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DFA Formal Description 

Σ = input alphabet 

Q = set of states 

δ = Q x  Σ → Q, transition function (δ(qi, a) = qj, is defined for each qi ∈ Q and each a ∈ Σ) 

q0 = start state 

F = set of accept/final states (a subset of Q) 

 

Regular Operations 

If A and B are regular, then the following languages determine by these operations are also 

regular. 

 

Union: A ∪ B = { z | x ∈ A or x ∈ B } 

Concatenation: A ◦ B = { xy | x ∈ A and y ∈ B } 

Star: A* = { x1x2…xk | k ≥ 0 and each xi ∈ A } 

 

NFA Formal Description 

Same as DFA except for the transition “function”, which has a set of outputs instead of a single 

state as output. In the text, it’s denoted as follows: 

 

δ: Q x  Σε → P(Q), where P(Q) represents the set of subsets of the set Q. 

 

NFA to DFA conversion 

If the NFA has states 1, 2, 3, … n, then create a DFA with 2n states where each state represents a 

distinct subset of states from the NFA. For example, if the states of the NFA are 1, 2 and 3, then 

we can label the DFA states as 000, 001, 010, 011, 100, 101, 110, and 111. Each of the three bits 

represents whether or not a particular NFA state is included in the subset. For example, 101 

represents the subset of {1, 3} from the NFA. 

 

The start state of the DFA will correspond to the set of states that are reachable without reading 

any input into the NFA. (For example, if there are epsilon transitions from 0 to 1 and from 1 to 2, 

but none from 2, then the start state in the DFA will be the one corresponds to the subset 

{0,1,2}.) 

 

For each transition, do as follows: If you are starting from a state {1,3,4} and reading an a, for 

example, calculate all the states you can reach in the NFA if you were in either state 1, 3 or 4 and 

read in a single a. (Account for epsilon transitions as well. This set of reachable states, denotes 

another state in the DFA. This is the output state when you read in an a from {1, 3, 4}. Do this 

for all states and input letters in the DFA. 

 

The set of accept states are all states that include at least one accept state from the NFA. For 

example, if the NFA has states 1, 2, 3 and 4, and states 2 and 3 are accept states, then {2}, {3}, 

{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} and {1, 2, 3, 4} are 

all accept states in the DFA. 

 

 



Proof of Closure for Regular Languages using NFAs 

To create an NFA for A ∪ B, where A and B are regular languages, create a new NFA with a 

new start state and connect it with two epsilon transitions to the two start states of the NFAs that 

accept A and B, respectively. 

 

To create an NFA for A◦ B, put the NFA for A to the left of the NFA for B. Take each final state 

in the NFA for A and connect it with an epsilon transition to the start state for the NFA for B. 

Erase all final states in the NFA for A. 

 

To create an NFA for A*, Take the NFA that accepts A and add a new start state. Make his start 

state an accept state. Then, add an epsilon transition from this start state to the original start state 

for the NFA for A. 

 

Regular Expression Definition 

1) a for some letter in the alphabet Σ  2) ε  3) ∅ 

4) (R1 ∪ R2), where R1 and R2 are regular expressions 

5) R1 ◦ R2, where R1 and R2 are regular expressions 

6) R*, where R is a regular expression 

 

Equivalence with NFAs 

Simply use all the constructions given in the section for closure with NFAs to create an NFA that 

accepts the same language described by a regular expression. This shows that any language 

described by an RE can be expressed with a NFA. 

 

Now, we must show the other side, that any language expressible by a DFA can also be 

expressed through a regular expression. We do this as follows: 

 

1) To our DFA, add a start state and a new accept state. Create epsilon transitions from the new 

start state to the old one and from all the old final states to the new one. Make the old accept 

states not accept states. This is our GNFA. 

 

2) Rip out each state, except for the start and accept state, one by one. For each rip go through 

the following steps: 

 

For each pair of states i and j, NOT being ripped out (note that i and j can be the same), Consider 

the following four regular expression labels: 

 

R1: qi → qrip R2:  qrip→ qrip R3:  qrip→ qj R4:  qi→ qj 

 

Now, replace these four labels with a single label for the transition qi→ qj as follows: 

(R1)(R2)
*(R3) ∪ R4 

 

In the end, are left with two states with a single transition and a regular expression label. This 

label is a regular expression describing the same exact language as the original DFA. 

