
Faster Algorithm for Minimum Ply Covering of Points
with Unit Squares

Siddhartha Sarkar
Computer Science and Automation, Indian Institute of Science, Bengaluru

Abstract. Biedl et al. introduced the minimum ply cover problem in CG 2021 following the seminal work of

Erlebach and van Leeuwen in SODA 2008. They showed that determining the minimum ply cover number

for a given set of points by a given set of axis-parallel unit squares is NP-hard, and gave a polynomial time

2-approximation algorithm for instances in which the minimum ply cover number is bounded by a constant.

Durocher et al. recently presented a polynomial time (8+ ε)-approximation algorithm for the general case when

the minimum ply cover number is ω(1), for every fixed ε > 0. They divide the problem into subproblems by

using a standard grid decomposition technique. They have designed an involved dynamic programming scheme

to solve the subproblem where each subproblem is defined by a unit side length square gridcell. Then they

merge the solutions of the subproblems to obtain the final ply cover. We use a horizontal slab decomposition

technique to divide the problem into subproblems. Our algorithm uses a simple greedy heuristic to obtain a

(27 + ε)-approximation algorithm for the general problem, for a small constant ε > 0. Our algorithm runs

considerably faster than the algorithm of Durocher et al. We also give a fast 2-approximation algorithm for the

special case where the input squares are intersected by a horizontal line. The hardness of this special case is

still open. Our algorithm is potentially extendable to minimum ply covering with other geometric objects such

as unit disks, identical rectangles etc.

1. Introduction

Set Cover is a fundamental problem in combinatorial optimization. Given a range space (X,R) consisting of a
set X and a family R of subsets of X called the ranges, the goal is to compute a minimum cardinality subset
ofR that covers all the points of X . It is NP-hard to approximate the minimum set cover within a logarithmic
factor [Raz and Safra, 1997, Feige, 1998]. When the ranges are derived from geometric objects, it is called
the Geometric Set Cover problem. Computing the minimum cardinality set cover remains NP-hard even for
simple 2D objects, such as unit squares on the plane [Fowler et al., 1981]. There is a rich literature on designing
approximation algorithms for various geometric set cover problems (see [Agarwal and Pan, 2014, Clarkson and
Varadarajan, 2007, Hochbaum and Maass, 1985, Chan and Grant, 2014, Mustafa et al., 2014, Erlebach and van

Email: siddharthas1@iisc.ac.in.

1

ar
X

iv
:2

30
1.

13
10

8v
1

 [
cs

.C
G

]
 3

0
Ja

n
20

23

Siddhartha Sarkar

Leeuwen, 2010]). More often than not, the geometric versions of the covering problems are efficiently solvable
or approximated well. Many variants of the Geometric Set Cover problem find applications in facility location,
interference minimization in wireless networks, VLSI design, etc [Demaine et al., 2006, Călinescu et al., 2004].
In this paper, we investigate the following covering problem.

Problem Statement. Given a set of geometric objects S , the ply of S is the maximum cardinality of any subset of
S that has non-empty common intersection. A set of objects S is said to cover a set of points P if for each point
p ∈ P there exists an object S ∈ S such that p is contained in S. Given a set of objects (for e.g., unit squares) S ,
and a set of points P on the plane, the goal is to pick a subset S ′ ⊆ S such that every point in P is covered by at
least an object in S ′ while minimizing the ply.

In this paper we will deal with the minimum ply cover problem where the objects to cover with are unit side
length squares.

1.1. Our contribution

We design a simple greedy heuristic for axis-parallel unit squares on the plane that achieves an approximation
factor of (27 + ε), where ε > 0 is a small constant. Our algorithm runs in O(n2m2) time where n is the number
of input points and m is the number of input squares. Our algorithm is considerably faster when compared to the
DP algorithm of [Durocher et al., 2022] that requires O(n+m8k4 log k +m8 logm log k) time, where k is the
optimal ply value. Our algorithm is easy to implement and extend to other covering objects.

1.2. Related Work

The minimum ply cover problem is a generalization of the minimum membership set cover (i.e., MMSC) problem.
Given a set of points P and a family S of subsets of P , the goal in MMSC is to find a subset S ′ ⊆ S that covers P
while minimizing the maximum number of elements of S ′ that contain a common point of P . [Kuhn et al., 2005]
introduced the general problem and they presented an LP based technique to obtain an approximation factor of
lnn which matches the hardness lower bound. The membership is measured at the points of P in the MMSC
problem. [Erlebach and van Leeuwen, 2008] proved that the minimum membership set cover of points with unit
disks or unit squares is NP-hard and cannot be approximated by a ratio smaller than 2. For unit squares, they
present a 5-approximation algorithm with the assumption that the minimum ply value is bounded by a constant.
In the minimum ply cover (abbr. MPC) problem, the ply (i.e., membership) is measured at any point on the plane.
[Biedl et al., 2021] prove that the MPC problem is NP-hard for both unit squares and unit disks, and does not
admit polynomial-time approximation algorithms with ratio smaller than 2 unless P=NP. They gave polynomial
time 2-approximation algorithms for this problem with respect to unit squares and unit disks, when the minimum
ply value is bounded by a constant.

2. Minimum Ply Covering

Our approach is to divide the problem into distinct subproblems and solve the subproblems. Then we merge
the solutions to obtain the ply cover of the original problem. First, let us define and solve a special case of the
minimum ply cover problem. The techniques used here will be useful in the future.

2

Siddhartha Sarkar

2.1. Squares are intersected by a horizontal line

Suppose that the input squares are intersected by a horizontal line and the input points lie in at least one of the
input squares. Refer to Figure (1). For this special case, we give an algorithm that computes the minimum ply
cover of ply at most twice the optimal ply. The algorithm is simple to state and analyze. First, we divide the
problem into two subproblems. One corresponding to the input points above the horizontal line and the other
corresponding to the input points below the horizontal line.

Figure 1. An instance of the special case where all the input squares are intersected by a horizontal line L and the points lie on both sides.

Definition 2.1. Consider a horizontal line L. Now consider a set S of unit squares intersecting L. Let P be a set
of points located below L such that each point lies inside at least one of the squares in S. Then MPCSIHL1 is
the problem of computing the minimum ply cover of P with the squares in S.

MPCSIHL1 stands for Minimum Ply Cover for unit Squares Intersected by a Horizontal Line where points lie
on only 1 side (i.e., above or below the horizontal line). Refer to Figure (2)

Figure 2. An instance of the MPCSIHL1 problem where all the input points lie below L. The pink regions are ply regions with ply value
5.

For a set of squares S , we call a maximum depth region on the plane as the ply region and denote it by clique(S).
So, the ply region is the common intersection region below the line L. The corresponding depth is the ply which
is denoted by ply(S). Note that the ply region of a set of squares S may not be unique. Refer to Figure 2. The
Algorithm (1) is a heuristic that computes a minimum ply cover incrementally. The heuristic uses a greedy rule.
For multiple sets of squares S1, S2, . . . , Sk, we define the following greedy criteria for deciding which one to
prefer.

Greedy criteria. If a set of squares has multiple ply regions, consider the rightmost one as its representative. Use
following preference rules to for selection and breaking ties.

1. Prefer the set of squares having the minimum ply value.

2. If rule (1) leads to a tie, prefer the set of squares with the leftmost ply region right side.

3

Siddhartha Sarkar

3. If rule (2) also leads to a tie, prefer the set of squares with the narrowest ply region.

4. If the tie persists, then select a candidate set of squares arbitrarily.

Algorithm 1: Exact algorithm for MPCSIHL1
Input : A horizontal line L, a set S of m unit squares intersecting L, a set P of n points below L such that

each of them lies in at least one square in S.
Output : Returns a set of squares S ′ ⊆ S covering P while minimizing ply.

