Part A. Equivalence Relations.

Definition. Let R ( A ( A be a binary relation.

(1) R is reflexive if for all a ( A, aRa, i,e., (a, a) (R.  (In words, each element a of A is related to itself via R.)

(2) R is irreflexive if for all a ( A, (a, a) ( R.  (In words, each element a of A is not related to itself via R.)

(3) R is symmetric if aRb implies bRa, i.e.,  for all (a, b) ( R, (b, a) ( R.  (In words, whenever a is related to b, b is related to a.)

(4) R is anti-symmetric if aRb and bRa imply a = b.  Equivalently, this means if a ( b, then (a, b) ( R implies (b, a) ( R. (In words, whenever a is related to b, and if a ( b, then b is not related to a.)

(5) R is transitive if aRb and bRc imply aRc, i.e., if (a, b) ( R and (b, c) ( R, then (a, c) ( R.  (In words, whenever a is related to b, and b is related to c, then a is related to c.) 
Definition.  A binary relation R ( A ( A is an equivalence relation if R is reflexive, symmetric, and transitive.

Definition.  Let m ( 2 be an integer.  Define a binary relation called modulus m and denoted (m , over the set of integers Z, as follows:


for integers a and b, a (m b iff m | (a – b), that is, a – b = mq for some integer q.

Two numbers a and b such that a (m b, are called congruent mod m, often denoted a ( b (mod m).

Theorem.  For m ( 2, the Modulus m relation is an equivalence relation.

Definition.  Let R be an equivalence relation defined over a set A.  For x (A, the equivalence class containing x, denoted [x], is defined as follows:


[x] = {a| a ( A, and aRx}, i.e., [x] contains all elements of A related to x.

Theorem.  If R (  A ( A be an equivalence relation.  Then the set of equivalence classes defines a partition of A; that is, 


(1) for x ( A and y ( A, either [x] = [y] or [x] ( [y] = (;


(2) for each x ( A, x ( [x].

Theorem.  Let A denote a (non-empty) set and ( be a partition of A, i.e., ( is a set of disjoint subsets of A such that each element of A belongs to exactly one of such subsets.  The relation R over A induced by ( is defined as follows:


for x and y ( A, xRy iff x and y belong to the same subset in the partition (.

Then R is an equivalence relation over A.
Part B. Induction.

The Induction Principle:  Let A ( N denote a subset that satisfies the following two properties:


(1) 0 ( A; and


(2) if k ( A, then k + 1 ( A.

Then A = N.

The Strong Induction Principle:  Let A ( N denote a subset that satisfies the following two properties:


(1) 0 ( A; and


(2) if 0, 1, …, k ( A, then k + 1 ( A.

Then A = N.

The Well-Ordering Principle:  Let B ( N be a subset of natural numbers, and B ( (.  Then B has a smallest element (that is, there is a number s ( B such that s ( b for every b ( B).

Theorem.  The expression n(n + 1) is an even number for all n ( N.

Theorem.  Let R ( A ( A denote a binary relation, R is reflexive and transitive.  Prove that Rn = R for n ( 1.

Theorem (Fundamental Theorem of Arithmetic, Part I).  Let n ( 2 denote an integer.  Then there exists prime numbers p1, p2, …, pk, not necessarily distinct, such that n =  p1p2 … pk; that is, any integer n ( 2 can be factored as a product of prime numbers.

Theorem.  Let p denote a prime.  If  p | ab, where a, b are two integers, then p|a or p|b.
Theorem (Fundamental Theorem of Arithmetic, Part II).  Let n ( 2 denote an integer.  Then the prime factorization of n, n = p1p2 … pk, is unique except for possible rearrangement of the prime factors.

Part C. Strings and Languages.

Definition.  Let A be an alphabet (i.e., a finite, non-empty set of symbols).  A regular language over A is defined by the following (recursive) rules:

(1) The empty set (, {(}, and {a} for every a( A are regular languages;

(2) If X and Y are regular languages, then the sets X ( Y (union), X · Y 

     (concatenation), and X* (Kleene star) are regular languages;

(3) No other sets are a regular language unless they are the results of applying rules (1) and (2) for a finite number of times.

Definition.  Let A be an alphabet (i.e., a finite, non-empty set of symbols).  A regular expression over A is defined by the following (recursive) rules:

(1) The empty set (, (, and a for every a( A are regular expressions;

(2) If X and Y are regular expressions, then (X + Y), (X · Y), and (X*) are 

      regular expressions;

(3) No other expressions are a regular expression unless they are the results of applying  rules (1) and (2) for a finite number of times.

Theorem.  Let A = {a, b} denote an alphabet. 

(a) X(Y + Z) = XY  + XZ for any regular expressions X, Y, Z (because the property about language concatenation and union proved in Chapter two).

(b) ab ( a + ab (because a + ab denotes the set {a, ab}, which contains {ab} as a subset.

(c) E ( E* for any regular expression E (because E* = {(} ( E ( E2 ( E3 ( …).

(d) EE* ( E* for any regular expression E (because EE* = E ( E2 ( E3 ( … ( E*).

(e) E ( = ( E = E for any regular expression E (because (x = x for any string).

Theorem: Let A, B, C denote sets of strings over some alphabet, then

(a) If A ( B, then If AC ( BC.

(b) If A ( B, then A* ( B*.

(c) If ( ( A, then B ( AB and B ( BA.

(d) (A*)(A*) = A*.

(e) A(B ( C) = AB ( AC.

(f) A* = {(} ( AA*.
Some useful properties and laws about regular expressions:
Let u, v, w denote regular expressions, then

(a) ( u =  u ( = ( (( is the empty set expression).

(b) u = u ( = u (( is the empty string expression).

(c) (* = (.

(d) (* = (.

(e) u + v = v + u.

(f) u + ( = u.

(g) u + u = u.

(h) (u*)* = u*.

(i) u(v + w) = uv + uw.

(j) (u + v)w = uw + vw.

(k) (uv)*u = u(vu)*

(l) (u + v)* = (u* + v)* = u*(u + v)* = (u + vu*)* = (u*v*)* = u*(vu*)* = (u*v)*u*.






