 

 

 



Pumping Lemma 

For all regular languages, A, there exists a positive integer p, known as the pumping length, such 

that all strings, s, in A of length p (or greater) satisfy the following criteria: 

 

There exists a way to split up s into three components x, y and z, where s = xyz such that 

 

1) for each i ≥ 0, xyiz ∈ A 

2) |y| > 0 

3) |xy| ≤ p 

 

Context-Free Grammar 

Formal Defintion: 

 

V is a set of finite variables. 

Σ is a set of finite terminals, which are disjoint from V. 

R is a set of finite rules. Each rule maps a single variable to a string containing variables and/or 

terminals. 

S is the start symbol. 

 

The language of a grammar is simply the set of strings (of terminals only) that can be derived 

from the start symbol, through 1 or more applications of the rules. 

 

Chomsky Normal Form 

Every rule is of one of the following two forms: 

 

A → BC (two variables) 

A → a (one terminal) 

 

The transition S → ε is also allowed, but no other epsilon rules are allowed. 

 

Context-Free Grammar to Chomsky Normal Form  

1) Add a new start state, S0, with the single rule S0 → S, where S was the original start state. 

 

2) Remove epsilon rules. For each rule of the form A → ε, look through each right side 

production. In any string that contains an A, consider what it might look like without the A, and 

add this in that rule. For example, if there was a rule: 

 

B → ABbA with the first A missing, the production would be BbA. With the second rule 

missing it would be ABb. With both A's missing, it would be Bb. Simply add all three rules: 

 

B → ABbA | BbA | ABb | Bb 

 

Do this for each production for which the variable that goes to epsilon appears. After adding all 

of these rules, you can remove the epsilon rule. 

 

What might occur is that the removal of one epsilon rule might create another one. For example, 

if we had B → A and A → ε to remove, then we'd create B → ε as we remove A → ε. Then, 



we'd have to remove the B → ε rule. We continue in this fashion until no epsilon rules are left, 

except for possibly, S → ε. 

 

3) Remove unit rules. For each rule of the form A → B, remove it by adding in all possible 

productions for B into the list for A. For example, if we have: 

 

A → B | a | bC | BC    B → bb | CB | b | AbCa 

 

Then we would add ALL of the productions for B in the line for A, and then remove B: 

 

A → a | bC | BC | bb | CB | b | AbCa  B → bb | CB | b | AbCa 

 

4) Convert all rules into proper form  

 a) remove terminals from right side strings of length 2 or more 

 b) rewrite rules of length greater than 2. 

 

If we use the example above, we can achieve (a), but creating new variables for a and b as 

follows: 

 

D → a  E → b  

A → a | EC | BC | EE | CB | b | AECD 

B → EE | CB | b | AECD 

 

Now, to remove rules of length greater than 2, create all the necessary "bridge" variables. 

Namely, for a string such as AECD, create a new variable F so that this string can be rewritten as 

AF, where F will expand out to ECD. But, since F can only be two letters, let F simply go to EG, 

where G expands out to CD. Here is this portion of the example converted: 

 

D → a  E → b   A → a | EC | BC | EE | CB | b | AF  B → EE | CB | b | AF 

F → EG G → CD 

 

Pushdown Automata 

Formal Definition 

 

Q = set of states Σ = input alphabet Γ = stack alphabet q0 = start state 

δ = Q x  Σε x Γε → P(Q x Γε) , transition function  F = set of accept/final states (a subset of Q) 

 

A string is accepted by a PDA if and only if there exists a path to read the string into the PDA so 

that it's in an accept state after reading in the whole string. The state of the stack does not affect 

whether or not a string is accepted after the string has been processed. 

 

Pumping Lemma for CFG 

If A is a context-free language, then there is a number p, called the pumping length, where, if s is 

any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying 

the conditions: 

 

1) for each i ≥ 0, uvixyiz ∈ A  2) |vy| > 0  3) |vxy| ≤ p 



Turing Machines 

 

Formal Definition 

 

Q = set of states Σ = input alphabet Γ = tape alphabet, with blank q0 = start state 

δ = Q x Γ → Q x Γ x {L, R} , qaccept , and qreject 

 

Input placed on tape. Computation follows rules. If machine ever hits qaccept , then string is in the 

language. A string not in the language may either hit qreject or loop. 