1 Sort the points in P from left to right.
2 Let the sorted order of points be p1, p2, . . . , pn.
3 T ←∞ // A 2D array T of dimension n×m where each entry is initialized to∞ or infeasible.
4 for i← 1 to n do
5 for j ← 1 to m do
6 T [i, j] = ComputeEntry(i, j, T)

7 end
8 end
9 Obtain the best entry in the n-th row as per the greedy criteria, say Sol.

10 return Sol

The procedure ComputeEntry(·) shows the computation of each entry in the table. Observe that the entry T [i, j]
takes into account all the feasible solutions in the (i− 1)-th row of the table T . If T [i, j] is formed by taking the
union of T [i− 1, k] with sj , for some k ∈ [m], then we say that T [i− 1, k] is the parent of T [i, j] and T [i, j] is
derived from T [i− 1, k]. Intuitively, T [i, j] represents the minimum ply cover for Pi = {p1, . . . , pi} as per the
greedy criteria such that the point pi is covered by the square sj ∈ T [i, j]. Starting from Sol, it is possible to
trace a path to an entry in the first row of the table by following the parents. The path has one node from each row
of the table T .

After the computation is over, for the i-th row in T corresponding to the point pi, there can be multiple
entries/covers that achieve the same ply. In the next iteration, while computing T [i+ 1, j], we will use the greedy
criteria to select the best entry from the i-th row.

Denote by Pi the set {p1, p2, . . . , pi} of the i leftmost input points. The entry T [i, j] is a feasible ply cover for Pi,
with the constraint that sj is included in the solution. The algorithm (1) computes a set cover Sol for P . We claim
that our solution is optimal. We will prove the following loop invariant to argue the correctness of our claim.

Claim 2.2. (loop invariant) At the end of the i-th iteration of the outer for loop at line 4 of Algorithm (1), in each
row l such that 1 ≤ l ≤ i, there exists an entry T (l, j) corresponding to the minimum ply set cover for the set of
points Pl such that it is the best as per the greedy criteria; j can vary for each row.

4

Siddhartha Sarkar

1 Function ComputeEntry(i, j, T):
2 if i == 1 then
3 if pi ∈ sj then
4 return {sj}

5 else
6 return∞

7 Let Fi−1 be the set of feasible solutions in the (i− 1)-th row, i.e., the entries with finite value.
8 for F ∈ Fi−1 do
9 Compute the ply region of F ∪ {sj}

10 Select the best entry among the solutions computed in the for loop in line 9, as per the greedy criteria, say
Solij .

11 return Solij

Proof. First, we consider the base case. For the point p1, our algorithm fills the first row of T with feasible
solutions containing one square each, i.e., for each square sj covering p1, the corresponding table entry T (1, j)
is a singleton set {sj}. The ply of each feasible solution is 1, which is trivially optimal. The entry in row 1

corresponding to the leftmost square containing p1 is the optimal solution for P1 based on our greedy criteria.

We fix an 1 < i < n. Our inductive assumption is that the algorithm has already computed the optimal solution
for the first (i− 1) iterations of the outer for loop. Specifically, we assume that our loop invariant is true after the
first (i− 1) iterations.

We need to prove that at the end of the i-th iteration of the outer for loop, there exists a square sj containing the
point pi such that the entry T [i, j] is the optimal ply cover for Pi satisfying the greedy criteria. We term such a
solution as the optimal parametric solution.

After the i-th iteration of the outer for loop, let Soli denote an optimal set cover (in the sense of the greedy
criteria) stored at the i-th row of the table T , for 1 ≤ i ≤ n. Suppose for the sake of contradiction, there exists a
better solution OPTij∗ for Pi and pi ∈ sj∗ and sj∗ ∈ OPTij∗ . That means either

ply(OPTij∗) < ply(Soli) (1)

Or

ply(OPTij∗) = ply(Soli), but OPTij∗ is better than Soli as per the greedy criteria. (2)

Let’s consider the possibility (1) first. Our algorithm essentially constructs Soli by combining a square sj with a
feasible solution T (i− 1, j′) for Pi−1. If sj ∈ T (i− 1, j′) or sj does not intersect the ply region of T (i− 1, j′),
then T (i− 1, j′) ∪ {sj} is a feasible solution for Pi with ply ply(T (i− 1, j′)).

Let OPT(i−1)j′′ ⊆ OPTij∗ be a set cover (we do not claim that it has minimum ply) for Pi−1 with no redundant
squares. One way to construct OPT(i−1)j′′ from OPTij∗ is to simply remove the square (if any) that covers pi

5

Siddhartha Sarkar

exclusively from OPTij∗ . Let sj′′ ∈ OPT(i−1)j′′ and pi−1 ∈ sj′′ . Because of the subset relationship, we have

ply(OPT(i−1)j′′) ≤ ply(OPTij∗) (3)

By our inductive hypothesis, we have

ply(Soli−1) ≤ ply(OPT(i−1)j′′) (4)

Since our algorithm adds at most one square for every new point, we have

ply(Soli) ≤ 1 + ply(Soli−1) (5)

Therefore, from (1), (3), (4), and (5), we conclude that

ply(OPT(i−1)j′′) = ply(OPTij∗) = ply(Soli−1) = ply(Soli)− 1

Now consider the solutions OPT(i−1)j′′ for Pi−1 and OPTij∗ for Pi. There are two ways in which OPTij∗ can
be related to OPT(i−1)j′′ .

Case 1: ∃ a square sj∗ ∈ OPTij∗ \ OPT(i−1)j′′ covering pi such that sj∗ does not intersect the ply region of
OPT(i−1)j′′ .

Case 2: OPT(i−1)j′′ already covers the point pi and thus OPTij∗ = OPT(i−1)j′′ .

Figure (3) shows the two cases.

Figure 3. The two cases for OPT(i−1)j′′ with respect to covering the point pi. (a) Case 1, (b) Case 2. The pink region {OPT(i−1)j′′}
refers to the ply region of OPT(i−1)j′′ .

First we consider Case 1. Consider a square sj′′ ∈ OPT(i−1)j′′ that covers the point pi−1 in OPT(i−1)j′′ . By our
inductive hypothesis,

ply(Soli−1) ≤ ply(OPT(i−1)j′′)

The square sj∗ cannot lie entirely to the left of the left boundary of the rightmost ply region of OPT(i−1)j′′ .
Suppose it does. The left boundary of the ply region of OPT(i−1)j′′ is determined by the rightmost square, say
sr, participating in the ply. Since, no square in OPT(i−1)j′′ is redundant, sr must cover a point, say q ∈ Pi−1,
exclusively. Since, by our assumption, sj∗ lies to the left of the left boundary of sr, and pi lies to the right of q,
hence sj∗ cannot cover pi. Hence we have a contradiction. Refer to Figure (4) for an illustration.

6

Siddhartha Sarkar

Figure 4. The square sj∗ 3 pi lying entirely to the left of the ply region of OPT(i−1)j′′ is not possible.

Therefore, sj∗ must lie entirely to the right of the right boundary of the rightmost ply region of OPT(i−1)j′′ .
By virtue of our inductive assumption (about the greedy criteria obeyed at every iteration), Soli−1 ∪ {sj} is a
feasible solution of Pi with ply equal to ply(Soli−1). Therefore,

ply(Soli) = ply(Soli−1) ≤ ply(OPT(i−1)j′′) = ply(OPTij∗)

We have arrived at a contradiction. Therefore, Case 1 is ruled out.

