COT3100.01, Fall 2000






Assigned: 11/21/2000

S. Lang



Assignment #6 (Optional *)

Due: 11/30 in class, first 10 minutes

*This assignment is optional in the following sense:

(1) You need to understand the materials contained  in this assignment because they provide useful exercises on the last segment of the course;

(2) If you turn in the assignment within the first 10 minutes of the last class (on 11/30), your score on the assignment can be used to replace the lowest score of your earlier assignments (i.e., out of the 6 assignments including this one, the lowest score will be dropped);

(3) If you missed, or being exempted from, an earlier assignment, you must do this assignment to receive a total of 5 assignment scores; that is, everyone in the class will be responsible for 5 assignment scores in calculating the assignment grades.

Let a, b, c denote distinct symbols for the following questions: 

1. Give a regular expression for each of the following languages (no proof is required but brief explanations are encouraged):

(a) The set of strings over {a, b} that contain exactly two occurrences of symbol a and at least one occurrence of symbol b;

(b) The set of strings over {a, b} that contain the substring aa but do not contain the substring bb.

2. Prove the following identities of regular expressions based on the known properties and laws about regular expression (see below for a list of laws and properties).  Be sure to explain each step of the proof by quoting the law or property being applied.  When using Law 18 below, because it has many parts, state exactly which part is used, by providing the appropriate u and v notations and the statement of the law (e.g. law (u + v)* = (u* + v)* with appropriate substitutions for u and v.

(a) Prove (a + b)* = (  + a(b + a)* + b(a + b)*.

(b) Prove a*(a* + b)* = (( + a + b* + ab*)*.  (Hint: Show both sides are equal to (a + b)*.)

3. Use induction to prove that (a + b)*b (  (a*b)* based on the following idea.  Let w ( (a + b)*b --- (1), prove w ( (a*b)* --- (2).  From (1), w = ub for some u ( (a + b)*.  Let the notation Nb(w) denote the number of occurrences of symbol b in string w.  Use induction (or strong induction, whichever is appropriate) on Nb(w) ( 1 to prove (2).)

4. Let A = {a, b} denote an alphabet consisting of two symbols a and b.  Define a function g: A* ( A* using the following recursive rules:  Let w ( A*,

(i) If |w| = 0, i.e., if w = ( (the empty string), then define g(w) = g(() = (;

(ii) If |w| > 0, then there are two cases: w = ua or w = ub, where u ( A* (that is, w either ends with symbol a or with symbol b, where u is the prefix of w):
(Case 1) if w = ua, define g(w) = g(ua) = g(u)a; or

(Case 2) if w = ub, define g(w) = g(ub) = g(u).
Based on this recursive definition, prove that g((ab)n) = an, for n ( 0.

(Hint: Use induction on n ( 0.  In the induction step, note that (ab)k+1 = (ab)k(ab).)

Some simple facts about the string operations:


Let A, B, C denote sets of strings over some alphabet, then


Some useful properties and laws about regular expressions (and about sets of strings):

Let u, v, w denote regular expressions (or, more generally, sets of strings if the + operator is interpreted as set union and ( is interpreted as the set containing the empty string (), then


u =  u ( = ( (( is the empty set expression).


u = u ( = u (( is the empty string expression).


(* = (.


(* = (.


u + v = v + u.


u + ( = u.








u + u = u.


(u*)* = u*.


u(v + w) = uv + uw.


(u + v)w = uw + vw.


(uv)*u = u(vu)*


(u + v)* = (u* + v)* = u*(u + v)* = (u + vu*)* = (u*v*)* = u*(vu*)* = (u*v)*u*.








1. If A ( B, then If AC ( BC.


2. If A ( B, then A* ( B*.


	3. If ( ( A, then B ( AB and B ( BA.


	4. (A*)(A*) = A*.


	5. A(B ( C) = AB ( AC.


	6. A* = {(} (  AA*.