 

A Turing machine is a decider if it correctly halts on all inputs and determines whether or not the 

input is in the desired language. 

 

A Turing machine is a recognizer if it correctly halts on all inputs IN THE LANGUAGE and 

doesn't erroneously accept any inputs not in the language. 

 

A language is called Turing decidable (recursive) if there exists a Turing machine that decides it. 

A language is called Turing recognizable (recursively enumerable) if there exists a Turing 

machine that recognizes it. 

 

Turing Machine Variants 

Multitape Machine with alternative transition function: 

 

δ = Q x Γk → Q x Γk x {L, R, S}k 

 

This is equivalent to a regular TM. To simulate a multitape on a regular TM, use the "dot" trick 

and hash marks to separate out each of the separate tapes being simulated. The dot keeps track of 

where each tape head is and you sweep left to right to perform one move. Whatever the multitape 

does in one step, the regular does in O(f(n)) steps, where f(n) is the time taken by the multitape 

machine. 

 

Nondetermininstic Turing Machine transition function: 

 

δ = Q x  Γ → P(Q x Γ x {L, R}) 

 

This is also equivalent to a regular TM. We simulate this on a multitape. One tape is the input 

tape, another the simulation tape and the third is the "decision counter", telling us which choices 

to make when we have non-determininstic branches. The decision counter goes in 

lexicographical order from shortest to longest. Iteratively try each possibility of the decision 

counter by copying the input to the simulation tape and just running those steps. If any of these 

accept, accept. 

 

PROBLEM TIPS: To show that a machine variant is equivalent to a standard TM, you have to do 

two directions of the proof: 1) show that any standard TM can be transformed into an equivalent 

machine of the new model, 2) show that any machine of the new model can be transformed into 

an equivalent standard TM. Key in both directions is the manipulation of the transition function, 

often times requiring new states and extra steps to substitute for a single step. 

 



An enumerator is a machine that takes no input and prints out strings. An enumerator of a 

language is guaranteed to print out all strings in the language eventually and guaranteed not to 

print out any string not in the language. For any language that we can create an enumerator, we 

can create a Turing machine that recognizes the language and vice versa. 

 

Decidable Langauges 

Here is a list from section 4.1: 

 

ADFA, ANFA, AREX, EDFA, EQDFA, ACFG, ECFG 

 

A means "this machine accepts this string" 

E means "this machine accepts no strings" 

EQ means "these two machines accept the same set of strings" 

 

We prove a language is decidable by creating an algorithm to decide membership in the 

language. We must prove the correctness of the algorithm and we must prove it always halts. 

Often times, either algorithms from COT 4210 or COP3503 are useful in these proofs. 

 

Countability 

We prove that sets are countable by showing a one-to-one mapping from the natural numbers to 

the set. We showed this with fractions and ordered pairs of integers by weaving the diagonal. If 

we go down one row or column, we never make it to the next row or column, which is why we 

must do successive diagonals, all of which end. 

 

We prove that the real numbers and the number of subsets of N are uncountable by using 

diagonalization. We assume the opposite, that the sets are countable. We take the "given list" of 

complete items in the set, and use the "flip item i in location i" trick to create a new item not in 

the given list, concluding the contradiction. 

 

Undecidable Problems 

 

ATM = { <A, w> | A is a TM that accepts w } 

 

We prove that this language is undecidable via contradiction, assuming that a machine H exists 

that decides ATM. Based on the design of H, we create another machine D that "does the opposite 

of what D should do on its own input". Unfortunately, this creates a contradiction between what 

D says will happen on its own input vs what actually happens on its own input when run. 

Another proof of this shows how the number of TMs is countable but the number of languages 

isn't, so we run into a problem trying to map each TM to a language. (There are languages that 

have no corresponding TMs.) 

 

Reducibility 

 

Other undecidable problems: HALTTM, ETM, REGULARTM, EQTM 

 

In general, to prove a new language is undecidable, we do the following: 

 

1) Assume the language, L, is decidable by some TM H. 



2) Utilize H as a subroutine in TM D to decide another known undecidable language L'. 

3) Conclude that since we know L' is undecidable, the initial assumption in the proof must have 

been incorrect, thus L is not decidable and is undecidable, as desired. 

 

The key to these proofs is treating that TM H as a black box and figuring out creatively, how 

you can use H to solve membership in another known undecidable problem L'. We often pick 

L' = ATM, but other choices may work better for some problems. It's critical to get your input 

parameters to both H and D correct in terms of number of parameters and type. 