Now we consider Case 2 where pi is already covered by OPT(i−1)j′′ . For a square s, we write xL(s), xR(s) to
denote the x-coordinates of the left and right boundaries of s respectively. Similarly, write yT (s), yB(s) to denote
the y-coordinates of the top and bottom boundaries of s, respectively. We assume that no two squares share the
same left boundary. More specifically, the input squares have a left-to-right ordering ≺. We write s1 ≺ s2 if s1
lies to the left of s2, i.e., xL(s1) < xL(s2). If i < j, then pi lies to the left of pj , i.e., x(pi) < x(pj).

Let sk be the rightmost square among the squares covering pi in OPT(i−1)j′′ . Since sk ∈ OPT(i−1)j′′ , there
must exist at least one point to the left of pi which is exclusively covered by sk in OPT(i−1)j′′ .

Let pi′ , where i′ < i, be the leftmost point among the points exclusively covered by sk in OPT(i−1)j′′ . Since
none of the leftmost (i′ − 1) points is exclusive to sk; hence OPTi′ \OPTi′−1 = {sk}. If sk contributes to the
ply, i.e., sk intersects the ply region of OPTi′−1, then [OPTi′] = [OPTi′−1] + 1, else [OPTi′] = [OPTi′−1].

Claim 2.3. The square sk is the rightmost square in OPT(i−1)j′′ as per the left to right ordering ≺.

Proof. Suppose there exists a square so ∈ OPT(i−1)j′′ which is rightwards with respect to sk, i.e., sk ≺ so. The
left boundary of so must lie to the left of pi−1, otherwise so will become redundant. If yT (so) > yT (sk), then so
becomes redundant in OPT(i−1)j′′ as sk covers the relevant area of so. The other possibility is yT (so) < yT (sk).
But the square so will contain pi in this case. This will violate the definition of sk, i.e., sk being the rightmost
among the squares containing pi in OPT(i−1)j′′ . Hence this is ruled out. Therefore, sk is the rightmost square in
OPT(i−1)j′′ . Refer to Figure (5).

Claim 2.4. All points between pi′ and pi must lie in the square sk.

Proof. Let there be a point pr such that i′ < r < i and pr /∈ sk. Essentially, pr lies below the bottom boundary
of sk. There must exist a square s ∈ OPT(i−1)j′′ covering pr. By our previous claim, sk is the rightmost square
in OPT(i−1)j′′ . Hence s ≺ sk. Therefore, s must also cover pi′ which is a contradiction since pi′ is exclusively
covered by sk in OPT(i−1)j′′ .

7

Siddhartha Sarkar

Figure 5. Relative positions of sk and so. (a) so is above sk but pi−1 is to the left of the left boundary of so. This makes so redundant. (b)
so is above sk but the entire area of so to the left of pi−1 is covered by sk. This makes so redundant. (c) so is below sk, here so also
covers pi contradicting the definition of sk. Thus sk is the rightmost square in OPT(i−1)j′′ .

Claim 2.5. The entry T (i′, k) is a feasible set cover for Pi and is as good as the solutionOPTij∗ . Mathematically,
ply(T (i′, k)) = ply(OPTij∗).

Proof. By the inductive hypothesis, ply(Soli′) ≤ ply(OPTi′). Since [Soli′] is the optimal ply for covering Pi′

and due to the definition of our function Compute Entry(·), we have

[Soli′] ≤ [T (i′, k)] ≤ [Soli′] + 1 (6)

Hence we need to consider only two possible cases: i) [T (i′, k)] = [Soli′] and ii) [T (i′, k)] = [Soli′] + 1.

i) [T (i′, k)] = [Soli′]: Since all points between pi′ and pi lie in sk due to Claim (2.4), T (i′, k) is a feasible
solution for Pi. If we picked sk, i.e., T (i′, k) for pi′ then we are done. If we did not pick sk, then say we picked
sk′ that does not contain pi. The entry T (i′, k) will continue to be present in the table till the (i − 1)-th row.
Eventually, in some (i′′)-th iteration, the algorithm will select T (i′, k) since it covers pi and does not lead to an
increase in ply, where i′ ≤ i′′ ≤ i. Thus we have a feasible solution T (i′, k) in the (i− 1)-th row of our table till
the i-th row and [T (i′, k)] ≤ [OPTi]. Hence [Soli] > [OPTij∗] is ruled out.

ii) [T (i′, k)] = [Soli′] + 1: Since [T (i′, k)] ≤ [Soli′−1] + 1, we have [Soli′] = [Soli′−1]. In other words, picking
sk for covering pi′ will lead to an increase in the current ply value of our solution. Thus sk participates in the ply
of T (i′, k). In other words, sk intersects the ply region of Soli′−1. By our inductive assumption, {Soli′−1} lies
relatively to the left of {OPTi′−1}. Since sk covers pi′ and pi, therefore, sk also intersects {OPTi′−1}. Since
OPTi′ = OPTi′−1 ∪ {sk}, we have [OPTi′] = [OPTi′−1] + 1.
So, [T (i′, k)] = [Soli′−1] + 1 ≤ [OPTi′−1] + 1 = [OPTi′]. If we picked sk, i.e., T (i′, k) for pi′ then we are
done. If we did not pick sk, then suppose we picked sk′ that does not contain pi. The entry T (i′, k) will continue
to be present in the table till the i-th row. Eventually, in the i-th iteration our algorithm will pick it since it does
not lead to an increase in ply. Thus we have [T (i′, k)] ≤ [OPTi] in our table. Hence [Soli] > [OPTij∗] is ruled
out.

This completes the proof of the maintenance of the loop invariant.

8

Siddhartha Sarkar

The argument for the possibility (2) is similar. Now consider the running time of Algorithm (1). The sorting of
points takes O(n log n) time. There are n ·m entries in T to be computed. For computing the entry T (i, j), all
the feasible entries (at most m) in row (i− 1) need to be considered. Given a set of squares F , computing the ply
region of F ∪ {sj} takes O(1) time. Hence the overall running time is O(nm2), where n is the number of points
and m is the number of squares.

Theorem 2.6. Algorithm (1) is a polynomial time exact algorithm for the MPCSIHL1 problem (2.1).

Proof. We have already seen that Algorithm (1) runs in polynomial time. Due to the Claim (2.2), the i-th row in
T contains an optimal solution for Pi. Now consider the n-th row of the table T corresponding to the point pn.
The entry achieving minimum ply is the optimum solution for our input point set P = Pn.

Theorem 2.7. The minimum ply cover for a given set of points lying within the span of a given set of squares
intersected by a horizontal line can be approximated within a 2 factor in polynomial time.

Proof. We run the Algorithm (1) twice. Once for the subproblem corresponding to the points lying below the
intersecting horizontal line and once for the subproblem corresponding to the points lying above the intersecting
horizontal line. Then we return the union of the two solutions, say Sola ∪ Solb. Clearly, our solution covers all
the input points and hence is a feasible set cover. Now consider an arbitrary point on the plane. It is covered by
at most [Sola] + [Solb] squares, where ply(Sola) (resp. ply(Solb)) is the ply of the problem defined for points
above (resp. below) the horizontal line. Since ply(Sola) ≤ ply(OPT) and ply(Solb) ≤ ply(OPT), hence our
solution is a 2-approximation.

2.2. Points are in a unit height horizontal slab

We consider the special case where the input points lie within a horizontal slab of height 1 and the input squares
intersect either the top boundary or the bottom boundary of the slab. Refer to Figure (6). For this case, we give a
(9 + ε)-factor approximation algorithm for computing the minimum ply cover, where ε > 0 is a small constant.
The algorithm is simple to state and analyze. We define our problem formally.

