Part I. Integers:

(Closure Property under +, –, •)  If a, b are integers, then a + b, a – b, a • b (or simply ab) are integers.

(Commutative Law)  If a, b are integers, then a + b = b + a, a • b = b • a.

(Associative Law)  If a, b, c are integers, then (a + b) + c = a + (b + c), and (a b) c = a (b c).

(Distributive Law)  If a, b, c are integers, then a (b + c) = a b + a c.

(Law of Identity Elements)  For all integer a, a + 0 = 0 + a = a; a • 1 = 1 • a = a.

(Law of Additive Inverse)  For all integer a, a + (–a) = (–a) + a = 0.

Definition (Divisibility)  If a, b are integers, then a | b, or a is a divisor of b, if a ( 0 and there exists an integer c such that b = a c.

Definition (Even and odd)  An integer a is even if there exists an integer b such that a = 2 b (or, equivalently, if 2 | a); an integer a is odd if there exists an integer b such that a = 2 b + 1.

Theorem. The sum of two odd integers is an even integer.

Theorem.  If a | b, and b | c, then a | c, where a, b, and c are integers.

Definition (Prime Number)  A positive integer n > 1 is a prime number if its divisor must be either 1 or n itself (that is, if m | n, then m = 1 or m = n).

Theorem (Fundamental Theorem of Arithmetic)  Any integer n > 1 can be written as a product of prime numbers.  Further, this product is unique except for rearrangement of the terms. 

Theorem (Euclid’s Division Theorem)  For any integers n and m, m ( 1, there exist integers q and r, 0 ( r < m, such that n = m q + r.  Further, these integers q and r are unique.

Theorem.  Every integer n is either even or odd.

Theorem.  If a, b are two integers and a b is even, then at least one of a and b is even. 

Theorem (The Pigeonhole Principle)  If n + 1 or more pigeons are nested in n holes, n ( 1, then at least one hole nests more than one pigeon.

Theorem.  The number (2 (the square root of 2) is not a fraction of two integers (i.e., not a rational number).

Theorem.  Let n be an integer.  Then the expression n (n + 1) is always even.

Theorem (Laws of Inequalities).  Let a, b, c denote arbitrary integers.

(a) (a > b and b > c) ( (a > c).  (This is the transitivity law, which also holds if all > signs are replaced by the ( signs, or if exactly one of the > sign on the lefthand side replaced by (.)

(b) (a > b and c > 0) (  (ac > bc).  The law is valid if each > sign is replaced by the ( sign.

(c) (a > b) (  (a + c > b + c), for any c.  The law is valid if each > sign is replaced by the ( sign.

(d) (a > 0) (  ((a < 0).  Similarly, (a ( 0) (  ((a ( 0).

(e) ab > 0 (  (a > 0 and b > 0) or (a < 0 and b < 0). The law is valid if each > sign is replaced by the ( sign, and < replaced by (.

Part II. Logic:

Theorem.  Let p, q, and r denote arbitrary propositions.  The following properties hold:

(a) (Commutative Law) p and q ( q and p; p or q ( q or p.

(b) (Associative Law) (p and q) and r ( p and (q and r); (p or q) or r ( p or (q or r).

(c) (Distributive Law) p and ( q or r) ( (p and q) or (p and r); p or ( q and r) ( (p or q) and (p or r).

(d) (De Morgan’s Law) ((p and q) ( ((p) or ((q);  ((p or q) ( ((p) and ((q).

(e) (Contrapositive Law) p ( q ( ((q) ( ((p) ( ((p) or q.

Theorem  Let P(x) denote a proposition involving a variable x.  The following laws hold for negations involving the use of the universal quantifier “for all” and the existential quantifier “there exists”:

(a) ((for all x such that P(x) is true) (  there exists x such that P(x) is false;

(b) ((there exists x such that P(x) is true) (  for all x such that P(x) is false.

Part III. Set Theory:

Definition.  Let A, B denote two sets.

(a) A is a subset of B, denoted A ( B , if for all x ( A , x ( B is true.  A ( B can also be written as B ( A.

(b) A = B if both A ( B and B ( A; that is, for all x, x ( A ( x ( B, where the symbol( means implication in both directions (( and (), and is called if and only if (abbreviated as iff).

(c) The union of sets A and B, denoted A ( B, is defined as {x | x ( A or x ( B}.

