Sorting

- Sorting and searching are among the most common
programming processes.

- We want to keep information in a sensible order.
alphabetical order

ascending/descending order
order according to names, ids, years, departments etc.

. Theam of sorting dgorithmsisto put unordered
information in an ordered form.

- There are many sorting agorithms, such as:
- Sdlection Sort

- Bubble Sort

- Insertion Sort

- Merge Sort

- Quick Sort

. Thefirst three are the foundations for faster and more

efficient algorithms.

Sdlection Sort

= The list is divided into two sublists, sorted and unsorted,
which are divided by an imaginary wall.

= We find the smallest e ement from the unsorted sublist
and swap it with the element at the beginning of the
unsorted data.

= After each selection and swapping, the imaginary wall
between the two sublistss move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

= Each time we move one element from the unsorted
sublist to the sorted sublist, we say that we have
completed a sort pass.

= A lisgt of n elements requires n-1 passes to completely
rearrange the data.



Sdlection Sort Example

Sorted Unsorted

l l

|23 /8 |45 8 32 |56 Original List

8 |78 45 23 32 |56 After pass 1

8 23 |45 78 32 |56 After pass 2

8 23 |32 |78 45 |56 After pass 3

8 23 (32 45 |78 56 After pass 4

8 23 [32 45 56 |78 After pass 5

Selection Sort Algorithm

/* Sorts by selecting smallest elenent in unsorted
portion of array and exchanging it with el enent
at the beginning of the unsorted |ist.

Pre 1list must contain at |east one item
| ast contains index to |last elenent in |ist
Post list is rearranged snallest to | argest

*/
void selectionSort(int list[], int |ast)
{
int current, wal ker, smallest, tenpData;
for (current = 0; current <= last; current ++){
smal | est = current;
for (wal ker=current+1; wal ker <= | ast; wal ker ++)
if(list[walker] < list[smallest])
smal | est = wal ker;
/1 Smal |l est selected; swap with current el enment
tenmpData = list[current];
list[current] = list[smallest];
list[smallest] = tenpDat a;
}
}



Bubble Sort Example

Bubble Sort
= Thelist is divided into two sublists; sorted and unsorted. Sorted Unsorted
= The smallest dlement is bubbled from the unsorted list l l
and moved to the sorted sublist.

= After that, the wall moves one element ahead, increasing . .
the number of sorted elements and decreasing the |23 /8 |45 8 32 |56 Original List
number of unsorted ones.
|23

= Each time an element moves from the unsorted part to 8 45 32 |56 After pass 1

the sorted part one sort pass is completed.

= Given a list of n elements, bubble sort requires up to nl
passes to sort the data.

8 23 |32 78 45 |56 After pass 2

= Bubble sort was origindly written to “bubble up” the
highest element in the list. From an efficiency point of
view it makes no difference whether the high eement is 8 23 132 45 Is56 |78 After pass 4
bubbled or the low element is bubbled. | Sortedl!o

8 23 |32 |45 78 |56 After pass 3




Trace of 1% pass of Bubble Sort Example: Bubble Sort Algorithm

|23 |78 |45 |8 QZ |56 j> /* Sorts list using bubble sort. Adjacent elenents
are conpared and exchanged until list is
conpl etely ordered.
|23 |78 |45 MSG | Pre list nust contain at |east one item
| ast contains index to last elenment in |ist
|23 |78 (45 |8§ 30 |56 | y Post list is rearranged smallest to |argest

voi d bubbleSort(int list[], int |ast)

|23 |45 32 |56 | { int current, wal ker, tenp;

(123 |8 D78 |45 32 |56 | for (current = 0; current <= |ast; current++){

for (wal ker=last; wal ker > current; wal ker--)
if(list[wal ker] < list[wal ker - 1]){

8 |23 |78 |45 32 |56 | temp = list[walker];
list[wal ker] = list[wal ker — 1];
list[wal ker-1] = tenp;
}
}
return;



Insertion Sort Example

|nsertion Sort
Sorted Unsorted

=M ost common sorting technique used by card

players. l l
=Again, thelist isdivided into two parts: sorted and m

unsorted.

23 |78 45 |8 |32 |56 Origind Ligt

= |n each pass, the first element of the unsorted part

is picked up, transferred to the sorted sublist, and
inserted at the appropriate place.

23 78 |45 8 (32 |56 After pass 1

=A list of n elements will take at most n-1 passes to 23 45 7808 [32 [56 After pass 2
sort the data.

8 23 45 78|32 56 After pass ¢

8 23 32|45 |78 |56 After pass 4

8 23 32|45 |56 |78 After pass £




Insertion Sort Algorithm

/* Wth each pass, first element in unsorted
sublist is inserted into sorted sublist.
Pre list nust contain at | east one item
| ast contains index to last elenment in |ist

Post |ist has been rearranged
*/

void insertionSort(int list[], int |ast)
{

int current, |ocated, tenp, walker

for (current = 1; current <= |ast; current++){
| ocated = O;
tenp = list[current];
for (wal ker=current-1; walker >= 0 && !l ocated;)
if(temp < list[wal ker]){
list[wal ker + 1]= |ist[wal ker];
wal ker - - ;
}
el se
| ocated = 1;
list[wal ker + 1] = tenp;
}

return;

11



