Backtracking and Branch-and-Bound Strategies

State Space Trees

o problem states, decision sets

o fixed-tuples vs. variable-tuples

o bounding functions, search strategies

o examples: sum of subsets, 0/1 knapsack

Backtracking
o DFS with bounding

Branch-and-Bound
o FIFO, LIFO, and LC branch-and-bound searches

Backtracking and Branch-and-Bound Strategies

Many problems require making a sequence of decisions that satisfy
certain constraints.

The 0/1 knapsack problem: making n decisions regarding
whether to include each of n objects without exceeding the
sack’s capacity

The graph coloring problem: making n decisions on choosing a
color (out of k colors) for each of the n vertices without using the
same color for the two end vertices of an edge

Let x4, X,, ..., Xy, denote k decisions made in solving a problem,
1<k< n, where each X; € S;, and n is the maximum number of
decisions to be made. Let P denote the set of all these k—tuples
(X1, X, ..., X,). Each such tuple Is called a problem state; a goal
state is one that corresponds to a final solution.

Given a problem state (x,, X5, ..., X,_1), the decision set D,(X;, X5, ...,
X_1) = {X € Sy | (X, X xk) e P}, i.e., all possible decisions in
stage k having made K1 preV|ous decisions X1y Xoy «eey Xy q-

State Space Trees

The collection of D,(X;, X5, ..., X,_1), 1 <Kk < n, form a tree in
which the root corresponds to the initial state (an empty set), the
child nodes of the root correspond to the set D, = P,. For each of
problem states (x,) in P4, its child nodes include those in D,(X,),...

Example: The 0-1 knapsack problem of 5 objects with associated
weights w[1..5] ={1, 2, 5, 6, 7}, values v[1..5] ={1, 6, 18, 22, 28},
and sack’s capacity W = 11.

Addvs =18 .
7 N Addv4: .
y TW » | Note that the constraint
% Imposed at each stage is
> » | for the total weight of
29 included objects not
] exceeding 11. The optimal
solution with a total value
| 28 | 40 is highlighted.
34
an optimal solution

State Space Trees

Another way to present the state space tree uses fixed-tuples, in
which the goal states are of the same length. The fixed-tuple
state space for the same knapsack problem:

Lo —1 \
jy , /N /N A 5
0¥ X1 0 07 N1

ﬁhﬁhﬁhﬁhﬁhﬁﬁﬁﬁﬁﬁ ﬁdﬁhﬁhﬁhﬁhﬁﬁﬁﬁﬁh x5

Note that each decision x, =0 or 1, for 1 <i <5, depending on
whether object i is excluded or included.

Searching the State Space Trees

Solutions can be found via a systematic search of the tree.

o If no descendants of a node X can lead to a goal state, then node X
IS bounded, and the subtree rooted at X is skipped (pruned).

o A good bounding function can improve the search algorithm’s
efficiency.
Example. The sum-of-subsets problem: Find a sublist of the list
A[l1..5] ={1, 4, 5, 10, 4} with the sum of 9. (Answer: choose 4
and 5.)

0 4
//4 i 5 10 Goal
1 4 5 10 Bound
4 5 ¢ \1,0\4 5/ 104 4 10y zﬁ.
Other
5 6 11 5 9 14 8 15 9 leaf
5.40./ 4\ 10\ 4
9

A
.

10 . . .
= A bounding function is B(Xy, X,, ..., X) =
true if $axj>sum ; false otherwise.
i=1

Backtracking

A general-purpose design strategy based on searching the state
space tree associated with a given problem.

Apply depth-first search of the state space tree starting from its
root, maintaining necessary information about the current state
and using a bounding function to prune the search space
(reached a goal state or no need to search further).

Example. A portion of the state space tree for the sum-of-subsets
problem of the preceding page, and the backtracking path:

A[L.5] = {1, 4, 5, 10, 4}, sum = 9

Bound Bound Goal Bound Dead-end

Backtracking

Procedure Sum-of-Subsets-Recursive (k)
// X[0..n] a global array, in which (X[1], ..., X[K]) is the current
I/ state, X[i] is the index of the ith selection, and X[0] =0
/[A[1..n] a global array that contains the values of the list
/[Call this procedure with k = 0 to start the search process
I/l The bounding condition is when the sum of the values selected
// in the current state is > sum

k++
for child = X[k=1] + 1 to n do // try every child of current node
X[K] = child

if AX[1]] + ... + A[X[K]] < sum then

/[current state not bounded, search deeper
call Sum-of-Subsets-Recursive (k)

