COP 3502

Computer Science I

Spring   2007 

Prof. Kanad K. Biswas

Course webpage:     
http://www.cs.ucf.edu/courses/cop3502/spr07/730
General guidelines 


This course lays the foundations of computer science. It goes beyond “coding in C”. It will cover different ways to structure the data, and will show how each structure is useful in solving different types of problems. For each solution, we shall also examine the relative efficiency using a special mathematical tool.

This course involves extensive programming, which means besides attending the lecture classes you are required to spend substantial hours in the computer center labs working on your assignments. You may fail this course if you do not submit all the assignments.

All assignments have to be done in ‘C’ language. You may use Olympus, the UCF compute server or develop your  programs using the devC++ compiler.  The TAs grading your programs would try to execute your code on Olympus using gcc, or they can try compiling using devC++. If your programs cannot run on Olympus gcc or jgrasp, there is no way that the TAs would be able to award you any points for your work. 

Withdrawal guidelines 

1. If you do not have sufficient 'C' background and have never written any programs using pointers, you will find it extremely difficult to cope up with the requirements of this course.  It is strongly recommended that you do not enroll simultaneously for COP3223 and COP3502.

2. This course would require more time than other courses for which you are enrolling this term. Most of this extra time may be spent in debugging your ‘C’ code. If you cannot afford to spend time on the assignments, it would be in your interest to withdraw from the course. 

Course Objectives
1 Provide an introduction to the field of computing: The central concept that underlies computer science is the design and implementations of algorithms to solve  specific problems.

2 Provide Conceptual Content and Software Skills: The lecture component focuses on conceptual tools for constructing and analyzing algorithms – Time Complexity and recursion,    while the lab component focuses on       implementation issues involved in C programming.

3 Introduce elementary data structures: Arranging data in arrays, linked lists, stacks, queues, binary trees and hash tables. 
4 Introduce searching and sorting techniques. 
Lecture Classes:

As no single text book covers all the course contents, it is important that you take down notes during the lecture sessions. Some supplementary notes will be posted on the course webpage. 

Recitation Sessions (Labs): 

In the recitation sessions, the Teaching Assistants will provide hints for solving problems related to the material covered in the lecture classes. They will also conduct pop-quizzes. It is very important that you do not miss any lab session.
Course Contents

1. Brief review of  Structures, strings, file handling, dynamic memory allocation
2. Design of  Algorithms for problem solving

3. Algorithmic Complexity - Big -O notation, summations

4. Searching - linear and binary search

5. Recursion - tracing, developing recursive functions, algorithmic complexity using recurrence relation

6. Stacks and Queues - converting infix expression to postfix form, evaluation of postfix forms, waiting line simulation, implementation using arrays

7. Linked Lists  - Creation, deletion, insertion in sorted linked list, reversing, implementing stack and queue, circularly linked lists

8. Binary Trees - tree traversals, tree algorithms, Binary Search Trees, insertion and deletion, Balanced BST (AVL trees)

9. Heap trees - creation, insertion, heapify, deletion

10. Hash Table - collision resolving using linear probing, quadratic probing, dynamic hashing, double chaining

11. Sorting - Selection sort, Insertion sort, Bubble sort, Merge sort, Quick sort, heap sort


Tentative  Schedule of topics:

1. Brief review of  Structures, strings, file handling, dynamic memory allocation

2. Introduction to Linked lists

3. Recursion

4. Stacks and Queues -  Implementation using arrays, linked lists, circular lists

5. Binary trees and heap trees, BST, AVL trees

6. Hash Tables

7. Sorting
Reference Books:

Any book on Data structures will do for this course. The following book is available in the bookstore:

Data structures, algorithms & software principles in C

Thomas B. Standish

Addison - Wesley

Assignments:

1 You must submit all the assignments to pass this course.

2 All the programming assignments are required to be implemented in ‘C’. You will get an OLYMPUS account, and you can either use the computer labs at UCF, or dial up from home to run your programs on OLYMPUS.  You can also develop your ‘C’ programs on devC++ compiler.  If you are using any other compilers make sure that your programs compile under gcc or cygwin. You may not get any credits on an assignment if it does not compile under gcc  or  cygwin.
3 You   get partial credits on an assignment which is not completely functional but some of the modules are working and generating partial output. However, a program may not earn any credits at all, even if it is almost complete but does not compile.
4 All assignments must be submitted through WebCT  by  11 PM on the indicated due date. Assignments submitted after the due date would continue to be accepted by webCT till the cut-off  date with 15% penalty per day. No assignments would be accepted after the cutoff date.   

5 The webCT server tends to get very slow when lot of students are trying to upload their programs at the same time. It may take up to more than an hour or two if you are trying to submit the programs along with other students competing for webCT time. As a guide line, try to submit the program latest by 9 PM the  day it is due. It is always wise to do it a day before. Excuses of the kind “webct closed before time” or “webct  did not accept my program although I submitted it by 11 PM” would not be accepted. WebCT sends a mail to the student confirming the uploading of the program.

6 Assignments must be carried out individually. Collaboration on any assignment is NOT acceptable. Cheating may result in a failing grade regardless of performance.

Exams:

There will be 2 mid term exams and one final exam. The dates for these exams will be announced on the course webpage.  You must score at least 40% on the final exam to pass this course.

In addition there may be number of pop-up Quiz tests. You may get pop quizzes in lecture sessions or in recitation sessions. All tests will be closed book and notes .Calculators and cell phones are not allowed in any exam/quiz tests.  
DO NOT miss any test/exam. There are no make-up tests. If you miss a test for SERIOUS reasons you have to provide official documentation. If the evidence is accepted a form of grade recovery will be discussed with the instructor.

Cheating may result in a failing grade regardless of performance.
Tentative Exam Dates:


Exam 1
February 1


Exam 2
March 6


Final Exam 
April 30
Tentative Grading Scheme:

Pop-up Quiz tests
  15 %

mid term exams 
  40 % 

Final exam 
  20 %

Assignments 
  25 % 

The instructor reserves the right to use plus/minus grading in this course.

