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Practice problems for the test#1.

     Solutions (partial)

Combinatorics and counting. 

1) Let A = {a, b, c, d, e, f, g}. 

a) How many five-element subsets are there if a cannot be in a set?

Ans. It is the number of combinations of size 5 out of 6 distinct objects, i.e. C(6, 5)=6. 

b) How many subsets of A are there which contain at least three elements?

Ans. It is easier to find first the number of subsets of cardinality less then three. We have 1 empty subset, 7 singletons and C(7, 2)=21 subsets containing two elements. So, 1+7+21=29 is the number of subsets of cardinality less then 3. Now we subtract it from the total number of subsets to get the number of subsets, which contain three and more (or at least three) elements:

27((1+7+21) = 128 ( 29=99.

Alternatively, you directly take the sum of subsets with cardinalities from 3 to 7. The corresponding row of the Pascal’s triangle is 1, 7, 21, 35, 35, 34, 21, 7, 1. So, we have: 35+35+21+7+1=99.

c) How many subsets of A are there which contain at most six elements?

Ans. We have only one subset of A with which contain more than 6 element, that is A itself, |A|=7. So, 27(1 = 128 ( 1=127 subsets contain at most six elements (i. e. six and less). 

2). A juggler plans to jungle 11 rings. In his bag he has 20 identical red rings, 30 identical blue rings and 40 identical white rings. He must select at least one of each color to be patriotic. An example of a patriotic choice would be: 2 red, 3 white and 6 blue. How many different patriotic choices are there for 11 rings?

Ans. With the restriction to choose at least one ring of each color the number of possible choices is reduced to the number of ways to chose the remaining 8 (= 11(3) rings from three different colors. (Given numbers of rings of each color guarantees that we have “unlimited supply” for choosing 11 rings). This is the number of ways to distribute 8 identical objects into 3 distinguished boxes. We can find this number as the number of permutations of 8 identical objects and 2 vertical bars (separators between boxes). So, we have for the number of permutations of 8+2 objects, when 8 are of one kind and 2 are of another kind: 10!/(8!(2!)=45.

3). Find the number of permutations of letters of the English alphabet (i.e. strings of length 26 using each letter exactly once) meeting the following conditions:

a) The permutation does not contain the string math.

Ans. We can find the number of permutations that do contain the string math. This number is 23!. So, 26!(23! is the number of permutations of 26 letters that do not contain the string math.

b) The permutation contains both of the strings math and bio.

Ans. We need to find |A(B|, where A is the set of strings with a substring math and B is a set of strings with a substring bio. This is the number of permutations of two distinct substrings and 19 letters (without m, a, t, h, b, i, o). This number is 21!, so  |A(B|=21! 

c) The permutation contains neither of the strings math or bio.

Ans. Find first the number of permutations, which do contain either one of strings or both. This is |A(B|=|A|+|B|(|A(B| by inclusion-exclusion principle. |A|=23!, |B|=24!. The number of strings, which contain neither of the strings math or bio, is 26!( |A(B|=26!(23!(24!+21!

d) The permutation contains none of the strings math, bio or housing.

Ans. We need to find |A(B(C| = |A| + |B| + C |( |A(B| ( |A(C| ( |B(C| + |A(B(C|, where |A| = 23!, |B|=24!, |C|=20!, |A(B|=21!, |A(C|=17! (because of the letter h may be shared by both substrings if they come one after the other,  mathousing), |B(C|=0 (because the letter o can not belong to both strings, bio and housing), |A(B(C|=0. 26!( |A(B(C|=26!-24!-23!-20!+21!+17!

4) In how many ways can 3 blue, 4 white and 2 red balls be distributed into 4 distinct boxes?

Ans.  Lets first count separately the number of ways to distribute balls of each color into 4 distinct boxes. The number of ways to distribute 3 blue balls into 4 distinct boxes is the number of permutations of 3 identical objects of the first type (balls) and three identical objects of another type (vertical bars, separators between the boxes). This number is 6!/(3!(3!)=20. Similar we find that the number of ways to distribute 4 white balls into 4 boxes is 7!/(4!(3!)=35, and the number of ways to distribute 2 red balls into 4 boxes is 5!/(3!(2!)=10. The total number to distribute all balls is 20(35(10=700.

