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Pairing Functions
. pair(xy) = <xy>=2* @y+1)-1

 with inverses
<z>, = exp(z+1,0)
<z>,=((z+1)//2<=1 )-1)/] 2

* These are very useful and can be extended to
encode n-tuples

<x,y,z> = <X, <y,z> > (note: stack analogy)
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Pairing Function is 1-1 Onto

Prove that the pairing function <x,y> =2Ax (2y +1) -1
is 1-1 onto the natural numbers.
Approach 1:

We will look at two cases, where we use the following
modification of the pairing function, <x,y>+1, which implies
the problem of mapping the pairing function to Z".
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Case 1 (x=0)

Case 1:
For x =0, <0,y>+1 = 20(2y+1) = 2y+1. But every odd
number is by definition one of the form 2y+1, where y=0;

moreover, a particular value of y is uniquely associated
with each such odd number and no odd number is

produced by 2%(2y+1) when x>0. Thus, <0,y>+1 is 1-1 onto
the odd natural numbers.
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Case 2 (x > 0)

Case 2:

For x > 0, <x,y>+1 = 2X(2y+1), where 2y+1 ranges over all odd number
and is uniquely associated with one based on the value of y (we saw
that in case 1). 2* must be even, since it has a factor of 2 and hence
2%(2y+1) is also even. Moreover, from elementary number theory, we
know that every even number except zero is of the form 2*z, where
x>0, z is an odd number and this pair x,z is unique. Thus, <x,y>+1 is 1-
1 onto the even natural numbers, when x>0.

The above shows that <x,y>+1 is 1-1 onto Z*, but then <x,y> is 1-1 onto
N, as was desired.
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u Recursive

4th Model

A Simple Extension to Primitive
Recursive



u Recursive Concepts

 All primitive recursive functions are algorithms

since the only iterator is bounded. That's a clear
limitation.

* There are algorithms like Ackerman’s function
that cannot be represented by the class of
primitive recursive functions.

 The class of recursive functions adds one more
iterator, the minimization operator (n), read “the
least value such that.”
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Ackermann’s Function

A1, j)=2j forjz21
A(i, 1)=A(i-1, 2) fori 2 2
A(i, J)=A(i-1, A(i, j-1)) fori, j2 2

Wilhelm Ackermann observed in 1928 that this is not a
primitive recursive function.

Ackermann’s function grows too fast to have a for-loop
implementation.

The inverse of Ackermann’s function is important to analyze
Union/Find algorithm. Note: A(4,4) is

a super exponential number involving six levels of
exponentiation. a(n) = A-1(n, n) grows so slowly that it is less
than 5 for any value of n that can be written using the number
of atoms in our universe.
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Union/Find

o Start with a collection S of unrelated elements —
singleton equivalence classes

« Union(x,y), x and y are in S, merges the class
containing x ([x]) with that containing y ([y])

« Find(x) returns the canonical element of [x]

« Can see if x=y, by seeing if Find(x)==Find(y)
 How do we represent the classes?

* You should have learned that in CS2
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The u Operator

e Minimization:
If G is already known to be recursive, then
so is F, where

F(x1,...,xn) = py (G(y,x1,...,xn) i\é

« We also allow other predicates besides
testing for one. In fact any predicate that
iS recursive can be used as the stopping
condition.
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