COT3100C-01, Spring 2000
Assigned: 2/2/2000
S. Lang Assignment #2 (40 pts.)
Due:2/9, within the first 10 minutes of the lecture
class (receive 2 bonus points);
or turn it in during your lab on 2/10 or /11 (no
bonus points)
-
(12 pts.) Prove each of the following statements in Parts (a) - (f), assuming
the symbols A, B, and C represent (arbitrary) sets.
Your proof must be based on the appropriate definitions and the laws and
theorems listed below (but only these). Be sure to explain each
step of your proof.
(Commutative Law) A ÈB
= B ÈA, A Ç
B = B Ç A.
(Associative Law) (A ÈB)ÈC
= A È(B
ÈC),
(A Ç B) Ç
C = A Ç(B Ç
C).
(Distributive Law) A È(B
Ç
C) = (A ÈB)Ç(A
ÈC)
, A Ç(B È
C) = (A Ç B) È(A
Ç
C) .
(Idempotent Property) A ÈA
=
A,
A
Ç A = A.
(De Morgan’s Law) Ø
(A ÈB) = ØA
ÇØB,
Ø
(A ÇB) = ØA
ÈØ
B.
(Double Negation) Ø
(ØA) = A.
(Complementary Property) A ÇØA
= Æ , A ÈØ
A = U, where U denotes the universe.
Theorem: (a) A Ç
B ÌA. (b) A ÌA
È
B. (c) A ÇÆ = Æ
. (d) A È Æ=
A.
(e) A ÌB iff ØBÌØA
(f) A ÌB iff
A
ÇØ
B = Æ . (g) A -B
= A ÇØB. (h) (A
ÌB and B ÌC)
implies A ÌC. (i) A ÌB
implies A ÈC
ÌB
È
C. (j) A ÌB implies A ÇC
ÌB
Ç
C.
-
If A Ç B = C, then
CÌA
and C ÌB.
-
Ø (A ÇØB)
= ØAÈB.
-
(A - B) ÇB
=
Æ
. (Note: One way to prove a set
C = Æ
is to assume
xÎC, then prove
this leads to a contradiction.)
-
A Ì A ÈB
ÈC.
(Note: A ÈB
ÈC
means either (A ÈB)ÈC
or A È(B
ÈC);
they are equal by the associative law.)
-
If B Ì C, then A´BÌA
´C.
-
(A ÈB) ÇA
=
(A Ç B) ÈA.
-
(4 pts.) Disprove each of the following statements by using a "small"
counter- example, where symbols A, B, and C represent
sets.
-
If A Ç B = Æ
, then B = Æ .
-
If A Ì B ÈC,
then A Ì B or AÌC.
-
(12 pts.) Prove each of the following statements by using the same instructions
as in Question 1.
-
If B Ì C, then A-C
ÌA-B.
-
If A ´ B = Æ
, then A = Æ or B = Æ
.
-
A - (B ÈC)
= (A - B) -C.
-
If Power(A) Ì Power(B),
then A Ì B. (Note:AÎ
Power(A).)
-
(6 pts.) Suppose the symbols A, B, and C represent
three arbitrary finite sets. Answer the following two questions:
-
If |A Ç B| = 3 and |A-B|
= 5, determine |A| and explain your answer.
-
Suppose |A Ç B| = 3, |BÇC|
= 2, |A ÇC| = 1, |AÇ
B ÇC| = 0, |A -
B| = 5, |B -C| = 8, and
|C - B| = 4. Determine |A ÈB
ÈC| and explain your answer.
-
(6 pts.) Let A denote a non-empty set of symbols (i.e., an alphabet),
and let W, X, and Y denote sets of strings over A,
i.e., W Ì A*, XÌA*,
and Y ÌA*.
-
Prove that if WY Ç XY =
Æ
, then W ÇX = Æ
or Y = Æ . (Hint: Use indirect
proof.)
-
If W Ì Y, then prove W*
ÈY*
= Y*.