5). In a language survey of students it is found that 80 students know English, 60 know French, 50 know German, 30 know English and French, 20 know French and German, 15 know English and German and 10 students know all three languages. How many students know 

a) at least one language?  

Ans.
  Let E be the set of students that know English, F be the set of students who know French and G – that know German. Then | E|=80, | F|=60 and |G|=50. 


The set of students who know at least one of three languages is the union of three sets, E(F(G. We can find the cardinality of this union by using inclusion-exclusion principle:

| E(F(G | = | E|+|F|+|G|(|E(F|(|E(G|(|F(G|+|E(F(G| =

= 80+60+50(30(15(20+10 = 135.

b) English only? 

Ans. The set of students who know only English is the difference of sets E(F(G. To find its cardinality, we can represent the set E as a union, E = (E(F(G)((E(F)((E(G).  (E(F(G) and E(F are disjoint, (E(F(G) and E(G are disjoint.  

Prove by contradiction that  (E(F(G)((E(F)=(. For this assume that there exists at least one element that belongs to this intersection and show that this assumption leads to contradiction. If there exists at least one element in the intersection, we can pick it and have x((E(F(G)((E(F). This implies that [x((E(F(G)] ( [x((E(F)] by defn of (. From this point we can imply that [x(E(x(F(x(G] ( [ x(E(x(F)] by defn of set difference and intersection. By using associative and commutative laws we can represent the last proposition in the identical form [x(E(x(G] ( [x(F(x(F)]. In this way we imply that that this proposition is always False (contradiction), because   [x(F(x(F)]=False by inverse law and  [x(E(x(G] ( False =False  by absorption law.  In the similar way we can prove that (E(F(G)((E(G)=(.

 But E(F and E(G are not disjoint, (E(F)((E(G) = E(F(G (by associative and commutative properties of (). The intersection of three sets  (E(F(G)((E(F)((E(G) =  (E(F(G)((E(F(G)=(.  So, by the inclusion-exclusion principle for three sets we have:

|E| = | E( F(G | + | E(F | + | E ( G| ( | E(F(G | , or

| E( F(G | = |E| ( | E(F | ( | E ( G| + | E(F(G | = 80(30(15+10 = 45. 

c) French and one but not both out of English and German? 
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This time we want to count elements of the set that can be viewed as the union of two disjoint sets:


We want to count the elements of the following union of sets: 

((F(E)((F(E(G))(((F(G)((F(E(G)). 

To prove that ((F(E)((F(E(G)) ( ((F(G)((F(E(G))=(, we can note that any element x ( ((F(E)((F(E(G)) belongs to F(E and does not belong to G, so it does not belong to F(G, and does not belong to ((F(G)((F(E(G)). So, there is no one element that belongs to both sets. 

By the Rule of Sum for disjoint sets:

|((F(E)((F(E(G))(((F(G)((F(E(G))| = |(F(E)((F(E(G)| + |(F(G)((F(E(G)|

Since F(E(G( F(E, |(F(E)((F(E(G)| = | F(E|(|F(E(G|=30(10=20. By the same reason |(F(G)((F(E(G)| = | F(G|(|F(E(G|=20(10=10. 

So 20+10=30 students know French and one but not both out of English and German. 

d) at least two languages?

We need to count the cardinality of the union of three pairwise intersections, that are not disjoint. 

|(E(F)((E (G)((F(G)| = |E(F| + | E (G| + |F(G| ( |(E(F)((E (G)| (|(E(F)((F (G)| ( |(E(G)((F (G)| + |(E(F)((E (G)((F(G)|

Note, that (E(F)((E (G) = (E(F)((F (G) = (E(G)((F (G) = 

= (E(F)((E (G)((F(G) = E (F(G. It can be proved by the commutative, associative and idempotent laws.

So, 

|(E(F)((E (G)((F(G)| = |E(F| + | E (G| + |F(G| ( 2(|E(F(G| =

30+20+15(2(10 = 45. 

Logic. 

1). Find the negation of the following propositions:

a) (x [x(A (x(B]

Ans. (x [x(A ( x(B]

b) (y [y(A (y(B] 

Ans. (y [(y(A(y(B) ( (y(A(y(B)]

2). Use truth table method to prove or disprove the following equivalence for arbitrary propositions p, q and r:


[p((q(r)]([(p(q)((p(r)],  

where ( is ‘exclusive or operator’.

