
 1

Sorting

• Sorting and searching are among the most common

programming processes.

• We want to keep information in a sensible order.
− alphabetical order
− ascending/descending order
− order according to names, ids, years, departments etc.

• The aim of sorting algorithms is to put unordered

information in an ordered form.

• There are many sorting algorithms, such as:
− Selection Sort
− Bubble Sort
− Insertion Sort
− Merge Sort
− Quick Sort

• The first three are the foundations for faster and more
efficient algorithms.

 2

Selection Sort

ð The list is divided into two sublists, sorted and unsorted,

which are divided by an imaginary wall.

ð We find the smallest element from the unsorted sublist
and swap it with the element at the beginning of the
unsorted data.

ð After each selection and swapping, the imaginary wall
between the two sublists move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

ð Each time we move one element from the unsorted
sublist to the sorted sublist, we say that we have
completed a sort pass.

ð A list of n elements requires n-1 passes to completely
rearrange the data.

 3

Selection Sort Example

Sorted Unsorted

23 78 45 8 32 56

8 78 45 23 32 56

8 23 45 78 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

 4

Selection Sort Algorithm

/* Sorts by selecting smallest element in unsorted
 portion of array and exchanging it with element
 at the beginning of the unsorted list.
 Pre list must contain at least one item
 last contains index to last element in list
 Post list is rearranged smallest to largest
*/
void selectionSort(int list[], int last)
{
 int current, walker, smallest, tempData;

 for (current = 0; current <= last; current ++){
 smallest = current;
 for (walker=current+1; walker <= last; walker++)
 if(list[walker] < list[smallest])
 smallest = walker;

 // Smallest selected; swap with current element
 tempData = list[current];
 list[current] = list[smallest];
 list[smallest] = tempData;
 }
}

 5

Bubble Sort

ð The list is divided into two sublists: sorted and unsorted.

ð The smallest element is bubbled from the unsorted list
and moved to the sorted sublist.

ð After that, the wall moves one element ahead, increasing
the number of sorted elements and decreasing the
number of unsorted ones.

ð Each time an element moves from the unsorted part to
the sorted part one sort pass is completed.

ð Given a list of n elements, bubble sort requires up to n-1
passes to sort the data.

ð Bubble sort was originally written to “bubble up” the
highest element in the list. From an efficiency point of
view it makes no difference whether the high element is
bubbled or the low element is bubbled.

 6

Bubble Sort Example

Sorted Unsorted

23 78 45 8 32 56

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4
Sorted!

 7

Trace of 1st pass of Bubble Sort Example:

23 78 45 8 32 56

23 78 45 8 32 56

23 78 45 8 32 56

23 78 8 45 32 56

23 8 78 45 32 56

8 23 78 45 32 56

 8

Bubble Sort Algorithm

/* Sorts list using bubble sort. Adjacent elements
 are compared and exchanged until list is
 completely ordered.
 Pre list must contain at least one item
 last contains index to last element in list
 Post list is rearranged smallest to largest
*/
void bubbleSort(int list[], int last)
{
 int current, walker, temp;

 for (current = 0; current <= last; current++){
 for (walker=last; walker > current; walker--)
 if(list[walker] < list[walker - 1]){
 temp = list[walker];
 list[walker] = list[walker – 1];
 list[walker-1] = temp;
 }
 }
 return;
}

 9

Insertion Sort

ðMost common sorting technique used by card

players.

ðAgain, the list is divided into two parts: sorted and
unsorted.

ðIn each pass, the first element of the unsorted part
is picked up, transferred to the sorted sublist, and
inserted at the appropriate place.

ðA list of n elements will take at most n-1 passes to
sort the data.

 10

Insertion Sort Example

Sorted Unsorted

23 78 45 8 32 56

23 78 45 8 32 56

23 45 78 8 32 56

8 23 45 78 32 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

 11

Insertion Sort Algorithm

/* With each pass, first element in unsorted
 sublist is inserted into sorted sublist.
 Pre list must contain at least one item
 last contains index to last element in list
 Post list has been rearranged
*/

void insertionSort(int list[], int last)
{
 int current, located, temp, walker;

 for (current = 1; current <= last; current++){
 located = 0;
 temp = list[current];
 for (walker=current-1; walker >= 0 && !located;)
 if(temp < list[walker]){
 list[walker + 1]= list[walker];
 walker--;
 }
 else
 located = 1;
 list[walker + 1] = temp;
 }
 return;
}

