
Backtracking and Branch-and-Bound Strategies

State Space Trees
problem states, decision sets
fixed-tuples vs. variable-tuples
bounding functions, search strategies
examples: sum of subsets, 0/1 knapsack

Backtracking
DFS with bounding

Branch-and-Bound
FIFO, LIFO, and LC branch-and-bound searches

Backtracking and Branch-and-Bound Strategies

Many problems require making a sequence of decisions that satisfy
certain constraints.
The 0/1 knapsack problem: making n decisions regarding
whether to include each of n objects without exceeding the
sack’s capacity
The graph coloring problem: making n decisions on choosing a
color (out of k colors) for each of the n vertices without using the
same color for the two end vertices of an edge

Let x1, x2, …, xk, denote k decisions made in solving a problem,
1≤k≤ n, where each xi ∈ Si, and n is the maximum number of
decisions to be made. Let Pk denote the set of all these k–tuples
(x1, x2, …, xk). Each such tuple is called a problem state; a goal
state is one that corresponds to a final solution.

Given a problem state (x1, x2, …, xk–1), the decision set Dk(x1, x2, …,
xk–1) = {xk ∈ Sk | (x1, x2, …, xk) ∈ Pk}, i.e., all possible decisions in
stage k having made k –1 previous decisions x1, x2, …, xk–1.

State Space Trees
The collection of Dk(x1, x2, …, xk–1), 1 ≤ k ≤ n, form a tree in
which the root corresponds to the initial state (an empty set), the
child nodes of the root correspond to the set D1 = P1. For each of
problem states (x1) in P1, its child nodes include those in D2(x1),...

Example: The 0-1 knapsack problem of 5 objects with associated
weights w[1..5] = {1, 2, 5, 6, 7}, values v[1..5] = {1, 6, 18, 22, 28},
and sack’s capacity W = 11.

0

1

6

7
25

Add v 1
= 1

Add v 2 = 6
Add v3 = 18

18

Add v2 = 6

Add v3 = 18

22

28

Add v
4 = 22Add v

5 = 28

29

Add v4 = 22

35

Add v
5 = 28

19
Add v3 = 18

23

29

40

Add v4 = 22
Add v5 = 28

Add v
4 = 22

Note that the constraint
imposed at each stage is
for the total weight of
included objects not
exceeding 11. The optimal
solution with a total value
40 is highlighted.

an optimal solution

24

28

34

Add v3 = 18Add v
4 = 22Add v

5 = 28

State Space Trees
Another way to present the state space tree uses fixed-tuples, in
which the goal states are of the same length. The fixed-tuple
state space for the same knapsack problem:

0 1

0 1

0 1 0 1

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Stages:

x1

x2

x3

x4

x5

Note that each decision xi = 0 or 1, for 1 ≤ i ≤ 5, depending on
whether object i is excluded or included.

0 1

0 1 0 1

0 10 1 0 1 0 1 0 1 0 1 0 1

Searching the State Space Trees
Solutions can be found via a systematic search of the tree.

If no descendants of a node X can lead to a goal state, then node X
is bounded, and the subtree rooted at X is skipped (pruned).
A good bounding function can improve the search algorithm’s
efficiency.

Example. The sum-of-subsets problem: Find a sublist of the list
A[1..5] = {1, 4, 5, 10, 4} with the sum of 9. (Answer: choose 4
and 5.)

0

1

5 6 11 5

10 15 9 16 10

4 5 10 4

9 14 8 15 9

A bounding function is B(x1, x2, …, xk) =
true if ; false otherwise.sumxA

k

i
i ≥∑

=1
][

1 4 5 10
4

4 5 10 4 5 10 4 10 4

5 10 4 10 4

Goal

Bound

Other
leaf

Backtracking
A general-purpose design strategy based on searching the state
space tree associated with a given problem.
Apply depth-first search of the state space tree starting from its
root, maintaining necessary information about the current state
and using a bounding function to prune the search space
(reached a goal state or no need to search further).