Definition 2.8. Consider two horizontal lines L1 and L2 unit distance apart, where L2 is above L1. Now consider
a set S of unit squares where each square intersects either L1 or L2. Let P be a set of points located below L2

but above L1, each point lying inside at least one of the squares in S. The goal is to compute the minimum ply
cover of P with the squares in S.

Theorem 2.9. For unit squares, if there exists a c-approximation for the Problem 2.8, then there exists a
3c-approximation for the minimum ply cover problem.

Proof. We partition the plane into horizontal slabs of unit height. If there are n input points then there are
at most n horizontal slabs containing at least 1 point. Suppose we denote the slabs from bottom to top as
H1, H2, . . . ,Hn. We solve for each slab and return the union of the solutions as the final output. Our solution is
a feasible solution for all the input points. Consider an arbitrary point on the plane. This point lies within some
horizontal slab, say Hi. This point may lie in some max clique, i.e., ply region of Hi. Simultaneously, this point
may lie within the max cliques of the solution for Hi−1 and Hi+1. Let Soli denote the solution for the slab Hi

9

Siddhartha Sarkar

returned by our algorithm. Let OPTi denote the optimal solution for the slab Hi. Let Sol = ∪iSoli. Clearly,
ply(OPTi) ≤ ply(OPT) for all i, where OPT is the minimum ply for the entire input. Hence

ply(Sol) = max
i

(ply(Soli−1) + ply(Soli) + ply(Soli+1)

≤ c · (ply(OPTj−1) + ply(OPTj) + ply(OPTj+1)) [j : index at which the sum is max.]

≤ 3c · ply(OPT)

We use a similar greedy algorithm as in our previous section. Here the greedy tie-breaking rule is slightly modified
as shown below.

• Select the cover with the minimum ply value.

• In case of a tie, prefer a floating ply region over an anchored ply region.

• In case of a further tie, select the cover with the leftmost ply region right side.

• In case of a further tie, select the cover with the narrowest ply region.

• In case of a further tie, select a cover arbitrarily from the tied covers.

Figure 6. The unit height horizontal slab subproblem.

For 1 ≤ i ≤ n, 1 ≤ j ≤ m, we denote the (i, j)-th entry of the table as T (i, j). We denote the ply of a minimum
ply solution in the i-th row by plyi. Recall that by Pi, we denote the i leftmost input points. In this section, we
will prove the following lemma.

Lemma 2.10. The greedy algorithm is an (9 + ε)-approximation algorithm for the problem (2.8).

Claim 2.11. For any j, if the solution T (i+ 1, j) is feasible for Pi+1, then the ply of T (i+ 1, j) lies between
plyi and plyi + 1. Notationally,

plyi ≤ ply(T (i+ 1, j)) ≤ plyi + 1 (7)

Proof. The upper bound is straightforward to prove. Since the solution T (i+ 1, j) can be composed as the union
of the j-th square and the minimum ply solution in the i-th row; hence the ply of T (i+ 1, j) can be at most one

10

Siddhartha Sarkar

more than plyi.
We prove the lower bound by contradiction. Suppose, for some j, the ply of T (i+ 1, j) is strictly less than plyi.
So, sj does not belong to the optimum solution in the i-th row of the table computed by our algorithm. Two cases
are possible.
Case 1: While processing the point pi+1, sj can be combined with a minimum ply solution in the i-th row, say,
T (i, k) such that T (i, k) ∪ {sj} is a feasible solution for Pi+1 and sj does not intersect the ply region of T (i, k)
and at least one square participating in the ply region of T (i, k) is discarded. Thus ply(T (i+ 1, j)) < plyi.
Case 2: While processing the point pi+1, sj can be combined with a minimum ply solution in the i-th row, say,
T (i, k) such that T (i, k) ∪ {sj} is a feasible solution for Pi+1 and sj intersects the ply region of T (i, k) and at
least two squares participating in the ply region of T (i, k) are discarded. Thus ply(T (i+ 1, j)) < plyi.
The ply region of any solution is bound to be a subset of the ply region of its parent solution in the previous row.
Hence, in both the cases above, if sj were a better pick in the (i+ 1)-th row it would have been picked earlier by
our greedy algorithm. Hence, we have arrived at a contradiction.

If a set of squares have a common intersection, we say that they form a clique. We call the common intersection
region of the clique as the ply region. First, we will classify the cliques in a solution into some distinct types. Let
the size of the clique under consideration be l, i.e., l squares have a common intersection. If the top side of a
square s1 lies above the top side of another square s2, we say that s1 lies above s2. Equivalently, we can say that
s2 lies below s1. A set of squares s1, s2, . . . , sk such that si is above si+1 for all 1 ≤ i ≤ k − 1, is termed as
a set of descending squares. A set of squares s1, s2, . . . , sk such that si is below si+1 for all 1 ≤ i ≤ k − 1, is
termed as a set of ascending squares. If the left side of a square s1 lies to the left of the left side of another square
s2, we say that s1 lies to the left of s2. We denote this by s1 ≺ s2. The following types of clique are possible.

• Top-anchored: Here all the constituent squares of the clique intersect the top line L2. There are three
subtypes as shown in the Figure (7).

– Top-anchored ASC: Here the squares from left to right are ascending. In other words, for any two
squares s1, s2 in the clique such that s1 ≺ s2, the square s2 is above s1.

– Top-anchored DESC: Here the squares from left to right are descending. In other words, for any two
squares s1, s2 in the clique such that s1 ≺ s2, we have s2 below s1.

– Top-anchored DESC|ASC: There is a k ≥ 2 such that the squares constituting the clique are initially
descending from s1 to sk. Then the square sk+1 lies above sk. Then the squares sk+1 to sl are
ascending. We term the square sk+1 as the transition square. This type of clique can be viewed as the
merger of a descending clique with an ascending clique, in that order.

Claim 2.12. A top anchored clique of type ASC|ASC is forbidden.

Proof. Suppose not. Suppose, the left ascending sequence consists of k squares. Then the rightmost square sk of
the first ASC sequence will become redundant since the second last square sk−1 of the first ASC sequence and
the transition square sk+1 will fully cover the relevant area of sk. This is a contradiction since sk is redundant.
Refer to Figure (8) for an example.

11

Siddhartha Sarkar

Figure 7. (a), (b) and (c) shows three different types of top-anchored cliques. (d) Shows an invalid clique where an DESC|ASC
top-anchored clique is followed by a transition square.

Figure 8. A forbidden clique of type top-anchored ASC|ASC. Here the square 5 is redundant since 4 and 6 fully cover the relevant area of
5.

Claim 2.13. A top anchored clique of type DESC|DESC is forbidden.

Proof. Suppose not. Suppose, the left descending sequence consists of k squares. Then the leftmost square sk+1

of the second DESC sequence will become redundant since the ast square sk of the first DESC sequence and the
square sk+2 will fully cover the relevant area of sk+1. This is a contradiction since sk+1 is redundant. Refer to
Figure 9(a) for an example.

Claim 2.14. A top anchored clique of type ASC|DESC is forbidden.

Proof. The proof is similar to the proof of Claim (2.12). Refer to Figure 9(b) for an example.

12

Siddhartha Sarkar

Figure 9. (a) A forbidden clique of type top-anchored DESC|DESC. Here the square 6 is redundant since the squares 5 and 7 fully cover
the relevant area of 6. (b) A forbidden clique of type top-anchored ASC|DESC. Here the square 4 is redundant since the squares 3 and 5
fully cover the relevant area of 4.

Figure 10. (a), (b) and (c) shows three different types of bottom-anchored cliques. (d) Shows an invalid clique where an ASC|DESC
bottom-anchored clique is followed by a transition square.

