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Backtracking and Branch-and-Bound Strategies

Many problems require making a sequence of decisions that satisfy 
certain constraints.  
The 0/1 knapsack problem: making n decisions regarding 
whether to include each of n objects without exceeding the 
sack’s capacity
The graph coloring problem: making n decisions on choosing a 
color (out of k colors) for each of the n vertices without using the 
same color for the two end vertices of an edge

Let x1, x2, …, xk, denote k decisions made in solving a problem, 
1≤k≤ n, where each xi ∈ Si, and n is the maximum number of 
decisions to be made.  Let Pk denote the set of all these k–tuples
(x1, x2, …, xk).  Each such tuple is called a problem state; a goal
state is one that corresponds to a final solution. 

Given a problem state (x1, x2, …, xk–1), the decision set Dk(x1, x2, …, 
xk–1) = {xk ∈ Sk | (x1, x2, …, xk) ∈ Pk}, i.e., all possible decisions in 
stage k having made k –1 previous decisions x1, x2, …, xk–1.



State Space Trees
The collection of Dk(x1, x2, …, xk–1), 1 ≤ k ≤ n, form a tree in 
which the root corresponds to the initial state (an empty set), the 
child nodes of the root correspond to the set D1 = P1. For each of 
problem states (x1) in P1, its child nodes include those in D2(x1),...

Example: The 0-1 knapsack problem of 5 objects with associated 
weights w[1..5] = {1, 2, 5, 6, 7}, values v[1..5] = {1, 6, 18, 22, 28}, 
and sack’s capacity W = 11.
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for the total weight of 
included objects not 
exceeding 11. The optimal 
solution with a total value 
40 is highlighted.
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State Space Trees
Another way to present the state space tree uses fixed-tuples, in 
which the goal states are of the same length. The fixed-tuple
state space for the same knapsack problem:
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Searching the State Space Trees
Solutions can be found via a systematic search of the tree.  

If no descendants of a node X can lead to a goal state, then node X
is bounded, and the subtree rooted at X is skipped (pruned).  
A good bounding function can improve the search algorithm’s 
efficiency.

Example. The sum-of-subsets problem: Find a sublist of the list 
A[1..5] = {1, 4, 5, 10, 4} with the sum of 9.  (Answer: choose 4 
and 5.)

0

1

5 6 11 5

10 15 9 16 10

4 5 10 4

9 14 8 15 9

A bounding function is B(x1, x2, …, xk) = 
true if               ; false otherwise.sumxA

k

i
i ≥∑

=1
][

1 4 5 10
4

4         5                10            4 5       10          4            10            4

5         10      4          10      4

Goal

Bound

Other 
leaf



Backtracking
A general-purpose design strategy based on searching the state 
space tree associated with a given problem.  
Apply depth-first search of the state space tree starting from its 
root, maintaining necessary information about the current state 
and using a bounding function to prune the search space 
(reached a goal state or no need to search further). 

Example. A portion of the state space tree for the sum-of-subsets 
problem of the preceding page, and the backtracking path:
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A[1..5] = {1, 4, 5, 10, 4}, sum = 9



Backtracking
Procedure Sum-of-Subsets-Recursive (k)

// X[0..n] a global array, in which (X[1], …, X[k]) is the current 
// state, X[i] is the index of the ith selection, and X[0] = 0 
// A[1..n] a global array that contains the values of the list
// Call this procedure with k = 0 to start the search process 
// The bounding condition is when the sum of the values selected
// in the current state is ≥ sum 
k++
for child = X[k–1] + 1 to n do  // try every child of current node

X[k] = child
if A[X[1]] + … + A[X[k]] < sum then
// current state not bounded, search deeper

call Sum-of-Subsets-Recursive (k)  
// else, the current state is bounded, prune the subtree
else if A[X[1]] + … + A[X[k]] = sum then

output-goal-state (X[1], …, X[k]) 
end-for-loop



A General Backtracking Procedure

procedure Backtrack-recursive(k)
// X[0..n] a global array, in which 
// (X[1], …, X[k]) is the current state; 
// Dk is the decision set for current states;
// The output consists of all goal states 
// that are descendants of the 
// current state (X[1], …, X[k]); 
// Call the procedure with k = 0 to start 
// the search
k++
for each decision x∈Dk (X[1], …, X[k–1])do

