *q)

{

int x;

q->count = q->count –1;

x = q->items[front];

q->front = (q->front + 1)% max;

return x;

}

Exercises

· Empty one stack onto the top of another stack.

· Move all items from a queue to a stack.

· Start with a queue and an empty stack and use the stack to reverse the order of all items in the queue.

· How can you implement a queue of stacks?

· How can you implement a stack of queues?

front

rear

rear

front

A

B

C

D

C

B

rear

front

E

D

C

B

A

front

rear

rear

front

front

rear

1

0

MAX-1

MAX-2

front

rear

front

rear

PAGE
11

