COT3100.01, Fall 2000







S. Lang


Solution Key to Assignment #5 (40 pts.)
11/21 

Use induction to prove each of the following statements:
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Proof: We use induction on n ( 2.


(Basis Step) Consider n = 2.
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Thus, the Basis Step is proved.


(Induction Hypothesis) Consider n = k.  Assume
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(Induction Step) Consider n = k + 1.  We need to prove
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Thus, the Induction Step is proved.


By induction, we proved that the following identity holds for all n ( 2:
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Proof: We use induction on n ( 1.


(Basis Step) Consider n = 1.



[image: image6.wmf].

1

2

1

2

3

 

 

RHS

.

1

1

1

1

 

 

LHS

1

1

3

=

-

=

=

=

å

=

=

i

i



Thus, LHS = RHS, so the Basis Step is proved.


(Induction Hypothesis) Consider n = k.  Assume




[image: image7.wmf].

1

 

some

for 

 

,

2

1

2

3

1

2

1

3

³

-

å

£

=

k

k

i

k

i



(Induction Step) Consider n = k + 1.  We need to prove
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In order to prove (1), it suffices to prove
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By subtracting the common term 
[image: image11.wmf]2

3

 from both sides of (2) and rearranging terms, (2) is equivalent to
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Note that the LHS of (3) = 
[image: image13.wmf].
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Thus, proving (3) is the same as proving
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Multiplying out the denominators and dividing by 2, (4) is equivalent to proving 



k2(k + 3) ( (k + 1)3 --- (5).


Note that



LHS of (5) = k3 + 3k2, and



RHS of (5) = k3 + 3k2 + 3k + 1 > LHS.


Thus, (5) is proved.  Therefore, the induction step is proved.


By induction, we proved that the following identity holds for n ( 1:




[image: image15.wmf].

2

1

2

3

1

2

1

3

n

i

n

i

-

å

£

=


3. Define a function g(n) for n ( 0 by the following recurrence:


g(0) = 1; g(1) = 14; and


g(n) = 3g(n ( 1) + 4g(n ( 2), for n ( 2.


  Then g(n) = 3(4n) ( 2((1)n, for n ( 0.


Proof:  We use strong induction on n ( 0.


(Basis Step) We first consider n = 0.  In this case, the formula for g(n) says



g(0) = 3(40) ( 2((1)0 = 3 ( 2 = 1, which is equal to the given initial value of g(0).


Similarly, when we consider n = 1, the formula for g(n) says



g(1) = 3(41) ( 2((1)1 = 12 + 2 = 14, which is equal to the given initial value of g(1).


Thus, we proved that the formula for g(n) is true for both n = 0 and n = 1.


(Induction Hypothesis) Assume the formula for g(n) is true for all n in the range 0 ( n ( k for some k ( 1.  That is, assume 



g(n) = 3(4n) ( 2((1)n, for all n such that 0 ( n ( k, where k is some integer, k ( 1.


(Induction Step) Prove that the formula is true for n = k + 1, that is, prove


g(k + 1) = 3(4k + 1) ( 2((1)k + 1 --- (1).


To prove (1), note that since k ( 1 by the Induction Hypothesis, so k + 1 ( 2, and by the recurrence for the function g, we have



g(k + 1) = 3g(k) + 4g(k ( 1) --- (2).


Applying the formula for g(k) and for g(k ( 1) according to the Induction Hypothesis, (2) implies



g(k + 1) = 3 (3(4k) ( 2((1)k) + 4 (3(4k ( 1) ( 2((1)k ( 1)



= 9(4k) ( 6((1)k + 3(4k) ( 8((1)k ( 1



= 9(4k) + 3(4k) + 6((1)k + 1 ( 8((1)k + 1, because (((1)k = ((1)k + 1 



 and ((1)k ( 1 = ((1)k + 1



= 12(4k) ( 2((1) k + 1


= 3(4k + 1) ( 2((1)k + 1, since 12(4k) = 3(4)(4k) = 3(4k + 1).


Thus, (1) is proved, which proves the Induction Step.


By induction, we proved that the formula for function g is true for all n ( 0.

4. The expression n2 ( 1 is divisible by 8 for all odd integer n ( 1. 

Proof: We use induction on odd integer n ( 1.

(Basis Step) Consider n = 1.  In this case, 


n2 ( 1 = 1 – 1 = 0, which is divisible by 8.  So the Basis Step is proved.

(Induction Hypothesis) Consider n = k, where k is some odd integer.  Assume k2 ( 1 is divisible by 8, that is, assume k2 ( 1 = 8m for some integer m, where k = 2p + 1, is an odd integer for some integer p.

(Induction Step) Consider n = k + 2.  We need to prove (k + 2)2 ( 1 is divisible by 8.

Note that


(k + 2)2 ( 1 = k2 + 4k + 4 ( 1


= k2 ( 1 + 4(k + 1)


= 8m + 4(2p + 2), by the Induction Hypothesis


= 8m + 8(p + 1) = 8(m + p + 1)

Thus, we proved (k + 2)2 ( 1 is divisible by 8, since the factor (m + p + 1) is an integer.

By induction, we proved that n2 ( 1 is divisible by 8 for all odd integer n ( 1.

� EMBED Equation.3  ���





� EMBED Equation.3  ���
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