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Part I.  (42 pts.) True/False or fill-in-the-blank questions.  (No explanation is needed.)

1. Let A, B, C denote arbitrary finite sets.  Answer each of the following True/False questions:

(a) If A ( C = B ( C, then A = B.  False.  For example, let A = {1}, B = {2}, C = {1, 2}.  Then, A ( C = B ( C = {1, 2}, but A ( B.

(b) If A ( C and B ( C, then A ( B ( C. True.  If x ( A ( B, then x ( A or x ( B.  In the first case, x ( C because A ( C; similarly, in the second case, when x ( B, x ( C is also true because B ( C.  Thus, x ( C is true in both cases, which proves A ( B ( C.

(c) A ( B ( A ( B. False.  The set A ( B contains ordered pairs.

(d) If |A ( B| = |A|, then |A ( B| = |B|.  True.  By the theorem, |A ( B| = |A| + |B| ( |A ( B|.

2. Let a, b, c denote integers.  Answer each of the following True/False questions:

(a) If a > b + c and a > b, then c < 0.  False.  For example, let a = 3, b = c = 1.  Then a = 3 > b + c = 2, and a > b, but c = 1 < 0 is false.

(b) If a + b is odd, then ab is odd. False.  When a + b is odd, exactly one of the numbers a and b is odd, and the other is even.  Thus, ab is (always) even.

(c) If a | b and a | c, then a | (b ( c). True.  Since b = am and c = an for some integers m, n, so b ( c = am ( an = a(m ( n), which is divisible by a.

3. Let p, q, r denote arbitrary statements (propositions).  Answer each of the following True/False questions:

(a) p and (( p or q) is equivalent to (p and q). True.  p and (( p or q) ( (p and ( p) or (p and q) ( (False) or (p and q) ( (p and q).

(b) If (p (  q) is true, then (p and r) (  (q and r) is true. True.  If (p and r) is true, then both p and r are true.  Thus, both q and r are true since p implies q. 

(c) If (p (  q) is false, then p is false and q is false. False. When (p (  q) is false, we have p is true and q is false.

4. Let W, T, and Y denote sets of strings over an alphabet A.  Answer each of the following True/False questions:

(a) If W* ( T*, then W ( T*. True. W ( W* (by the definition of W*) ( T* (by assumption).

(b) If W ( T = (, then WY ( TY = (.  False.  For example, let W = {a}, T = {aa}, Y = {a, aa}.  Then, W ( T = (, but since WY = {aa, aaa} and TY = {aaa, aaaa}, so WY ( TY = {aaa}( (.

5. If u and v are two distinct vertices in a graph G = (V, E).  Suppose there is a simple path connecting vertex u to vertex v, and there is a simple path connecting vertex v to vertex u, then there must be a simple cycle (circuit) connecting vertex u to itself.  False.  There is a cycle connecting vertex u to itself but the cycle may not be a simple cycle.  For example, consider a graph which consists of 3 vertices u, w, and v.  There is an edge from u to w, and an edge from w to v.  Thus, there is a simple path from u to v, and the same simple path (reversed) from v to u, but there is no simple cycle connecting u to itself.





Part II. (33 pts.) Short Questions.  (Justify each step of your proof.)

7. Let A and B denote two arbitrary sets.

(a) (8 pts.) Prove Power(A) ( Power(A ( B).

Let x ( Power(A) ---- (1), we need to prove x ( Power(A ( B) ---- (2).  From (1), x ( A ---- (3) by the definition of Power(A).  Since A ( A ( B ---- (4), combining (3) and (4) using the transitive law yields x ( A ( B.  Thus, x ( Power(A ( B) by the definition of Power(A ( B).  So (2) is proved.

(b) (5 pts.) Prove that Power(A) ( Power(B) ( (.

Since (  ( A, so (  ( Power(A) ---- (1) by the definition of Power(A).  Similarly, (  ( Power(B) ---- (2) by the same argument.  Therefore, (1) and (2) imply (  ( Power(A) ( Power(B), which proves Power(A) ( Power(B) ( (.