(d) The intersection of sets A and B, denoted A ( B, is defined as {x | x ( A and x ( B}.

(e) The difference of sets A and B, denoted A ( B, is defined as {x | x ( A and x ( B}.  (Note that in general, A ( B ( B ( A.)

(f) The set containing no elements is the empty set, denoted (.  Typically, the sets under consideration are subsets of a universe U.  The difference between U and a set A, U ( A, is called the complement of A (denoted (A).

Theorem.  Let A, B, C denote arbitrary sets.  The following properties hold.

(a) (Commutative Law) A ( B = B ( A, A ( B = B ( A.

(b) (Associative Law) (A ( B) ( C = A ( (B ( C),  (A ( B) ( C = A ( (B ( C).

(c) (Distributive Law) A ( (B ( C) = (A ( B) ( (A ( C) , A ( (B ( C) = (A ( B) ( (A ( C) .
(d) (Idempotent Property) A ( A = A, A ( A = A.

(e) (De Morgan’s Law) ((A ( B) = (A  ( (B, ((A ( B) = (A ( (B.

(f) (Double Negation) ( ((A) = A.

(g) (Complementary Property) A ( (A = (, A ( (A = U, where U denotes the universe.

Theorem.  Let A and B denote arbitrary sets.  The following properties hold.

(a) A ( B ( A. 

(b) A ( A ( B. 

(c) A ( ( = (. 

(d) A ( ( = A. 

(e) A ( B iff (B ( (A. 

(f) A ( B iff A ( (B = (.
(g) A ( B = A ( (B. 

(h) (A ( B and B ( C) implies A ( C. 
(i) A ( B implies A ( C ( B ( C.
(j) A ( B implies A ( C ( B ( C.
Definition.  Let A be a set.  The power set of A, denoted Power(A) or 2A , is the set of all subsets of A.

Definition.  Let A and B denote two sets.  Define the Cartesian product of A and B as A ( B = {(a, b) | a ( A and b ( B}, where the notation (a, b) denotes an ordered pair (or a 2-tuple).  Note that the ordering of the elements in an ordered pair is significant, that is, two ordered pairs are equal, (a, b) = (c, d) iff a = c and b = d.  More generally, the Cartesian product of n sets A1, A2, …, An , is defined as     
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where (a1, …, an) defines an (ordered) n-tuple.

(The Sum Principle) Let A and B denote two finite sets and A ( B = (.  Then | A ( B| = |A| + |B|.  More generally, let A1, A2, …, An denote n finite sets, n ( 1, and these sets are mutually disjoint, that is, Ai ( Aj = ( for i ( j .  Then
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(The Product Principle) Let A1, A2, …, An denote n finite sets.  Then 
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Theorem. Let A and B denote two finite sets.  Then |A ( B| = |A| + |B| – |A ( B|.

Theorem. Let A, B, and C denote three finite sets.  Then |A ( B ( C| = |A| + |B| + |C| – |A ( B| – |B ( C| – |A ( C| + |A ( B ( C|.

Part IV. Strings and Graph Theory:

Definition.  A string u is a substring of string v if v = tuw, the concatenation of strings t, u, and w, for some strings t and w. 

Definition.  Given an alphabet A, the set of all (finite) strings over A is denoted A*.

Definition.  A graph G = (V, E) is an ordered pair of sets V and E, where V denotes the set of vertices (nodes, dots) and E the set of edges (arcs, lines), and each edge connects one vertex to another vertex (which is not necessarily distinct).

Definition.  A path in a graph is a sequence of edges e1, e2 , …, en , such that (1) edges ei and ei+1 ,1 ( i (  n–1, have at least one common endpoint; and (2) if edge ei is not a self-loop (i.e., edge ei has two distinct endpoints), and it is not the first or the last edge of the path, then ei shares one endpoint with edge ei–1 and shares the other endpoint with edge ei+1.

Theorem.  (Euler, 1736)  A finite, connected graph has an Euler path iff either all vertex degrees are even (in which case there exists an Euler circuit), or exactly two vertices have odd degrees (which correspond to the start and the end vertices of an Euler path).

Theorem. Let G = (V, E) denote a finite graph, that is, both |V| and |E| < (.  Then 
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Corollary. Let G = (V, E) denote a finite graph.  Then there is an even number of vertices of odd degree.
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Theorem. Let G = (V, E) denote a finite digraph.  Then
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