3) Which of the following formulas are equivalent?

a) p((q(r)

  
( p(((q(r), 
logical equivalence

       
(( p(((q(r), 
logical equivalence

    

(( p((q(r,
associative law

b) q((p(r)

( q(((p(r) 
logical equivalence

       
(( q(((p(r) 
logical equivalence

    

(( p((q(r
associative and commutative laws

c) (p(q)((p(r)

(((p(q)(((p(r)

logical equivalence

( (p((q(r) 

distributive law

d) (p(q)(r
(((p(q)(r


logical equivalence

(((p((q)(r

DeMorgan’s law

(( p((q(r

associative law

e) p((q(r)

(( p( (q(r)

logical equivalence

Ans.  

a), b) and d) are equivalent to (( p((q(r). c) and e) are equivalent to (p((q(r). 

(( p((q(r) ( (p((q(r), since for p =True, q= False and r = False, ((p((q(r) = True, (p((q(r) = False. 

4) Use the truth table to verify the validity of the implication:

[(p(q)([(q(r)(s](r] ( (p(s)

(Note: you can consider only those rows for which hypothesis is true).

Sets.

1) Write down the power set for each of the following sets:

Power({x, y, z, w}) = {(, {x}, {y}, {z}, {w}, {x, y}, {x, z}, {x, w}, {y, z},

{y, w}, {z, w}, {x, y, z}, {x, y, w}, {x, z, w}, {y, z, w},  {x, y, z, w}}

Power({a, {a, b}}) = {(, {a}, {{a, b}}. {a, {a, b}}}

Power(()={(}

Power({(})={(,{(}}

Power({{a}, (})={(, {(}, {{a}}, {{a}, (}}

2) For each of collection of sets, find the smallest set A such that the collection is a subset of  Power(A).

a) {{a}, {b, c}}

Ans. A={a, b, c}, 

{{a}, {b, c}}( Power(A)={(, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

b) {{a}, {(}}

c) {{a}, {{a}}}

d) {{a}, {{b}, {a, b}}}

3) Find the difference A(B of two sets A = {1, 2, {1, 2}} and B = {1, 2}. 

Ans. A(B={{1, 2}}.

4) Prove that Power(A(B)=Power(A)(Power(B)

Proof. We need to prove that Power(A(B)(Power(A)(Power(B) and Power(A)(Power(B)( Power(A(B). 

To prove Power(A(B)(Power(A)(Power(B) take arbitrary x(Power(A(B) to show that x( Power(A)(Power(B). x(Power(A(B) implies that x( A(B. From x( A(B we can imply that x( A and x( B, because for any y(x we have y( A(B, that implies y( A and y( B.

By the definition of a power set, x( A and x( B imply that x(Power(A) and x(Power(B), i. e. x(Power(A) (Power(B), by the definition of (
QED. 


To prove Power(A)(Power(B)( Power(A(B) take an element x( Power(A)(Power(B) to show that x( Power(A(B). By the definition of intersection x( Power(A)(Power(B) implies that x(Power(A) and x(Power(B). By the definition of the power set x(Power(A) and x(Power(B) implies that x(A and x(B. It means that any element from set x belongs to both A and B, or x(A(B, by subset definition.  x(A(B implies that x(Power(A(B), by the definition of power set. QED.

5) Prove that A(B = B(A iff A=B.

Proof. We need to prove two implications,  (A(B = B(A) ( ( A=B) and (A=B) ( (A(B = B(A )

Assume A(B = B(A to prove A=B. To prove A=B we need to prove A(B and B(A. To prove A(B take any x(A to show that x(B.  We have one of two cases, either x(B or x(B. In the first case, x(B and we are done. In the second case, x(A and x(B imply x( A(B. By assumption A(B = B(A,  x( A(B implies that x( B(A. By the definition of the set difference, x( B(A implies that x(B. So, in both cases   x(A  implies x(B.  By this we proved that A(B = B(A implies A(B. In the same way we can show that A(B = B(A implies B(A, i. e. A=B.

To prove that A=B implies A(B = B(A, note that if A=B, then both A ( B=( and B ( A=(, so A(B = B(A. 