 

Proof of ALBA decidability hinges on a finite number of possible configurations. This is infinite 

for regular TMs. 

 

Both ELBA and ALLCFG are undecidable via computation histories. For the first proof, we assume 

we have a decider for ELBA. We then use that decider to decide ATM as follows. Our input is a 

TM M and a string w. We use this to create an LBA that accepts all valid computation histories 

of M on w. (There is either 0 or 1 of these.) When we find out that there are no such valid 

computation histories we can say that M doesn't accept w. Alternatively, if we find out there is at 

least one, we know M does accept w. 

 

PCP Proof 

Problem is given a set of tiles, can we arrange some sequence of the tiles (with repeats allowed) 

so the top and bottom read the same. 

 

We decide ATM using a PCP solver as follows: 

 

First tile: top = #, bottom = #q0w1…wn# (so bottom is ahead by one step) 

 

For each right move, put in the tile:  top = qa, bottom = br, where q is the input state, a the input 

char, b is the output char and r is the output state. 

 

For each left move, put in the tile: top = cqa, bottom = rcb, where input state is q, input char a, b 

the output char and r the output state. Place all possible chars for c. 

 

Place each char top = a, bottom = a for each input char (not for the #) 

 

Place dominoes #/# and #/blank#, these are to add blanks. 

 

Place dominoes [aqaccept/qaccept] and [qaccepta/qaccept] to help swallow up characters from the bottom 

so that the top can start catching up, one char per "turn". 

 

Mapping Reducibility 

A language A is mapping reducible to a language B iff there exists a computable function f such 

that for all inputs w, iff w ∈ A, then f(w) ∈ B. 

 

If A is mapping reducible to B and A is undeciable, B is undecidable. 

If A is mapping reducible to B and B is decidable, then A is decidable. 

If A is mapping reducible to B and B is Turing recognizable, A is Turing recognizable. 



 

Note: If L is not decidable, but is Turing recognizable, then the complement of L is co-Turing 

recognizable. 

 

Class P 

A language is in TIME(O(f(n)) if a TM exists that correctly decides membership on any input of 

size n in O(f(n)) steps. The class P is simply the set of languages for which there exist a Turing 

machine correctly decides membership in the language in O(nk) time for some constant k. 

 

Examples of problems in P: PATH, RELPRIME, ACFG, and many of the problems taught in CS1 

and CS2. 

 

We prove a problem is in P by coming up with an algorithm to decide membership in the 

language. We must prove the algorithm to be (a) correct, and (b) take a polynomial number of 

steps with respect to the input size. 

 

Class NP 

A language is in NTIME(O(f(n)) if a non-deterministic TM exists that correctly decides 

membership on any input of size n in O(f(n)) steps. This means that ALL computation branches 

have depth at most O(f(n)). The class NP is simply the set of languages for which there exist a 

non-deterministic Turing machine that correctly decides membership in the language in O(nk) 

time for some constant k. 

 

Examples of problems in NP: 3-SAT, CLIQUE, VC, SS (subset sum), HAM-PATH 

 

We prove a language, L, is NP-Complete as follows: 

 

1) Show that L is in NP. We do this by showing that a certificate for a positive answer can be 

verified in polynomial time of the input. 

 

2) Show than a known NP-Complete problem can be reduced in polynomial time to L. 

 

Proofs of NP-Completeness 

 3-SAT - the most detailed proof. We encode a Turing machine M's directions and a string w into 

a large boolean formula that is true iff there exists a computation history of M on w that results 

in an accept. First part of the boolean formula is forcing each cell of the tableau to be occupied 

by exactly one valid symbol. This loops through each cell, forcing each one to have at least one 

thing, but never to have more than one thing. The next part of the formula is forcing the starting 

configuration on the first row of the tableau with a bunch of ands, for which symbols must be 

there. The third part of the formula is just saying that qaccept must appear somewhere on the 

tableau. The final portion of the formula is the most complicated, requiring that all 2 x 3 

windows adhere to the valid rules of the machine. 

 

CLIQUE: Proof is reduction from 3-SAT. We take a Boolean formula and output a graph and an 

integer k. For each clause, create three vertices in a group not connected to each other. For each 

pair of vertices not in the same group, connect them so long as their labels aren't opposing labels. 



