Part A. Relations.

Definition.  A relation R defined over sets A and B is a (i.e. any) subset of A ( B, that is, R ( A ( B.  Such a relation is a binary relation; the degree of R is 2.
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Definition.  An n-ary relation R over sets A1, A2, …, An , n ( 2, is a subset of the cartesian product

 The degree of R is n.

Definition.  Let R ( A ( B and S ( B ( C denote two relations.  The composition of R and S, denoted R ( S, is a binary relation over A and C defined as follows:


 R ( S = {(a, c)| a ( A and c ( C, and there exists b ( B such that aRb and bSc}.

Theorem. Let R ( A ( B, S ( B ( C, and T ( C ( D denote three binary relations.  Then relation compositions satisfy the following associative law:


(R ( S) ( T = R ( (S ( T). 

Theorem. Let R ( A ( B, S ( B ( C, and T ( B ( C denote 3 binary relations.  Then

(1) R ( (S ( T) = (R ( S) ( (R ( T);

(2) R ( (S ( T) ( (R ( S) ( (R ( T).  (In general, the two sides of (2) are not equal.)

Definition. Let R ( A ( A be a binary relation.

(1) R is reflexive if for all a ( A, aRa, i,e., (a, a) (R.  (In words, each element a of A is related to itself via R.)

(2) R is irreflexive if for all a ( A, (a, a) ( R.  (In words, each element a of A is not related to itself via R.)

(3) R is symmetric if aRb implies bRa, i.e.,  for all (a, b) ( R, (b, a) ( R.  (In words, whenever a is related to b, b is related to a.)

(4) R is anti-symmetric if aRb and bRa imply a = b.  Equivalently, this means if a ( b, then (a, b) ( R implies (b, a) ( R. (In words, whenever a is related to b, and if a ( b, then b is not related to a.)

(5) R is transitive if aRb and bRc imply aRc, i.e., if (a, b) ( R and (b, c) ( R, then (a, c) ( R.  (In words, whenever a is related to b, and b is related to c, then a is related to c.) 

Definition.  Consider a binary relation R ( A ( B.  The inverse of R, denoted R–1, is a binary relation ( B ( A such that R–1 = {(b, a) | (a, b) ( R}, that is, R–1 contains pairs of elements which have the reverse order as they are in relation R.  (The text calls R–1 the converse of R, denoted Rc.)

Definition.  Let R ( A ( A denote a binary relation.  The following relations defined over A are called closures:

(a) The reflexive closure of R is r(R) = R ( {(a, a) | a ( A}.

(b) The symmetric closure of R is s(R) = R ( R–1.

(c) The transitive closure of R is t(R) = R ( R2 ( R3 ( ..., where R2 = R ( R, R3 = R2 ( R, etc., where ( denotes relation composition.  Thus, (a, b) ( t(R) (   (a, b) ( Rn,  for some n ( 1  ( there exist a1, a2, …, an ( A, an = b, for some n ( 1, such that (a, a1), (a1, a2), …, (an(1, an) ( R, i.e., there exists a direct path of n edges connecting a to b in the digraph for the relation R.
Definition.  A binary relation R ( A ( A is an equivalence relation if R is reflexive, symmetric, and transitive.

Definition.  Let m ( 2 be an integer.  Define a binary relation called modulus m and denoted (m , over the set of integers Z, as follows:


for integers a and b, a (m b iff m | (a – b), that is, a – b = mq for some integer q.

Two numbers a and b such that a (m b, are called congruent mod m, often denoted a ( b (mod m).

Theorem.  For m ( 2, the Modulus m relation is an equivalence relation.

Definition.  Let R be an equivalence relation defined over a set A.  For x (A, the equivalence class containing x, denoted [x], is defined as follows:


[x] = {a| a ( A, and aRx}, i.e., [x] contains all elements of A related to x.

Theorem.  If R (  A ( A be an equivalence relation.  Then the set of equivalence classes defines a partition of A; that is, 


(1) for x ( A and y ( A, either [x] = [y] or [x] ( [y] = (;


(2) for each x ( A, x ( [x].