Example. A portion of the state space tree for the sum-of-subsets
problem of the preceding page, and the backtracking path:

0

1

5 6 11 5

10 15 9 16 10

Bound Bound Goal Bound Dead-end

Bound Dead-end

A[1..5] = {1, 4, 5, 10, 4}, sum = 9

Backtracking
Procedure Sum-of-Subsets-Recursive (k)

// X[0..n] a global array, in which (X[1], …, X[k]) is the current
// state, X[i] is the index of the ith selection, and X[0] = 0
// A[1..n] a global array that contains the values of the list
// Call this procedure with k = 0 to start the search process
// The bounding condition is when the sum of the values selected
// in the current state is ≥ sum
k++
for child = X[k–1] + 1 to n do // try every child of current node

X[k] = child
if A[X[1]] + … + A[X[k]] < sum then
// current state not bounded, search deeper

call Sum-of-Subsets-Recursive (k)
// else, the current state is bounded, prune the subtree
else if A[X[1]] + … + A[X[k]] = sum then

output-goal-state (X[1], …, X[k])
end-for-loop

A General Backtracking Procedure

procedure Backtrack-recursive(k)
// X[0..n] a global array, in which
// (X[1], …, X[k]) is the current state;
// Dk is the decision set for current states;
// The output consists of all goal states
// that are descendants of the
// current state (X[1], …, X[k]);
// Call the procedure with k = 0 to start
// the search
k++
for each decision x∈Dk (X[1], …, X[k–1])do

X[k] = x
if not Bounded(X[1], …, X[k]) then

// search deeper
Backtrack-recursive(k)

// otherwise, prune the search tree
else if (X[1], …, X[k]) is goal state then

output-goal-state(X[1], …, X[k])
end-for-loop

procedure Backtrack // non-recursive
// X[0..n] a global array, in which (X[1], …, X[k]) is the
// current state; Dk is the decision set for current state;
// The output consists of all goal states
k = 1
while k ≥ 1do // repeat until returning to the root (k=0)

while there is another un-tried node x in Dk do
delete x from the decision set Dk (X[1], …, X[k–1])
X[k] = x
if not Bounded(X[1], …, X[k]) then

exit while loop
// otherwise, prune the search tree
else if (X[1], …, X[k]) is goal state then

output-goal-state(X[1], …, X[k])
end-while-loop
if x = NULL then // exhausted all decisions in Dk

k-- // backtrack to previous level
else k++ // move to next level

end-while-loop

0

Dk(X[1], …, X[k–1])

X[k]

(X[1], …, X[k–1])

Note that backtracking traverses an
implicit search tree; its worst-case time
complexity is O(tree size) and space
complexity O(n), n = depth of state tree

Decision set

Branch-and-Bound (FIFO, LIFO, or LC)

When a node is visited the first time (called an E-node), all its
children are generated and saved into a data structure (called
live-nodes) if the child is not bounded; the structure could be a
queue (FIFO), a stack (LIFO), or a priority queue (LC, or Least-
Cost). Exactly one node is pulled out the live-node list at a time,
which becomes an E-node, to be “expanded” next.

Example. (A portion of) the FIFO branch-and-bound path:

0

1

5 6 11 5

4 5 10 4

9 14 8 915

FIFO branch-and-bound does a breadth-first search (BFS): nodes
are expanded from top down, left to right at each level, dropping
those that are bounded.

: bounded

A General Branch-and-Bound Procedure
procedure Branch-and-bound

// X[0..n] a global array, in which (X[1], …, X[k]) is the
// current state; Dk is the decision set for current state;
// The output consists of all goal states
call Allocate-Node(root-node) // create a root node
root-node.parent = NULL; k = 0
live-nodes = {root-node} // initialize live-node list
while live-nodes ≠ ∅ do

E-node = select-next-node(live-nodes, k)
for each X[k] ∈Dk (E-node) do

call Allocate-Node(child-node)
child-node.info = X[k]
child-node.parent = E-node
if not bounded(child-node) then

call add-live-nodes(child-node)
//otherwise, prune the tree
if goal(child-node) then // a goal state is reached

create the state (X[1], …, X[k]) by following the
parent links from child-node to the root;
output-goal-state(X[1], …, X[k])

end-for-loop
end-while-loop

A General Branch-and-Bound Procedure

When a stack is used for storing the live nodes, LIFO branch-
and-bound essentially performs a DFS but exploring first the
rightmost child node at each level.
FIFO branch-and-bound may be more efficient than LIFO BB
when a goal state exists at a shallow level of the tree; otherwise,
FIFO BB may be expensive
The LC (least-cost) branch-and-bound strategy uses heuristics to
determine the best node for expansion from the current live
nodes.

	Backtracking and Branch-and-Bound Strategies
	Backtracking and Branch-and-Bound Strategies
	State Space Trees
	State Space Trees
	Searching the State Space Trees
	Backtracking
	Backtracking
	A General Backtracking Procedure
	Branch-and-Bound (FIFO, LIFO, or LC)
	A General Branch-and-Bound Procedure
	A General Branch-and-Bound Procedure

