COP4510 Fall 2005
Sample Final

COP 4520 Fall 2005
Sample Final (also consider Exam#2 as samples)
Name:_____________________

1.
Prim's algorithm computes the minimum weight spanning tree for a connected, undirected graph.

3
a.)
The sequential version of Prim’s algorithm takes O(N2) time and O(N2) cost.
What is the computation time (exclude communication cost) and cost of the block striped parallel version, using P processors?
Computation Time

What is the communication time, assuming a hypercube of P processors?
Communication Time

What is the communication time, assuming a square mesh of P processors?
Communication Time

1
b.)
Brent’s scheduling provides us the optimum number of processors for the hypercube. What is this value of P?

4
2.
Use some combination of tuple space services (read, readIfExists, take, takeIfExists, write) to show how a set of N tasks can achieve barrier synchronization. That is, show explicit code segments that would be executed by participating tasks so each would block at some point in its computation, until all had reached the same barrier.

4
3.
PCN distinguishes between mutable and definitional variables.

Explain how definitional variables can be used to coordinate the operations of a server (producer of some value) and a client (consumer of the value produced.) Why can’t mutable variables be used in a similar manner?

4.
Throughout your career as CS students you have been haunted by many applications of depth-first traversals of directed graphs. This semester, we talked about the use of this algorithm to mark used objects as part of garbage collection. We also discussed this algorithm’s use in serializing objects. Finally, we employed depth-first traversal to reverse post-order number the nodes in a program control flow graph.

1
a.)
Assume a graph with N nodes and E edges. What is the order of execution of a depth first traversal? ______________________

2
b.)
What role does serialization play in the RMI paradigm?

2
c.)
Why is a codebase attribute added to a serialized object?

5.
Throughout the term we have looked at various ways to use P processors to quickly and efficiently find the largest element in a list A[0…N–1]. In our most recent look at this problem, we combined the O(lg N) time, O(N) work binary tree reduction (BTR) algorithm with the O(lg lg N) time, O(N lg lg N) work doubly log tree (DLT) algorithm in hopes of finding a work efficient, super fast algorithm.

2
a.)
What is the upper bound on the number of BTR steps that we can execute and still be fast?

2
b.)
What is the lower bound on the number of BTR steps that we can execute and still be efficient in the DLT phase?

7
6.
Circle the correct choices for each of the following:

The superfast O(1) Max algorithm requires the following memory model: EREW CRCW CREW

SIMD architectures are based on following control paradigm: Synchronous Asynchronous

A hypercube is an example of what type of network interconnection: Static Dynamic

OCE sorts need only consider correctness on data that are: Strings Binary

A “May” data flow property is trying to obtain the: Least Upper Bound Greatest Lower Bound

In data flow terminology, UD stands for: Use Definition Undefined Data Usable Definitions
6
7.
In our discussion of scalar dependency problems, we introduced the concepts of true dependence, anti-dependence and output dependence. Identify all instances of each of these in the following code sequence. Note that some statements may induce more than one dependency. Answer by filling the table, where dependency type t is placed in row Si, column Sj, if Si is t-dependent on Sj.

S1:
B := B + 1.0;

S2:
A := .333 * B;

S3:
B := A + B + 3.1415;

S4:
A := B * 3.8;

	
	S1
	S2
	S3
	S4

	S1
	X
	X
	X
	X

	S2
	
	X
	X
	X

	S3
	
	
	X
	X

	S4
	
	
	
	X

4
8.
One simple test for dependence of array references across iterations of a loop is the GCD (Greatest Common Divisor) test. Demonstrate how this test shows the independence of the use of A in S’ from the assignment to A in S.

for i := 1 to N do

for j := 2 to M do begin

S:

A[8*i – 4] := …;

…

…

S’:

… := A[4*i – 16*j + 6]

end

6
9.
Consider the following computations. With regard to vectorization, can the inner loop of the first be vectorized as conjectured below? Can the inner loop of the second be vectorized as shown? Justify each answer.

