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1. (16 pts.) Recall the following definitions and theorems about integers:

Definition. An integer a is even if a = 2b for some integer b.  (That is, there exists an integer b such that a = 2b.)

Definition. An integer a is odd if a = 2b + 1 for some integer b.  (That is, there exists an integer b such that a = 2b + 1.)

Definition. An integer a is a divisor of integer b, denoted a | b, if a ( 0 and there exists integer c such that b = ac.

Theorem. Each integer is either even or odd (but not both).

Theorem. The sum of two odd integers is even.

Theorem.  If the product of two integers is even, then at least one of them is even.

Theorem.  If a | b and b | c, then a | c.

Use these definitions and theorems (and other appropriate laws) to answer each of the following questions, where all variables refer to integers:

(a) If a + b + c is odd, then either all 3 numbers a, b, and c are odd or exactly one of them is odd.  

We prove the following contrapositive statement, using the indirect proof method:

If (all 3 numbers a, b, c, are even) or (exactly one of the 3 numbers is even), then the sum a + b + c is even --- (1).

We consider two cases:

(Case One) All 3 numbers a, b, c, are even.  That is, a = 2p, b = 2q, and c = 2r, for some integers p, q, and r.  Thus, a + b + c = 2p + 2q + 2r = 2(p + q + r) --- (2).  Since the factor (p + q + r) in (2) is an integer by the closure property of integer addition, so (2) implies a + b + c is even.

(Case Two) Exactly one of the 3 numbers a, b, c, is even.  We first assume a is even, both b and c are odd.  Thus, by the definition of even and odd integers, a = 2p, b = 2q + 1, and c = 2r + 1.  Adding them up, we get a + b + c = 2p + (2q + 1) + (2r + 1) = 2(p + q + r + 1) --- (3). Since the factor (p + q + r + 1) in (3) is an integer by the closure property of integer addition, so (3) implies a + b + c is even.  The case in which b is even, both a and c are odd, and the case in which c is even, both a and b are odd, can be proved similarly, by the symmetry of the problem.

Therefore, we proved the sum (a + b + c) is even in all cases, which proved (1).

(b) If a = bq + r, then (c | a and c | b) (  (c | b and c | r). 

There are two parts in the proof.

(Part One) If a = bq + r ---- (1), and (c | a and c | b) --- (2), then (c | b and c | r) --- (3).

First, we note that c | b is true by assumption (2).  To prove c | r, by the definition of divisibility, the assumption (2) implies a = cm and b = cn for some integers m, n.  Substituting into equation (1) yields cm = cnq + r.  Thus, r = cm ( cnq = c(m ( nq), which proves c | r since the factor (m ( nq) is an integer. Thus, (3) is proved.

(Part Two) If a = bq + r ---- (4), and (c | b and c | r) --- (5), then (c | a and c | b) --- (6).

The proof is similar to that of Part One. We note that c | b is true by assumption (5).  To prove (6), we only need to prove c | a.  By the definition of divisibility, assumption (5) implies b = cp and r = ck for some integers p, k.  Substituting into equation (4) yields a = cpq + ck = c(pq + k), which proves c | a because the factor (pq + k) is an integer.  Thus, (6) is proved.

(c) If 2m + 3n is even, then n is even.

By the definition of even integer, 2m + 3n = 2p for some integer p.  Thus, 

3n = 2p ( 2m =2(p ( m) --- (1), which is an even integer because the factor (p ( m) is an integer.  Thus, (1) implies 3n is even, so n is even by the theorem that says if the product of two integers is even, then one of the integers is even.

(d) Let ABC denote a 3-digit number where A is the leftmost digit, B the middle, and C the rightmost.  (For example, if the number is 879, then A = 8, B = 7, C = 9.)  Prove that 3 | (the number ABC) (   3 | (A + B + C). 

Since the value of the 3-digit number ABC is 100A + 10B + C, so the question becomes:

Prove 3 | (100A + 10B + C) (   3 | (A + B + C).

Note that 100A + 10B + C = 99A + 9B + A + B + C = 3(33A + 3B) + A + B + C --- (1).

To prove 3 | (100A + 10B + C) (   3 | (A + B + C), assume 100A + 10B + C = 3m, for some integer m.  Substituting into (1) yields 3m = 3(33A + 3B) + A + B + C.  Thus, A + B + C = 3m ( 3(33A + 3B) = 3(m ( 33A ( 3B), which proves 3 | (A + B + C) since the factor (m ( 33A ( 3B) is an integer.