• Bottom-anchored: Here all the constituent squares of the clique intersect the bottom line L1. There are
three subtypes as shown in the Figure (10).

– Bottom-anchored ASC: Here the squares from left to right are ascending. In other words, for any two
squares s1, s2 in the clique such that s1 ≺ s2, the square s2 is above s1.

– Bottom anchored DESC: Here the squares from left to right are descending. In other words, for any
two squares s1, s2 in the clique such that s1 ≺ s2, the square s2 is below s1.

– Bottom anchored ASC|DESC: There is a k ≥ 2 such that the squares constituting the clique are
initially ascending from s1 to sk. Then the square sk+1 lies below sk. Then the squares sk+1 to sl are
descending.

13

Siddhartha Sarkar

Claim 2.15. A bottom anchored clique of type ASC|ASC, DESC|ASC or DESC|DESC is forbidden.

Proof. In all the three cases some squares will become redundant leading to a contradiction. The proof is similar
to the proof of Claim (2.12). Refer to Figures (11) and (12) for examples.

Figure 11. A forbidden clique of type bottom-anchored ASC|ASC. Here the square 6 is redundant since the squares 5 and 7 fully cover
the relevant area of 6.

Figure 12. (a) A forbidden clique of type bottom-anchored DESC|DESC. Here the square 5 is redundant since the squares 4 and 6 fully
cover the relevant area of 5. (b) A forbidden clique of type bottom-anchored DESC|ASC. Here the square 5 is redundant since the squares
4 and 6 fully cover the relevant area of 5.

• Floating: If a set of squares have a common intersection and some of the squares intersect the top line
L2 while others intersect the bottom line L1, we call the common intersection as a floating clique. In the
subtypes below, at least one of the squares intersects the bottom line L1 and at least one of the squares
intersects the top line L2.

– Floating ASC: Here, the leftmost square s1 intersects the bottom line L1. The squares from left to
right are ascending. In other words, for any two squares s1, s2 in the clique such that s1 ≺ s2, the
square s2 is above s1. The rightmost square sl must intersect the top line L2. Refer to Figure (13(a)).

– Floating DESC: Here, the leftmost square s1 intersects the top line L2. the squares from left to right
are descending. In other words, for any two squares s1, s2 in the clique such that s1 ≺ s2, the square s2
is below s1. The rightmost square sl must intersect the bottom line L1. Refer to Figure (13(b)).

– Floating ASC|ASC: There is a k ≥ 2 such that the squares constituting the clique are initially
ascending from s1 to sk. Then the square sk+1 lies below sk. Then the squares sk+1 to sl are again
ascending. Refer to Figure (14). A clique of this type can be thought of as the merger of two monotonic
ascending cliques, where the first clique is composed of the squares s1 through sk and the second clique

14

Siddhartha Sarkar

Figure 13. Types of monotonic floating cliques.

is composed of the squares sk+1 through sl. The structure of such a clique follows certain rules as
specified by the following claim.

Claim 2.16. In a floating clique of type ASC|ASC, at most one square of the first ascending sequence
can intersect the top line L2 and, at most one square of the second ascending sequence can intersect
the bottom line L1.

Proof. Suppose not. There are at least two squares in the first ascending sequence intersecting L2.
Then the two rightmost squares in the first ascending sequence sk−1 and sk definitely intersect L2. By
definition, sk+1 lies below sk. If sk+1 intersects the top line L2, then sk is redundant as sk−1 and sk+1

cover the relevant area of sk. Refer to Figure 14(a). If sk+1 intersects the bottom line L1, then there are
two cases. Case 1: sk+2 also intersects the bottom line L1, then sk+1 is redundant as s1, sk and sk+2

cover the relevant area of sk+1. Refer to Figure 14(b). Case 2: sk+2 intersects the top line L2, then sk
is redundant as sk−1, sk+1 and sk+2 cover the relevant area of sk. Refer to Figure 14(c).

Now consider the second part of the claim. Suppose there are at least two squares in the second
ascending sequence intersecting L1. Then its two leftmost squares sk+1 and sk+2 definitely intersects
L1. The square sk+1 is redundant as s1, sk and sk+2 cover the relevant area of sk+1. Refer to Figure
14(d).

– Floating ASC|DESC: There is a k ≥ 2 such that the squares constituting the clique are initially
ascending from s1 to sk. Then the square sk+1 lies below sk. Then the squares sk+1 to sl are
descending. Refer to Figure (15). A clique of this type can be thought of as the merger of a monotonic
ascending clique followed by a monotonic descending clique, where the first clique is composed of the
squares s1 through sk and the second clique is composed of the squares sk+1 through sl. The structure
of such a clique follows certain rules as specified by the following claim.

Claim 2.17. In a clique of type ASC|DESC, at most two squares of the clique can intersect the top line
L2.

Proof. Suppose not. There are at least three squares intersecting L2. The square sk is the topmost
square in the clique, hence sk definitely intersects L2. There are three cases.
Case 1: sk−2, sk−1, sk intersect L2. The square sk−1 is redundant as sk−2, sk and sk+1 cover the
relevant area of sk−1. Refer to Figure 15(a).

15

Siddhartha Sarkar

Figure 14. Floating ASC|ASC cliques. In (a), (b) and (c), the first ASC sequence has more than 1 square intersecting L2. (a) Shows
an invalid clique of ASC|ASC type, where the rightmost square of the first ASC sequence, 5 is covered by 4 and 6. The second ASC
sequence has more than 1 squares intersecting L1. (b) Shows an invalid clique of ASC|ASC type where, the transition square 6 is covered
by 1, 5 and 7. (c) Shows an invalid clique of ASC|ASC type where, the rightmost square of the first ASC sequence, 4 is covered by 3, 5
and 6. (d) Shows an invalid clique where an ASC|ASC the second ascending sequence has more than 1 square intersecting L1. Here, the
relevant area of 5 is covered by 1, 4 and 6. (e) Shows a valid clique of type ASC|ASC. (h) Shows an invalid clique of type ASC|ASC
followed by a transition square. (g) Shows an invalid clique of type ASC|ASC|DESC. (h) Shows a valid clique of type ASC|ASC|ASC.

Case 2: sk−1, sk, sk+1 intersect L2. The square sk is redundant as sk−1 and sk+1 cover the relevant
area of sk. Refer to Figure 15(b).
Case 3: sk, sk+1, sk+2 intersect L2. The square sk+1 is redundant as s1, sk and sk+2 cover the relevant
area of sk+1. Refer to Figure 15(c).

Thus we have derived a contradiction in each of the cases. Hence proved.

16

Siddhartha Sarkar

Figure 15. (a), (b) and (c) show invalid cliques where more than 2 squares intersect the top line. (a) Here the relevant area of 5 is covered
by 4, 6 and 7. (b) Here the relevant area of 5 is covered by 4 and 6. (c) Here the relevant area of 6 is covered by 1, 5 and 7. (d) A valid
floating ASC|DESC clique where 2 squares intersect the top line. (e) Shows an invalid clique where an ASC|DESC clique is followed by
a transition square. The transition square 8 intersects L2. Here the relevant area of 6 is covered by 1, 5, 7 and 8. (f) Shows an invalid
clique where an ASC|DESC clique is followed by a transition square. The transition square 8 intersects L1. Here the relevant area of 7 is
covered by 1, 6 and 8.

– Floating DESC|ASC: There is a k ≥ 2 such that the squares constituting the clique are initially
descending from s1 to sk. Then the square sk+1 lies above sk. Then the squares sk+1 to sl are
ascending. Refer to Figure (16). A clique of this type can be thought of as the merger of a monotonic
descending clique with another monotonic ascending clique, where the first clique is composed of the
squares s1 through sk and the second clique is composed of the squares sk+1 through sl. The structure
of such a clique follows certain rules as specified by the following claim.

