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Let a, b, c denote distinct symbols for the following questions: 

1. Give a regular expression for each of the following languages (no proof is required but brief explanations are encouraged):

(a) The set of strings over {a, b} that contain exactly two occurrences of symbol a and at least one occurrence of symbol b.  

bb*ab*ab* + b*abb*ab* + b*ab*abb*.  

Explanation (FYI): The first term bb*ab*ab* represents those strings that contain two a’s with at least one b before the first a; similarly, the second term b*abb*ab* represents those strings that contain two a’s with at least one b between the two a’s; and the third term b*ab*abb* represents those strings that contain two a’s with at least one b after the second a.

(b) The set of strings over {a, b} that contain the substring aa but do not contain the substring bb.

(a*(baa*)* + a*(baa*)*b)aa(a*(baa*)* + a*(baa*)*b).

Explanation (FYI): The expression (baa*)* is used to ensure each b (if any) is followed by at least one a before the next b; therefore guaranteeing no occurrences of two consecutive b’s.  Thus, the term a*(baa*)* represents strings with possible leading a’s but no occurrences of substring bb; the other term a*(baa*)*b covers those strings with an ending single b.

2. Prove the following identities of regular expressions based on the known properties and laws about regular expression (see below for a list of laws and properties).  Be sure to explain each step of the proof by quoting the law or property being applied.  When using Law 18 below, because it has many parts, state exactly which part is used, by providing the appropriate u and v notations and the statement of the law (e.g. law (u + v)* = (u* + v)* with appropriate substitutions for u and v.

(a) Prove (a + b)* = ( + a(b + a)* + b(a + b)*.

RHS = ( + a(a + b)* + b(a + b)*, commutative law a + b = b + a


= ( + (a + b)(a + b)*, distributive law (u + v)w = uw + vw, with u = a, v = b, w = (a + b)*


= (a + b)*, law A* = {(} (  AA* with A = (a + b)


= LHS.

(b) Prove a*(a* + b)* = (( + a + b* + ab*)*.  

We show that both sides are equal to (a + b)*.

LHS = (a*)*(a* + b)*, law (u*)* = u* with u = a

= (a* + b)*, law (u + v)* = u*(u + v)* with u = a* and v = b

= (a + b)*, law (u + v)* = (u* + v)* with u = a and v = b
RHS = (b* + ab*)*, since ( + b* = b* because ( ( b* and since a + ab* = ab* because a ( ab*


= (b* + a(b*)*)*, because (b*)* = b*


= (b* + a)*, law (u + v)* = (u + vu*)* with u = b* and v = a

= (b + a)*, law (u + v)* = (u* + v)* with u = b and v = a


= (a + b)*, because a + b = b + a

Thus, LHS = RHS is proved.

3. Use induction to prove that (a + b)*b (  (a*b)* based on the following idea.  Let w ( (a + b)*b --- (1), prove w ( (a*b)* --- (2).  From (1), w = ub for some u ( (a + b)*.  Let the notation Nb(w) denote the number of occurrences of symbol b in string w.  Use induction (or strong induction, whichever is appropriate) on Nb(w) ( 1 to prove (2).)

Proof: We use induction on Nb(w) ( 1 to prove that if w = ub for some u ( (a + b)*, then w ( (a*b)*.

(Basis Step) Consider Nb(w) = 1.  Thus, w = ub with u ( a* because w contains exactly one occurrence of b.  

Therefore, w = ub ( a*b ( (a*b)* by the definition of *.  Thus, the Basis Step is proved.

(Induction Hypothesis) Assume that if w = ub for some u ( (a + b)*, where Nb(w) = k for some k ( 1, then w ( (a*b)*. (Induction Step) We need to prove that if w = ub for some u ( (a + b)*, where Nb(w) = k + 1, then w ( (a*b)* is true.

Since k + 1 ( 2, there are at least two b’s in string w = ub.  Thus, there is at least one b in string u.  Write u = xby, where b is the last occurrence of symbol b in string u.  Thus, y ( a* and x ( (a + b)*.
Note that Nb(xb) = Nb(w) ( 1 = k.  Thus, by the Induction Hypothesis, xb ( (a*b)*.  

Therefore, w = ub = xbyb ( (a*b)*(a*b) ( (a*b)* by the law A*A ( A*.  So the Induction Step is proved.

By induction, we proved that if w = ub for some u ( (a + b)* then w ( (a*b)*, for all w (a + b)*.
4. Let A = {a, b} denote an alphabet consisting of two symbols a and b.  Define a function g: A* ( A* using the following recursive rules:  Let w ( A*,

(i) If |w| = 0, i.e., if w = ( (the empty string), then define g(w) = g(() = (;

(ii) If |w| > 0, then there are two cases: w = ua or w = ub, where u ( A* (that is, w either ends with symbol a or with symbol b, where u is the prefix of w):
(Case 1) if w = ua, define g(w) = g(ua) = g(u)a; or

(Case 2) if w = ub, define g(w) = g(ub) = g(u).
Based on this recursive definition, prove that g((ab)n) = an, for n ( 0.

Proof: We use induction on n ( 0 to prove that g((ab)n) = an.

(Basis Step) Consider n = 0.  In this case, g((ab)n) = g((ab)0) = g(() = (, by Rule (i).  Also, an = a0 = (, so the Basis Step is proved.

(Induction Hypothesis) Consider n = k.  Suppose g((ab)k) = ak, for some k ( 0.

(Induction Step) Consider n = k + 1.  We need to prove g((ab)k+1) = ak+1 --- (1).

Note that the LHS of (1) = g((ab)k(ab)), because (ab)k+1 = (ab)k(ab)


= g(((ab)ka)b)), associative law for concatenation


= g((ab)ka), Rule (ii), Case 2, with u = (ab)ka


= g((ab)k)a, Rule (ii), Case 1, with u = (ab)k

= (ak)a, by the Induction Hypothesis


= ak+1 

So the Induction Step is proved.

By induction, we proved that g((ab)n) = an, for n ( 0.
Some simple facts about the string operations:


Let A, B, C denote sets of strings over some alphabet, then


Some useful properties and laws about regular expressions (and about sets of strings):

Let u, v, w denote regular expressions (or, more generally, sets of strings if the + operator is interpreted as set union and ( is interpreted as the set containing the empty string (), then


( u =  u ( = ( (( is the empty set expression).


u = u ( = u (( is the empty string expression).


(* = (.


(* = (.


u + v = v + u.


u + ( = u.








u + u = u.


(u*)* = u*.


u(v + w) = uv + uw.


(u + v)w = uw + vw.


(uv)*u = u(vu)*


(u + v)* = (u* + v)* = u*(u + v)* = (u + vu*)* = (u*v*)* = u*(vu*)* = (u*v)*u*.








1. If A ( B, then If AC ( BC.


2. If A ( B, then A* ( B*.


	3. If ( ( A, then B ( AB and B ( BA.


	4. (A*)(A*) = A*.


	5. A(B ( C) = AB ( AC.


	6. A* = {(} (  AA*.