X[k] = x
if not Bounded(X[1], …, X[k]) then 

// search deeper
Backtrack-recursive(k)

// otherwise, prune the search tree
else if (X[1], …, X[k]) is goal state then 

output-goal-state(X[1], …, X[k]) 
end-for-loop

procedure Backtrack // non-recursive
// X[0..n] a global array, in which (X[1], …, X[k]) is the 
// current state; Dk is the decision set for current state;
// The output consists of all goal states 
k = 1
while k ≥ 1do    // repeat until returning to the root (k=0)

while there is another un-tried node x in Dk do
delete x from the decision set Dk (X[1], …, X[k–1])
X[k] = x
if not Bounded(X[1], …, X[k]) then 

exit while loop
// otherwise, prune the search tree
else if (X[1], …, X[k]) is goal state then 

output-goal-state(X[1], …, X[k]) 
end-while-loop  
if x = NULL then  // exhausted all decisions in Dk

k-- // backtrack to previous level
else k++ // move to next level

end-while-loop
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Note that backtracking traverses an 
implicit search tree; its worst-case time 
complexity is O(tree size) and space 
complexity O(n), n = depth of state tree

Decision set 



Branch-and-Bound (FIFO, LIFO, or LC)

When a node is visited the first time (called an E-node), all its 
children are generated and saved into a data structure (called 
live-nodes) if the child is not bounded; the structure could be a 
queue (FIFO), a stack (LIFO), or a priority queue (LC, or Least-
Cost). Exactly one node is pulled out the live-node list at a time, 
which becomes an E-node, to be “expanded” next.

Example. (A portion of) the FIFO branch-and-bound path:
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FIFO branch-and-bound does a breadth-first search (BFS): nodes 
are expanded from top down, left to right at each level, dropping 
those that are bounded.

: bounded



A General Branch-and-Bound Procedure
procedure Branch-and-bound

// X[0..n] a global array, in which (X[1], …, X[k]) is the 
// current state; Dk is the decision set for current state;
// The output consists of all goal states 
call Allocate-Node(root-node)  // create a root node
root-node.parent =  NULL; k = 0
live-nodes = {root-node}  // initialize live-node list
while live-nodes ≠ ∅ do

E-node = select-next-node(live-nodes, k) 
for each X[k] ∈Dk (E-node) do 

call Allocate-Node(child-node)
child-node.info = X[k] 
child-node.parent = E-node
if not bounded(child-node) then

call add-live-nodes(child-node)
//otherwise, prune the tree
if goal(child-node) then  // a goal state is reached

create the state (X[1], …, X[k]) by following the 
parent links from child-node to the root;
output-goal-state(X[1], …, X[k]) 

end-for-loop
end-while-loop



A General Branch-and-Bound Procedure

When a stack is used for storing the live nodes, LIFO branch-
and-bound essentially performs a DFS but exploring first the 
rightmost child node at each level. 
FIFO branch-and-bound may be more efficient than LIFO BB 
when a goal state exists at a shallow level of the tree; otherwise, 
FIFO BB may be expensive
The LC (least-cost) branch-and-bound strategy uses heuristics to 
determine the best node for expansion from the current live 
nodes.


	Backtracking and Branch-and-Bound Strategies
	Backtracking and Branch-and-Bound Strategies
	State Space Trees
	State Space Trees
	Searching the State Space Trees
	Backtracking
	Backtracking
	A General Backtracking Procedure
	Branch-and-Bound (FIFO, LIFO, or LC)
	A General Branch-and-Bound Procedure
	A General Branch-and-Bound Procedure