LOOP #1

LOOP#2
for j := 1 to 100 do
for j := 1 to 100 do

for i := 1 to 100 do

for i := 1 to 100 do

A[i, j+1] := A[i, j]

A[i, j+1] := A[i, j]

Vector #1
Vector#2
for i := 1 to 100 do
for j := 1 to 100 do

A[1:100, 2:101] := A[1:100, 1:100]

A[1:100, j+1] := A[1:100, j]

5
10.
Consider the simple scheduling problem where we have a set of independent tasks running on a fixed number of processors, and we wish to minimize the time at which the last task completes.

4

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs and execution times onto four processors? Answer by showing a Gantt chart for the resulting schedule (write the task ID into each time/processor slot used.)

(T1,7)
(T2,7)
(T3,3)
(T4,3)
(T5,2)
(T6,1)
(T7,4)

 EMBED Word.Picture.8

4

Now show what would happen if the times were sorted from longest to shortest.

 EMBED Word.Picture.8

5
11.
Some scheduling problems can be efficiently solved using a level (critical path) algorithm. The first step of such an algorithm is the assignment of priorities (lowest is 1) to each task and the creation of a list schedule based on these priorities. Unit execution time tasks with a forest (or anti-forest) task graph are amenable to a level algorithm. Given the following such system, assign priorities to the right of each task as represented by a dot (•), then show the resultant 3-processor schedule.

[image: image1.wmf]•

•

•

•

•

•

•

•

•

•

•

•

•

4
12.
Consider the following system (times are written below task ids). Interpreting the lower numbered tasks as being of higher priority, display a two-processor non-preemptive schedule in the following Gantt chart.

[image: image2.wmf]

T1

7

T2

3

T6

3

T4

3

T3

2

T7

1

T5

4

 EMBED Word.Picture.8

13.
Assume that we have three tasks (A, B, C) running on three distinct nodes in a distributed system. What kind of message order (receive, causal, CATOCS) is required if

2
a.)
A and B are simulating the dynamics of two molecules. Molecule B is fixed in space. Every millisecond, A sends a message to B, indicating its position in space. B responds with a message to A indicating the strength of the attraction (positive or negative) that A will experience due to its position relative to B. A must compute its new position based on this attraction. C listens to all these messages, and produces a display that animates A’s movement and reflects A’s attraction to B by making the color of B be very red when the attraction is high, and very blue when B is repelling A. Colors in between give a sense of the relative strength of this force.

Answer ________________

2
b.)
A and B are monitoring disk usage on the swap disk for their nodes. Every minute each sends C a message indicating the current time of day and the percentage of free swap space at its site. At the end of the day, C produces summary information on the data it has collected.

Answer ________________

10
14.
Here is another solution to our beloved one-lane bridge problem.
monitor Bridge {

cond northbound, southbound;

int northOnBridge, southOnBridge;

procedure enterSouthbound() {

if (northOnBridge>0) wait(southbound);

while ((northOnBridge>0) || !empty(northbound)) wait(southbound);

southOnBridge++;

}

procedure leaveSouthbound() {

southOnBridge--;

signal_all(northbound);

signal(southbound);

}

procedure enterNorthbound() {

if (southOnBridge>0) wait(northbound);

while ((southOnBridge >0) || !empty(southbound)) wait(northbound);

northOnBridge++;

}

procedure leaveNorthbound() {

northOnBridge--;

signal_all (southbound);

signal(northbound);

}

// Note: the bridge crossing is not inside monitor

}

Analyze the above for each of

Mutual exclusion

Avoidance of deadlock

Fairness

14.
(Continued).
Revisit the deadlock question if the second signal is changed to signal_all.

Revisit the deadlock question if we employ signal_and_wait rather than signal_and_continue semantics.

-- 6 --

_954273662.unknown

_1018158163.unknown

_1049636950.doc

T1

7

T2

3

T6

3

T4

3

T3

2

T7

1

T5

4

_954273663.unknown

_891689250.doc
����������������������������

•

•

•

•

•

•

•

•

•

•

•

•

•