/] else, the current state is bounded, prune the subtree

else if A[X[1]] + ... + A[X[K]] = sum then
output-goal-state (X[1], ..., X[Kk])

end-for-loop

A General Backtracking Procedure

0

(} (X[1], ..., X[k-1])

P
M X[K]

(N
Decision SJDK(X[l], ., X[k=1])

procedure Backtrack-recursive(k)
// X[0..n] a global array, in which
Il (X[1], ..., X[K]) is the current state;
I D is the decision set for current states;
// The output consists of all goal states
// that are descendants of the
/I current state (X[1], ..., X[K]);
/I Call the procedure with k = 0 to start
/I the search
k++
 for each decision xeD, (X[1], ..., X[k-1])do
X[Kk] = x
iIf not Bounded(X[1], ..., X[k]) then
// search deeper
Backtrack-recursive(k)
/l otherwise, prune the search tree
else if (X[1], ..., X[K]) is goal state then
output-goal-state(X[1], ..., X[K])
N end-for-loop

procedure Backtrack // non-recursive

// X[0..n] a global array, in which (X[1], ..., X[Kk]) is the
Il current state; D, is the decision set for current state;
// The output consists of all goal states
k=1

[while k > 1do // repeat until returning to the root (k=0)
~while there is another un-tried node x in D, do

delete x from the decision set D, (X[1], ..., X[k-1])

X[Kk] = x

if not Bounded(X[1], ..., X[K]) then
exit while loop

// otherwise, prune the search tree

else if (X[1], ..., X[K]) is goal state then
output-goal-state(X[1], ..., X[K])
Kend—while—loop

if x = NULL then // exhausted all decisions in D,
k-- /I backtrack to previous level

\ else k++ // move to next level

end-while-loop

Note that backtracking traverses an
Implicit search tree; its worst-case time
complexity is O(tree size) and space
complexity O(n), n = depth of state tree

Branch-and-Bound (FIFO, LIFO, or LC)

When a node is visited the first time (called an E-node), all its
children are generated and saved into a data structure (called
live-nodes) if the child is not bounded; the structure could be a
queue (FIFO), a stack (LIFO), or a priority queue (LC, or Least-
Cost). Exactly one node is pulled out the live-node list at a time,
which becomes an E-node, to be “expanded” next.

Example. (A portion of) the FIFO branch-and-bound path:

V f \ X : bounded
- 7

5 L 7
f — < = = —— —_ —
S 4

6 11y |5 9 | Il1ay] |8 15)(‘%

FIFO branch-and-bound does a breadth-first search (BFS): nodes

are expanded from top down, left to right at each level, dropping
those that are bounded.

A General Branch-and-Bound Procedure

procedure Branch-and-bound
/I X[0..n] a global array, in which (X[1], ..., X[K]) is the
/I current state; D, is the decision set for current state;
// The output con5|sts of all goal states
call Allocate-Node(root-node) // create a root node
root-node.parent = NULL; k=0
live-nodes = {root-node} // initialize live-node list
while live-nodes # & do
E-node = select-next-node(live-nodes, k)
for each X[k] €D, (E-node) do
call AIIocate Node(child-node)
child-node.info = X[K]
child-node.parent = E-node
if not bounded(child-node) then
call add-live-nodes(child-node)
/lotherwise, prune the tree
if goal(child-node) then // a goal state is reached
create the state (X[1], ..., X[k]) by following the
parent links from child-node to the root;
output-goal-state(X[1], ..., X[K])
end-for-loop
end-while-loop

A General Branch-and-Bound Procedure

When a stack is used for storing the live nodes, LIFO branch-
and-bound essentially performs a DFS but exploring first the
rightmost child node at each level.

FIFO branch-and-bound may be more efficient than LIFO BB
when a goal state exists at a shallow level of the tree; otherwise,
FIFO BB may be expensive

The LC (least-cost) branch-and-bound strategy uses heuristics to
determine the best node for expansion from the current live
nodes.

	Backtracking and Branch-and-Bound Strategies
	Backtracking and Branch-and-Bound Strategies
	State Space Trees
	State Space Trees
	Searching the State Space Trees
	Backtracking
	Backtracking
	A General Backtracking Procedure
	Branch-and-Bound (FIFO, LIFO, or LC)
	A General Branch-and-Bound Procedure
	A General Branch-and-Bound Procedure