Claim 2.18. In a floating clique of type DESC|ASC, at most two squares of the clique can intersect the
bottom line L1.

Proof. Suppose not. There are at least three squares intersecting L1. The square sk is the bottom-most
square in the clique, hence sk definitely intersects L1. There are three cases.
Case 1: sk−2, sk−1, sk intersect L1. sk+1 cannot intersect L1 otherwise sk will be rendered redundant.

17

Siddhartha Sarkar

So, sk+1 must intersect L2. Now, the square sk−1 is redundant as sk−2, sk and sk+1 cover the relevant
area of sk−1. Refer to Figure 16(a).
Case 2: sk−1, sk, sk+1 intersect L1. The square sk is redundant as sk−1 and sk+1 cover the relevant
area of sk. Refer to Figure 16(b).
Case 3: sk, sk+1, sk+2 intersect L1. The square sk+1 is redundant as s1, sk and sk+2 cover the relevant
area of sk+1. Refer to Figure 16(c).
Thus we have derived a contradiction in each of the cases. Hence proved.

– Floating DESC|DESC: There is a k ≥ 2 such that the squares constituting the clique are initially
descending from s1 to sk. Then the square sk+1 lies above sk. Then the squares sk+1 to sl are again
descending. Refer to Figure (17). A clique of this type can be thought of as the merger of two monotonic
descending cliques, where the first clique is composed of the squares s1 through sk and the second
clique is composed of the squares sk+1 through sl. The structure of such a clique follows certain rules
as specified by the following claim.

Claim 2.19. In a floating clique of type DESC|DESC, at most one square of the first descending
sequence can intersect the bottom line L1 and, at most one square of the second descending sequence
can intersect the top line L2.

Proof. Suppose not. There are at least two squares in the first descending sequence intersecting L1.
Then the two rightmost squares in the first ascending sequence sk−1 and sk definitely intersect L1.
By definition, sk+1 lies above sk. Since both sk−1, sk are intersecting L1, hence s1 must intersect L2,
otherwise sk−1 will become redundant. If sk+1 intersects the bottom line L1, then sk is redundant as
sk−1 and sk+1 cover the relevant area of sk. Refer to Figure 17(a). On the other hand, if sk+1 intersects
the top line L2, then there are two cases.
Case 1: sk+2 also intersects the top line L2. Then sk+1 is redundant as s1, sk and sk+2 cover the
relevant area of sk+1. Refer to Figure 17(b).
Case 2: sk+2 intersects the bottom line L1, then sk is redundant as sk−1, sk+1 and sk+2 cover the
relevant area of sk. Refer to Figure 17(c).

Now consider the second part of the claim. Suppose there are at least two squares in the second
descending sequence intersecting L2. Then its two leftmost squares sk+1 and sk+2 definitely intersects
L2. The square sk+1 is redundant as s1, sk and sk+2 cover the relevant area of sk+1. Refer to Figure
17(d).
Thus we have derived a contradiction in each of the cases. Hence proved.

Lemma 2.20. If three monotonic sequences of squares S1, S2, S3, from left to right respectively, merge to form a
clique then S2 consists of at most 2 squares.

Proof. The sequence of squares S2 is either ASC or DESC. We consider the ASC case first. Suppose for the
sake of contradiction that there are at least 3 squares in the sequence S2. We denote the three leftmost ones

18

Siddhartha Sarkar

Figure 16. (a), (b) and (c) show invalid DESC|ASC cliques where more than 2 squares intersect the bottom line. (a) Here the relevant area
of 4 is covered by 3, 5 and 6. (b) Here the relevant area of 4 is covered by 3 and 5. (c) Here the relevant area of 5 is covered by 1, 4 and 6.
(d) Shows an invalid clique where a DESC|ASC clique is followed by a transition square. The transition square 7 will render either square
5 or square 6 redundant.

from left to right as sk+1, sk+2 and sk+3. We know from the claims (2.15), (2.16) and (2.18) that S2 cannot be a
bottom-anchored clique. We have the following possibilities,

i) S2 is top-anchored ASC: Suppose, |S1| = k, |S1| + |S2| = l. If the transition square of (S2, S3), i.e., sl+1

is top-intersecting then, sl will be covered by sl−1 and sl+1. Thus sl will become redundant. A contradiction.
If sl+1 is bottom-intersecting then, the area of sl−1 will be covered sk+1, sl and sl+1. Thus sl−1 will become
redundant. A contradiction.

ii) S2 is floating ASC: If S1 is bottom-anchored DESC then the rightmost square of S1, i.e., sk will become
redundant as its relevant area will be covered by sk−1 and sk+1. Hence, S1 is either Floating or Bottom-anchored
ASC. Now the following cases are possible.

(a) If sk+2, sk+3 and the transition square of (S2, S3), i.e., sl+1 are top-intersecting then the relevant area of sk+3

will be covered by sk+2 and sl+1. Thus sk+3 will become redundant.
(b) If sk+2, sk+3 are top-intersecting but the transition square of (S2, S3), i.e., sl+1 is bottom-intersecting then
there are two cases. Case 1: the transition square of (S1, S2), i.e., sk+1 is bottom-intersecting, then the relevant
area of sk+1 will be entirely covered by s1, sk, sk+2 and sl+1. Thus s1 will become redundant. Case 2: the
transition square between S1, S2, i.e., sk+1 is top-intersecting, then the area of sk+2 will be entirely covered by
sk+1, sk+3 and sl+1. Thus sk+2 will become redundant.
(c) If sk+1 and sk+2 are bottom-intersecting, sk+3 is top-intersecting and the transition square of (S2, S3), i.e.,
sl+1) is top-intersecting then there are two cases.
Case 1: The rightmost square of S1, i.e., sk is bottom-intersecting, then the relevant area of sk+1 will be entirely
covered by sk and sk+2. Thus sk+1 will become redundant.

19

Siddhartha Sarkar

Figure 17. (a), (b) and (c) show invalid DESC|DESC cliques where more than 1 square from the first DESC sequence intersect the bottom
line L1. (a) Here the relevant area of 5 is covered by 4 and 6. (b) Here the relevant area of 6 is covered by 1, 5 and 7. (c) Here the relevant
area of 5 is covered by 4, 6 and 7. (d) Shows an invalid DESC|DESC clique where more than 1 square from the second DESC sequence
intersect the top line L2. Here the relevant area of 5 is covered by 1, 4 and 6. (d) Shows an invalid clique where a DESC|DESC clique is
followed by a transition square. The transition square 7 will render either square 5 or square 6 redundant.

Case 2: The rightmost square of S1, i.e., sk is bottom-intersecting, then the relevant area of sk+3 will be entirely
covered by sk, sk+2 and sl+1. Thus sk+3 will become redundant.
(d) If sk+1 and sk+2 are bottom-intersecting, sk+3 is top-intersecting and the transition square of (S2, S3), i.e.,
ll+1 is bottom-intersecting then there are two cases.
Case 1: the transition square between S1, S2, i.e., sk+1 is bottom-intersecting, then the area of sk+2 will be
entirely covered by sk+1 and sk+3. Thus sk+2 will become redundant.
Case 2: the transition square between S1, S2, i.e., sk+1 is top-intersecting, then the area of sk+3 will be entirely
covered by sk+1, sk+2, sk+4, and sk+5. Thus sk+3 will become redundant.

We have shown a contradiction for each of the possibilities when S2 is a sequence of ascending type. Similar
arguments are applicable when S2 is a sequence of descending squares.