(Connect x to everything but 𝑥̅ in the other groups, etc.) Output this graph and the number of 

groups as k. 

 

VERTEX COVER: Proof is reduction from 3-SAT. We take a boolean formula and output a 

graph and an integer k. Each clause converts to three vertices connected in a triangle. Each 

variable converts to two vertices labeled with x and 𝑥̅ connected by an edge. From each of these 

"bars" draw edges to the triangles for identical variable labels only. Output this graph and the 

number of variables plus 2 times the number of clauses as your k. 

 

SUBSET SUM: Proof is reduction from 3-SAT. We take a boolean formula and output a set of 

numbers and a target. Create 2 rows for each variable and two rows for each clause. The number 

of columns will be the number of variables plus the number of clauses. For each variable, there 

are two rows, one for setting that variable true, the other for false. For both rows, set the column 

with its variable number to 1. For the columns for the clauses, for the first row set the clause to 

true if the variable appears in the clause. For the second row set the clause to true if the 

complement of the variable appears in the clause. For the last set of rows, for each clause have 

two ones each in the corresponding column as slack variables so that each clause can have three 

things true: 1 from the expression and up to two from the slack variables. The target is a bunch of 

1s (# of vars) followed by a bunch of 3s (# of clauses). 

 

3SAT to Independent Set: Input is a boolean formula, output a graph and an integer k. For each 

clause, output a triangle (3 vertices all connected). Connect each variable in a triangle with the 

variables in other clauses that oppose it. Output this graph and the number of clauses as k. 

 

Independent Set to Vertex Cover: Use the same graph and make the new k equal to the number 

of vertices in the old graph minus its k. All the vertices NOT in the independent set form a vertex 

cover. 

 

Independent Set to CLIQUE: Output the complement graph and k. An independent set is a set of 

vertices where none are connected, if we "flip our connections" this becomes a clique. 

 

Techniques to prove new problems NP-Complete: 

 

First, pick the problem to map from. 3-SAT is popular, but some items are harder to create from 

boolean formulas than others. If it's a problem dealing with graphs, see if another graph problem 

will work. (Note that these last couple reductions above are much easier and shorter than the 

others.) If a problem has numbers, see if Subset Sum will work, and so forth. There's some 

creativity involved. Key is to make an input to the new problem that is true if and only if the old 

input was true for the old problem. If you look at all the old proofs, we have "devices" in the new 

input to force its answer to go a particular direction, so to speak. The idea of slack variables in 

the two subset sum proofs is important, as is the idea of connecting variables to themselves or 

their opposite, and between triangles or other groups. 

 

  



PSPACE 

SPACE(O(f(n)) is the set of languages that can be decided by a regular TM using O(f(n)) tape 

squares for any input of size n. 

 

Savitch's Theorem: NSPACE(O(f(n)) ⊆ SPACE(O(f2(n)) where f(n) ≥ n.  

 

It follows that PSPACE = SPACE(O(nk)) for a constant k and NPSPACE = NSPACE(O(nk)) are 

equal classes. 

 

We prove Savitch's Theorem using a divide and conquer algorithm that limits the stack space to 

a polynomial size. For each possible intermediate configuration cm, we look to see, if in time t/2 

we can go from c1 to cm and if we can go from cm to c2.. This allows us to see if we can move 

from c1 to c2 in t steps. Then we just try to see if we can go from the starting configuration to an 

accepting one in an exponential number of steps. 

 

TQBF = the set of true quantified boolean formulas. You have a formula with there exists and for 

all clauses with variables. If the formula is true, it's in the language. This language is PSPACE 

complete. 

 

Formula Game: Given a Fully Quantified Boolean Formula, player one is the there exists player 

and player two is the for all player. In order of the quantifiers, the players play, picking their 

variable. Does there exist a strategy for the there exists player to make the formula true? If so, 

this is an instance of Formula Game. Due to the lack of alternating players, this problem is 

precisely TQBF. 

 

Generalized Geography: Given a directed acyclic graph and a starting vertex, player 1 chooses 

any outgoing edge. Player 2 can respond with any outgoing edge that visits a new vertex. Play 

alternates until one of the players has no new outgoing edges to take that lead to an unvisited 

vertex. If player 1 has a winning strategy, then the input graph is in GENERALIZED 

GEOGRAPHY. 

 

 