Similarly, to prove 3 | (A + B + C) (   3 | (100A + 10B + C), assume A + B + C = 3n, for some integer n.  Substituting into (1) yields 100A + 10B + C = 3(33A + 3B) + 3n = 3(33A + 3B + 3n), which proves 3 | (100A + 10B + C) since the factor (33A + 3B + 3n) is an integer.

2.  (12 pts.) Suppose a, b, and c denote integers and the following algebraic laws concerning inequalities are known:

Law A. (a > b and b > c) ( (a > c).  (This is the transitivity law, which also holds if all > signs are replaced by the ( signs, or if exactly one of the > sign on the lefthand side replaced by (.)

Law B. (a > b and c > 0) (  (ac > bc).  The law is valid if each > sign is replaced by the ( sign.

Law C. (a > b) (  (a + c > b + c), for any c.  The law is valid if each > sign is replaced by the ( sign.

Law D. (a > 0) (  ((a < 0).  Similarly, (a ( 0) (  ((a ( 0).

Law E. ab > 0 (  (a > 0 and b > 0) or (a < 0 and b < 0). The law is valid if each > sign is replaced by the ( sign, and < replaced by (.

Now use these laws and other appropriate definitions and theorems, and logical reasoning, to prove, or to disprove, each of the following statements, where all symbols denote integers:

(a) If a > 2b and b > c > 0, then ab > 2c2.

Proof: Since a > 2b and b > 0, so ab > 2b2 --- (1) by applying Law B.  Since b > c and b > 0 by assumption, so Law B implies b2 > bc --- (2).  Similarly, since b > c and c > 0 by assumption, so Law B implies bc > c2 --- (3).  Combining (2) and (3) using the transitive law (Law A) yields b2 > c2, which implies 2b2 > 2c2 ---- (4), by Law B.  Combining (1) and (4) proves ab > 2c2, by applying the transitive law.

(b) If a > b, then a2 > b2.

Disproof:  We use the following counter example.  Let a = 0 and b = (1.  Thus, a > b is true.  However, a2 = 02 = 0, and b2 = ((1)2 = 1, so a2 > b2 is false.

(c) If a2 > bc and a > 0, then a > b or a > c.

Proof: We use the method of proof by contradiction.  Thus, suppose ( (a > b or a > c), i.e., suppose a ( b --- (1) and a ( c --- (2).  Since a > 0 by assumption, applying Law B to (1) implies a2 ( ab --- (3).  Also, since a ( b and a > 0, so b > 0 by the transitive law.  Multiplying both sides of (2) by b using Law B yields ab ( bc --- (4).  Combining (3) and (4) using the transitive law yields a2 ( bc, which contradicts to the assumption that a2 > bc.

3. (5 pts.) Let n denote an odd integer.  Prove 8 |(n2 ( 1).

Since n is odd by assumption, n = 2m + 1, for some integer m, using the definition of odd.  Thus, n2 ( 1 = (2m + 1)2 ( 1 = 4m2 + 4m = 4m(m + 1).  Since m(m + 1) is even (according a theorem proved in the Notes), so n2 ( 1 = 4(2p) = 8p, for some integer p.  Thus, 8 |(n2 ( 1).

4. (7 pts.) Let p, q, and r denote propositions.  Prove the following logical implication using the truth table method:

 ((p or (q) and (p (  r))  (   (q (  (p and r)).

p
q
r
(q
p or (q
p (  r
(p or (q) and (p (  r)
p and r
 q  (  (p and r)
((p or (q) and (p (  r))

(  (q (  (p and r))

F
F
F
T
T
T
T
F
T
T

F
F
T
T
T
T
T
F
T
T

F
T
F
F
F
T
F
F
F
T

F
T
T
F
F
T
F
F
F
T

T
F
F
T
T
F
F
F
T
T

T
F
T
T
T
T
T
T
T
T

T
T
F
F
T
F
F
F
F
T

T
T
T
F
T
T
T
T
T
T

Notice that the last column of the truth table shows only True (T) values in each of the true/false combinations for the propositions p, q, and r.  Thus, we proved that the logical expression


((p or (q) and (p (  r))  (   (q (  (p and r))

is always true.