Theorem.  Let A denote a (non-empty) set and ( be a partition of A, i.e., ( is a set of disjoint subsets of A such that each element of A belongs to exactly one of such subsets.  The relation R over A induced by ( is defined as follows:


for x and y ( A, xRy iff x and y belong to the same subset in the partition (.

Then R is an equivalence relation over A.

Part B. Functions.

Definition.  A binary relation R ( A ( B is called a function if for each element a ( A there exists a unique (i.e., one and only one) element b ( B such that (a, b) ( R.

Definition. If a relation R ( A ( B is a function, the set A is called the domain, the set B is the co-domain.  Typically, a function is denoted by lower-case letter f (or g, h), and we use the notation f: A ( B to mean that f is a function defined from A to B.  For each element a ( A, the unique element that is related to a is denoted f(a) and called the image of a, and a the pre-image of f(a). Thus, b = f(a) iff (a, b) ( f, where f is considered as a relation.  The set of all images, denoted f(A) = {f(a)| a ( A}, is the range of f.

Definition. Two functions f: A ( B and g: A ( B are said equal, denoted f = g, if f(x) = g(x) for every x ( A, where A is the common domain of the two functions.  

Definition. Let g: A ( B be an arbitrary function, and C ( A and D ( B be two arbitrary subsets.  Define the notation g(C) = {g(x) | x ( C} as the set of all images of those elements in C.  Similarly, define g–1(D) = {x | x ( A and g(x) ( D} as the set of pre-images of those elements in D.
Theorem.  Let f: A ( B and g: B ( C be two functions.  The composition of f and g as relations defines a function g ( f: A ( C, such that g ( f (a) = g(f(a)).  

Note: When there are two functions f: A ( B and g: B ( C, they can be composed to form a function denoted g o f: A ( C, with g precedes f in the composition notation g o f.  However, when f and g are considered as relations (because functions are special cases of relations), the notation for composing would be f o g, which as a relation has the property f o g ( A ( C.  The context should make it clear which convention (either g o f or f o g) is used.

Definition. Let f: A ( B be a function.  

(1) f is injective, or is one-to-one, if for all a, b ( A, a ( b ( f(a) ( f(b).  Equivalently, this means if f(a) = f(b) then a = b.  We also say f is an injection in this case.

(2) f is surjective, or is onto, if f(A) = B.  That is, if for every b ( B there exists a ( A such that f(a) = b.  We also say f is a surjection in this case.

(3) f is bijective if it is both injective and surjective.  We also say f is a bijection in this case.

Theorem.  Consider functions f: A ( B and g: B ( C, and the composition g ( f : A ( C.

(a) If both f and g are injective, then g ( f is injective.

(b) If both f and g are surjective, then g ( f is surjective.

(c) If both f and g are bijective, then g ( f is bijective.

Theorem. Let f: A ( B be a bijection.  Then the inverse relation of f, defined from B to A as {(b, a) | b ( B and a ( A, and f (a) = b}, is a function from B to A such that g ( f(a) = a for all a ( A, and f ( g(b) = b for all b ( B.  The function g is called the inverse function of f, denoted f–1.

Theorem.  Let f: A ( B and g: B ( A be two functions.  If g ( f(a) = a for all a ( A, and f ( g(b) = b for all b ( B, then both f and g are bijections, and they are inverse functions of each other, i.e., g = f–1 and f = g–1.

Theorem.  If f: A ( B and g: B ( C are two bijections.  Then (g ( f )–1 = f –1 ( g–1.

Theorem (The Counting Principle).  If A and B are two finite sets.

(1) If there is a injection f: A ( B, then |A| ( |B| ;

(2) If there is a surjection g: A ( B, then |A| ( |B| ;

(3) If there is a bijection h: A ( B, then |A| = |B|.

Theorem.  Let A = {a1, a2, …, an} be a set of n elements.  Then |Power(A)| = 2n = 2|A|.

Theorem.  Let A denote a finite set and |A| = n, n ( 1.  Then for 0 ( k ( n, the number of subsets of A of size k = the number of subsets of A of size n – k.

Theorem.  The sum of the first n odd numbers, 1 + 3 + … + (2n – 1) = n2, for n ( 1.
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