Claim 2.21. Our algorithm irrevocably chooses a square s at a point at or to the left of the rightmost exclusive
point of s.

20

Siddhartha Sarkar

Proof. Consider a square s ∈ Sol. The square s must have been included into Sol during processing some
point p ∈ s. Let pr be the rightmost exclusive point of s in Sol. Suppose s does not exist in the partial solution
obtained for the points till the point pr. Then s must have been included at some point pq to the right of pr.
While processing the point pq, the algorithm must have discarded some square(s) so that pr and other points in
Excl(s) can become exclusive to s. The resulting solution is a feasible solution for Pq. This means that if s
was a better pick for pq, it would have been picked earlier by our greedy algorithm. Hence, we have arrived at a
contradiction.

Claim 2.22. When a clique is considered separately, the exclusive regions of all non-extreme squares in the
clique are rectangular or L-shaped. All except at most two non-extreme squares may have two different connected
exclusive regions.

Proof. Consider any non-extreme square si. The square s has a square si−1 to its left and a square si+1 to its
right. There are 4 cases.
i) All three squares are in ASC order. Then the exclusive regions of si must lie around its top left corner and/or
its bottom right corner.
ii) All three squares are in DESC order. Then the exclusive regions of si must lie around its top right corner
and/or its bottom left corner.
iii) si is below both si−1 and si+1: Then si has only one exclusive region which is either rectangular or L-shaped.
iv) si is above both si−1 and si+1: Then si has only one exclusive region which is either rectangular or L-shaped.
Since the horizontal slab has height 1, hence there can be at most two squares having two different connected
exclusive regions. Specifically, in a monotonic DESC clique, the rightmost square intersecting L2 and the leftmost
square intersecting L1. And in a monotonic ASC clique, the rightmost square intersecting L1 and the leftmost
square intersecting L2.

Since all the squares in our solution are necessary, hence for every square s ∈ Sol, there exists a set of points
Excl(s) such that the points in Excl(s) are contained exclusively in s and no other square in Sol. These points
in Excl(s) are called exclusive points to s. We make the following crucial claim about exclusive points.

Claim 2.23. Let s1, s2 be two consecutive squares in a maximum clique of Sol such that s1 ≺ s2 and s1 is not
the leftmost square in Sol. No input square s can contain all the points in Excl(s1) ∪ Excl(s2).

Proof. We have already established that any clique in our solution Sol containing no redundant squares can be of
only a few types. There are 6 possibilities for the consecutive squares s1 and s2. We analyze them below. In each
of the cases below, assume for the sake of contradiction, that there exists a square s such that s covers all the
points in Excl(s1) ∪ Excl(s2).

1. Top Anchored DESC: Here s1 and s2 are intersecting the top line L2 and s1 ≺ s2 and s1 lies above s2.
Again there are two subcases.

(a) If s intersects the bottom line L1: Then at the leftmost exclusive point p of s2, our algorithm has to
make a choice between s and s2. Since s1 is already picked due to Claim 2.21, our algorithm will

21

Siddhartha Sarkar

Figure 18. The squares s1 and s2 are top anchored and are in descending order in the clique under consideration.

prefer s to s2 since choosing s2 gives a floating clique. And our algorithm would never pick s2 in the
future again. Recall that our greedy algorithm prefers floating cliques to anchored cliques. Refer to
Figure 18(a) for an illustration.

(b) If s intersects the top line L2: Then at the leftmost exclusive point p of s2, our algorithm would have
picked s instead of s2 since picking s would render s1 redundant. Since the exclusive region of s1 is
rectangular, and the square s covers all the points in Excl(s1), hence s lies to the left of s2, i.e., s ≺ s2.
Therefore, s covers every point in s1 ∩ s2 lying to the left of p. Consider a point p1 ∈ s1 \ s2, which is
covered by another square s0 ∈ Sol but presumably not covered by s. Clearly, all the exclusive points
of s0 lie to the left of p. By Claim 2.21, s0 must have been picked by our solution already. Consider a
point p2 ∈ s2 \ s1, which is covered by another square s0 ∈ Sol but presumably not covered by s. If
s2 ≺ s0 then all the points of s0 lie to the right of p. Hence, we need not worry about covering p2 at
this stage. Else if s0 ≺ s1 then s0 ∩ s2 will be contained in s1 ∩ s2 and such a point p2 cannot exist.
Thus picking s during processing p does not cause an increase in the active ply and our algorithm will
pick s greedily. Refer to Figure 18(b) for an illustration.

Figure 19. The squares s1 and s2 are top anchored and are in ascending order in the clique under consideration.

2. Top Anchored ASC: Here s1 and s2 are intersecting the top line L2 and s1 ≺ s2 and s1 lies above s2. Again
there are two subcases.

(a) If s intersects the bottom line L1: Then at the leftmost exclusive point p of s2, our algorithm would
have picked s instead of s2. The reason is exactly same as the argument for the case 1(a) above.

(b) If s intersects the top line L2: While processing the leftmost exclusive point p of s2, our algorithm has

22

Siddhartha Sarkar

already picked s1 since the rightmost exclusive point of s1 must lie to the left of p. At p our algorithm
would have picked s instead of s2 since picking s would also render s1 redundant. There are two
possibilities. First, if s2 ≺ s, then our algorithm would prefer s to s2 as it would give a narrower
clique of same size. Second, if s1 ≺ s ≺ s2, then s covers every point in s1 ∩ s2. Consider a point
p1 ∈ s1 \ s2, which is covered by another square s0 ∈ Sol but presumably not covered by s. If s0 ≺ s1,
then s0 is already picked by our algorithm when we are processing p. If s2 ≺ s0, then such a p cannot
exist. Refer to Figure 19. Consider a point p2 ∈ s2 \ s1, which is covered by another square s0 ∈ Sol
but presumably not covered by s. If s2 ≺ s0 then s covers p2 as s covers p. Else if s0 ≺ s1 then such a
point p2 cannot exist. Thus picking s during processing p does not cause an increase in the active ply
and our algorithm will pick s greedily.

3. Bottom Anchored DESC: s1 and s2 are intersecting the bottom line L1 and s1 ≺ s2 and s1 is above s2.
Again there are two subcases.

(a) If s intersects the top line L2: Then at the leftmost exclusive point p of s2, our algorithm would have
picked s instead of s2. The reason is exactly same as the argument for the case 1(a) above.

(b) If s intersects the bottom line L1: While processing the leftmost exclusive point p of s2, our algorithm
has already picked s1 since the rightmost exclusive point of s1 must lie to the left of p. At p, our
algorithm would have picked s instead of s2 since picking s would render s1 redundant. There are
two possibilities. First, if s2 ≺ s, then our algorithm would prefer s to s2 as it would give a narrower
clique of same size. Second, if s1 ≺ s ≺ s2, then s covers every point in s1 ∩ s2. Consider a point
p1 ∈ s1 \ s2, which is covered by another square s0 ∈ Sol. If s0 ≺ s1, then s0 is already picked by
our algorithm when we are processing p. If s2 ≺ s0, then such a p cannot exist. Refer to Figure ().
Consider a point p2 ∈ s2 \ s1, which is covered by another square s0 ∈ Sol. If s2 ≺ s0 then such a
point p2 lies to the right of p. Else if s0 ≺ s1 then such a point p2 cannot exist. Thus picking s for p
does not cause an increase in the active ply and this conforms to our greedy choice.

Figure 20. The squares s1 and s2 are bottom anchored and are in descending order in the clique under consideration.

4. Bottom Anchored ASC: s1 and s2 are intersecting the bottom line L1 and s1 ≺ s2 and xT (s1) < xT (s2).
Again there are two subcases.