8. (10 pts.) Let A and B denote two sets.  Prove A ( B = A ( (A ( B).

A ( (A ( B) 
= A (  ( (A ( B),  using the theorem X ( Y = X (  (Y

= A (  (( A (  ( B),  by De Morgan’s law


= (A (  ( A) (  (A (  ( B),  Distributive law


= (  (  (A (  ( B),  by the law A (  ( A = (

= A ( B,  by the law (  ( X = X.

9. (10 pts.) Let a, b denote two integers.  If a + b is odd, then prove a2 + ab is odd or b2 + ab is odd.

(Solution one)  Since a + b is odd, exactly one of the integers a and b is odd, the other is even.  Thus, there are two cases:

(Case 1) a is odd and b is even.  In this case, a2 + ab = a(a + b) is odd since both a and a + b are odd and the product of two odd integers is odd.

(Case 2) b is odd and a is even. In this case, b2 + ab = b(a + b) is odd since both b and a + b are odd and the product of two odd integers is odd.

Therefore, we proved that either a2 + ab is odd (in case 1) or b2 + ab is odd (in case 2).

(Solution two)  We prove the contrapositive.  That is, we assume both a2 + ab and b2 + ab are even ---- (1), then we prove a + b is even ---- (2).  From (1), the difference  (a2 + ab) ( (b2 + ab) = a2 ( b2 = (a ( b)(a + b) is even ---- (3).  Therefore, (3) implies either (a ( b) is even or (a + b) is even.  In the first case, since  (a ( b) + 2b = a + b, so (a + b) is also even (because the sum of two even numbers is even).  Thus, (a + b) is even in both cases, which proves (2).

(Solution three) We prove the contrapositive.  That is, we assume both a2 + ab and b2 + ab are even ---- (1), then we prove a + b is even ---- (2).  From (1), the sum (a2 + ab) + (b2 + ab) = a2 + 2ab + b2 = (a + b)(a + b) is even.  Thus, (a + b) is even, which proves (2).

Part III. (25 pts.) Longer Questions.  (Justify each step of your proof.)
10. (10 pts.) Let W and T denote two sets of strings.  If W ( T, prove (WT)* ( T*.  

We first prove (WT) ( T* ---- (1).  Since W ( T, so (WT) (  TT = T2 ---- (2) by the law A ( B (  AC ( BC for sets of strings A, B, and C.  Also, since T2 ( T* ---- (3), by the definition of T*, combining (2) and (3) yields (WT) ( T* which proves (1).  

From (1), we have  (WT)* ( (T*)* = T* ---- (4), by the law (A*)* = A*.

(Alternatively, we can prove (4) by using (2) as follows:  

(WT)2 ( T2T2 = T4; and (WT)3 ( T2T2T2= T6, etc.  Thus, (WT)* = {(} ( (WT) (  (WT)2 ( (WT)3 ( … (  {(}( T2 ( T4 ( T6 ( … ( T*.)

11.  (15 pts.) Let p, q, r denote arbitrary statements (propositions).  Use the truth table method to prove that 

(( (p or q) or r) is equivalent to ((p (  r) and (q (  r)).
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Note that the column for (( (p or q) or r) (column 6) and the column for ((p (  r) and (q (  r)) (column 9) are identical, which proves the equivalence of these two logical expressions.

(Note:  An alternative proof using the laws, as opposed to the truth table, is as follows:

(( (p or q) or r) ( (( p and ( q) or r, by De Morgan’s law


( (( p or r) and (( q or r), by the distributive law


( (p (  r) and (q (  r), by the contrapositive law (( p or r) ( (p (  r).

End of Note.)







Consider the graph given in the figure consisting of intersecting squares and lines, in which there is a vertex at each corner and at each point of intersecting lines, and there is an edge between each pair of adjacent vertices (no vertex or edge labels are given).  Can the edges of the graph be traversed by an Euler path (or circuit)?  Yes.  There are exactly two vertices of odd degree (labeled A and B).
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