6) Prove A((B(A) =A(B
7) Use set laws to prove that 

a) (A((B(C))([((A((B(C))(((B(C)]=(
Take LHS (left hand side) and perform identical transformations using set laws:

(A((B(C))([((A((B(C))(((B(C)] 

=(A((B(C))([((A(((B(C))(((B(C)(((B(C))]      Distributive law

=(A((B(C))([((A(((B(C))((]


     Inverse law

=(A((B(C))(((A(((B(C))



      Identity law


=(A((B(C))([((A((B(C)]



DeMorgan’s law

b) 
=(







Inverse law

c) (C((A(B))(((A(B)((C) = A(B
8) Prove or disprove that Power((A) = (Power(A). 

(Note: If A is a set from the universe U, the compliment of a power set is  (Power(A)=Power(U)(Power(A)).

9) Let A, B and C denote arbitrary sets. Prove or disprove that 

a) if A(B(C,  then A(C ( B(C.

b) if A(B and B ( C, then  A(C
It can be disproved by the following counterexample. Let A={1}, B={1, 2}, so that A(B. Let C={1, 3}, so that B ( C, because 2(B but 2(C. 

Never the less A(C. The counterexample can be visualized with the following Venn diagram:




10) Let A, B and C denote arbitrary sets. Prove that 

a) Note: In problems like this you can use either technique demonstrated in solutions of b), c) and d). 

b) (A(C)((C(B)=(
c) (B(A)((C(A)=(B(C)(A
Proof by “double inclusion”: we need to prove that (B(A)((C(A)((B(C)(A and (B(C)(A((B(A)((C(A)

To prove (B(A)((C(A)((B(C)(A, take arbitrary x((B(A)((C(A) (it is possible if (B(A)((C(A) is not empty, otherwise we have nothing to prove) and show that this x will be in (B(C)(A,  i. e. x((B(C)(A. From assumption x((B(A)((C(A) we can imply based upon definition of the set union, that [x((B(A)]([x((C(A)]. From this point we imply that [x(B(x(A)]([x(C(x(A)] by the defn of the set difference. 

By the distributive law the last proposition is equivalent to [(x(B(x(C)(x(A]. This proposition implies that x((B(C)(A by the defn of the union and set difference. 

To prove (B(C)(A((B(A)((C(A), take any x((B(C)(A and show that x((B(A)((C(A). From assumption x((B(C)(A, we imply using defn of the set difference and union, that (x(B(x(C)(x(A.  By distributive law,  this proposition is equal to (x(B(x(A)((x(C(x(A), which is equal to (x(B(A)((x(C(A) by the defn of set difference. Finally, the last proposition is equivalent to x((B(A)((C(A)  by the defn of the set union. QED.

d) (A(B)(C = (A(C) ( (B(C)

We can prove using membership table method.

A
  B
C
A(B
A(C
B(C
  (A(B)(C
(A(C) ( (B(C)

1
  1
1   
  0
  0
  0
 
0

0



1
  1
0
  0
  1
  1

0

0

1
  0
1
  1
  0
  0

0

0

1
  0
0
  1
  1
  0

1

1

0
  1
1
  0
  0
  0

0

0

0
  1
0
  0
  0
  1

0

0

0
  0
1
  0
  0
  0

0

0

0
  0
0
  0
  0
  0

0

0

The identity of the last two columns proves the equivalence.

e) A ( (B(C) = (A ( B)((A ( C)

A ( (B(C) = {x | x(A ( x((B(C)}, 
by the dfn of  set difference

= {x | x(A ( x([((B(C)]},  

by the defn of  set complement 

= {x | x(A (x(((B((C)}, 

by  DeMorgan’s law

={x | x(A ([x(((B) (x( ((C)]}, 
by the defn of intersection

={x | x(A ((x(B(x(C)},

by the defn on set complement

={x | x(A (x(B (x(C}, 


by associative law

={x | x(A ( x(A (  x(B (x(C }, 
by idempotent law

={x | (x(A ( x(B )((x(A ( x(C )},
by communicative and associative laws

={x | (x(A(B )((x(A(C )},

by the defn of set difference

={x | x((A(B )((A(C )},


by the defn of (
= (A(B)((A(C)
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