Backtracking Algorithms

For many real-world problems, the solution process consists of working your way through a sequence of decision points in which each choice leads you further along some path.

If you make the correct set of choices, you end up at the solution.

On the other hand, if you reach a dead end or otherwise discover that you made an incorrect choice somewhere along the way, you have to backtrack to a previous decision point and try a different path.

Algorithms that use this approach are called backtracking algorithms.

Example: Solving a maze

by recursive backtracking

The following grid of ‘#’s and ‘.’s is a two-dimensional array representation of a maze. The ‘#’s represent the walls of the maze, and ‘.’s represent squares in the possible paths through the maze.

#

. . . #

. . # . # . # # # # . #

. # # .

. . . . # # # . # . .

. # . # . # .

. . # . # . # . # .

. # . # . # . # .

. # .

. # # # .

. # . . .

#

The only valid moves through the maze are in the four primary directions: up, down, right and left. No diagonal moves are allowed. The starting location and the exit are given. In this example the maze is 12 rows by 12 columns, however the maze can be any size.

Write a recursive function mazeTraverse to walk through a given maze. The function should receive as arguments :

· a 2-dimensional character array representing the maze;

· the starting location (row and column) and

· the location of the exit (row and column).

The function should return a value that indicates whether a solution was found.

The initial call to mazeTraverse passes in the starting location of the maze.

Finding a recursive approach

The two stopping cases for this problem are:

1. If the current square is the exit location, the maze is solved, return 1.

2. If the current square is marked, or a wall, or outside the maze, return 0.

Algorithm

1. Check if a move to that row and column is valid. (A move is considered valid if it stays within the grid boundary and if the grid contains a ‘.’ in that location.) If not valid return 0;

2. Check if it is the exit. If so return 1.

3. Otherwise,

· Change the grid entry‘.’ to ‘x’, marking this location as visited so that later we don’t retrace our steps.

· Search for a solution in each of the primary directions:

· If no direction from the current location yields a correct solution, then there is no path from this location, and mazeTraverse returns 0.

· If a solution is found starting from the current location in any one of the directions, then grid entry is changed to a ‘-‘, and mazeTraverse returns 1.

The C code:

/* Function: valid

 * This function returns false if the current

 * cell location [i][j] is outside the maze

 * or it is a wall or an already marked.

 * Otherwise it considers the cell as a

 * valid move and returns 1.

 */

int valid(char maze[][MAXSIZE], int rows, int cols,
 int i, int j)

{

 int flag = 1;

 if (i < 0 || i >=rows || j<0 || j>=cols)

 flag = 0;

 if (flag && (maze[i][j]=='#' || maze[i][j]=='x'))

 flag = 0;

 return flag;

}

/* Function maze_traverse

 * This function attempts to generate a solutionto

 * the current maze from point [si,sj]. It returns

 * true if the maze has a solution and false

 * otherwise. The implementation uses recursion to

 * solve the new mazes that result from marking the

 * current cell and moving up one step along each

 * open passage. Possible paths are tried in the

 * primary directions in this order: north, east,

 * south, west.

 */

int maze_traverse(char maze[][MAXSIZE], int rows,
 int cols, int si, int sj, int ei, int ej)

{

 int done,c ;

 if (!valid(maze, rows, cols, si,sj))

 return 0;

 else if (si==ei && sj == ej){

 maze[si][sj] = '-';

 return 1;

 }

 else {

 maze[si][sj] = 'x';

 print_maze(maze,rows,cols);

 done = maze_traverse(maze, rows,cols,si-1,sj, ei,ej);
 if (!done)

 done = maze_traverse(maze,rows,cols,si,

sj+1, ei, ej);

 if (!done)

 done = maze_traverse(maze, rows, cols,
 si+1, sj, ei,ej);

 if (!done)

 done = maze_traverse(maze, rows, cols, si,
 sj-1,ei,ej);

 if (done)

 maze[si][sj] = '-';

 return done;

 }

}

 0 1 2 3 4 5 6 7 8 9 10 11

0 # # # # # # # # # # # #

1 # . . . # #

2 . . # . # . # # # # . #

3 # # # . # # . #

4 # # # # . # . .

5 # # # # . # . # . # . #

6 # . . # . # . # . # . #

7 # # . # . # . # . # . #

8 # # . #

9 # # # # # # . # # # . #

10 # # . . . #

11 # # # # # # # # # # # #

PAGE
5

