7/1/2020 - Tries

Wednesday, July 1, 2020 4 PM

A regular binary tree has 2 pointers to subtrees, left and right.

For English, we have 26 letters, so what if we stored 26 pointers, to
future letters in words?

cat
cab
dog
do

4 & \ &
AN A ;/@M
\/\V%ypf:jfjmct trienode { C. g \% QNYO
e | m(;)NMGQ\
{Qﬂ) Wg y

index to the array is a letter, essentially...actually it's the equivalent
integer from 0 to 25 where a->0, b->1, c->2 ..., z->25

word[i] - 'a' (is how we convert to the 0 to 25 range)

main |

myDictionary = init()
oy D slord O

\

sWord |
TLLENH

search is like insert...follow the path down. if you get stuck (ie trying to
go down a null ptr, return 0, word isn't there.) otherwise, just return the
flag when you get to the appropriate end of the word.

run time of a search and insert = O(n), where the word has n letters.
Typical user case...

Dictionary 150,000

binary search log 150,000 comparisons, about 17 or so.

In a trie, the average run time would be the average length of a word,
which is probably about 5 or 6 at most...if you get rid of words that

"the" that hopefully people don't search for, then maybe this average
could be a bit bigger, but probably not that much. (Avg 8.41)

&\C/b To print all, we'll do a traversal and pass in a buffer that keeps

track of where we are, word wise. When we get to a node that
a 1s a word, we will null terminate our buffer and print.

h et

Do
o (0

node for P4:

typedef struct trienode {

int freqNode;

int sumFreq; D
int curMaxChild; Q

struct trienode™ next[26];

} trienode; 9 /S_ffé

/) -

S

4 a%@go/j

We looked at three problems:

1. Return the # of words with a particular prefix (given that the total #
of words in a trie is stored in the node.)

2. Return the number of words that can be formed with a set of given
Scrabble tiles.

3. Find a word such that a maximum number of its prefixes are also
words...just find the value of that maximum number (not the word
itself.)