(a) If s intersects the top line L2: Then at the leftmost exclusive point p of s2, our algorithm has to make a
choice between s and s2. Since s1 is already picked, our algorithm will prefer s to s2 since choosing
s2 gives a floating clique. And our algorithm would never pick s2 in the future again. Recall that our
greedy algorithm prefers floating cliques to anchored cliques.

23

Siddhartha Sarkar

(b) If s intersects the bottom line L1: Then at the leftmost exclusive point p of s2, our algorithm would
have picked s instead of s2 since picking s would render s1 redundant. Since the exclusive region of
s1 is rectangular, and the square s covers all the points in Excl(s2), hence s lies to the left of s2, i.e.,
s ≺ s2. Therefore, s covers every point in s1 ∩ s2 lying to the left of p. Consider a point p1 ∈ s1 \ s2,
which is covered by another square s0 ∈ Sol. Clearly, all the exclusive points of s0 lie to the left of p.
By lemma (2.21), s0 must have been picked by our solution already. Consider a point p2 ∈ s2 \ s1,
which is covered by another square s0 ∈ Sol. If s2 ≺ s0 then all the points of s0 lie to the right of
p. Hence, we need not worry about covering p2 at this stage. Else if s0 ≺ s1 then s0 ∩ s2 will be
contained in s1 ∩ s2 and such a point p2 cannot exist. Thus picking s during processing p does not
cause an increase in the active ply and our algorithm will pick s greedily.

5. Floating DESC: s1 intersects the top line L2 and s2 intersects the bottom line L1 and s1 ≺ s2. Again there
are two subcases.

(a) The square s intersects the top line L1: If s2 ≺ s, then at the leftmost exclusive point p of s1, our
algorithm would have picked s instead of s1 since picking s also leads to a narrower clique of same size.
If s1 ≺ s ≺ s2, then at the leftmost exclusive point p of s1, our algorithm would have picked s instead
of s1 since picking s leads to a narrower clique of same size. If there exists a point p1 ∈ s1 ∩ s2 which
is not covered by any other square in Sol, then while processing p1, our algorithm will pick s2 instead
of s1 since it leads to a narrower clique. Thus our algorithm never picks s1. If s ≺ s1 ≺ s2, then at the
leftmost exclusive point p of s2, our algorithm would have picked s instead of s2 and discarded s1. If
there exists a point p1 ∈ s1 ∩ s2 which is not covered by any other square in Sol or by s, then while
processing p1, our algorithm will pick s2 instead of s1. Thus our algorithm never picks s1.

(b) The square s intersects the bottom line L1: Exact same arguments as in Case 5(a) are applicable.

6. Floating ASC: s1 intersects the bottom line L1 and s2 intersects the top line L2 and s1 ≺ s2. Similar
arguments as presented in the Floating DESC case apply to this case.

Since there are no other possibilities for s1, s2 and s, this completes the proof of our claim.

Lemma 2.24. Consider one of the maximum cliques, say K, in our solution Sol. To cover the exclusive points of
the squares forming K, any feasible set cover has to pick bk/3c squares where |K| = k.

Proof. The necessity of bk/3c squares to cover the exclusive points of the squares in the clique K of Sol is a
direct consequence of Claim (2.23). We have already shown that the exclusive points in a ASC clique (resp.
DESC clique) are monotonically ascending (resp. descending) from left to right except possibly at 4 squares.
First we argue for the case when K is a monotonic clique of ASC type. Consider four consecutive squares in
K, say, s1, s2, s3 and s4, all of which intersect the top line L2. No square s can cover exclusive points from all
the 4 squares. Otherwise such a square s would end up covering all points in Excl(s1) ∪ Excl(s2). Refer to
Figure 21. Similar argument is applicable if the squares are all bottom-intersecting. The only exception can take
place if some squares are top-intersecting and some are bottom-intersecting as shown in Figure 22. In this case, a
square s may cover exclusive points from all of s1, s2, s3, s4. But covering exclusive points from 5 squares will

24

Siddhartha Sarkar

be impossible for similar reasons.
Now partition the squares of the maximum clique into groups of 3 from left to right. For each such group at least
1 square is necessary except possibly for one group at the transition from top-to-bottom or bottom-to-top. Similar
arguments apply for transition squares if any. Hence bk/3c squares are necessary.

Figure 21. (a) Consider the 4 consecutive squares 2, 3, 4, 5 in this top-anchored monotonic descending clique. The square 7 covers
exclusive points from all the four squares. Specifically it covers all the points in Excl(3) ∪ Excl(4). (b) Consider the 4 consecutive
squares 2, 3, 4, 5 in this top-anchored monotonic ascending clique. The square 7 covers exclusive points from all the four squares.
Specifically it covers all the points in Excl(3) ∪ Excl(4).

Figure 22. The square 9 in this floating clique covers exclusive points from the squares 5, 6, 7, 8 and covers all exclusive points of only
one square, i.e., square 7.

Lemma 2.25. Among the squares required to cover a clique of size k in Sol, at least bk9c − 1 squares have a
common intersection.

Proof. First, consider a top-anchored ASC clique. The exclusive points are also monotonically ascending except
possibly at the leftmost square. In this clique, consider a non-extreme exclusive point p. Either p can be covered
by a top intersecting square from the left or it can be covered by a bottom intersecting square from the right as
shown in the Figure 23(b). This implies that all the bottom intersecting squares covering non-extreme exclusive
points intersect. Similarly, all the top intersecting squares covering non-extreme exclusive points intersect. Hence,
two cliques are formed. Applying the pigeonhole principle, one of the cliques is of size at least bk/3c−22 = bk6c−1.

For a monotonic floating clique or a clique which is made up of two monotonic sequences of squares, i.e., a clique
of type ASC|DESC or DESC|ASC, the exclusive points may have two different monotonic sequences. Therefore
we need a different argument.

25

Siddhartha Sarkar

Consider a clique Q is of type bottom-anchored ASC|DESC. Observe that there are two monotonic sequences of
exclusive points in Q - the first sequence is ascending and the second sequence is descending. As before, two
cliques are necessary to cover the points of the first monotonic sequence of exclusive points. Denote these cliques
by Q1 and Q2 where Q1 is top-anchored and Q2 is bottom-anchored. Also, there are two other cliques in OPT
for covering the exclusive points of the second monotonic sequence. Denote these cliques by Q3 and Q4 where
Q3 is bottom-anchored and Q4 is top-anchored. All the L1 (i.e., bottom line) intersecting squares, i.e., the squares
in Q2 and Q3 have a common intersection region. Refer to the Figure 23(d). Therefore, in OPT there is exists a
clique of size

max(|Q1|, |Q2|+ |Q3|, |Q4|)

Applying the pigeonhole principle, one of the cliques have size at least bk/3c3 − 1 = bk9c − 1.

Consider a cliqueQ is of type floating DESC|DESC. Observe that there are two monotonic sequences of exclusive
points in Q - both the second sequences are descending. As before, two cliques are necessary to cover the
points of the first monotonic sequence of exclusive points. Denote these cliques by Q1 and Q2 where Q1 is
bottom-anchored and Q2 is top-anchored. Also, there are two other cliques in OPT for covering the exclusive
points of the second monotonic sequence. Denote these cliques by Q3 and Q4 where Q3 is bottom-anchored and
Q4 is top-anchored. Here the geometry is such that all the squares in Q2 which are intersecting L2 intersect the
squares in Q3, which intersect L1. Refer to the Figure 23(e). Therefore, in OPT there is exists a clique of size

max(|Q1|, |Q2|+ |Q3|, |Q4|)

Applying the pigeonhole principle, one of the cliques have size at least bk/3c3 − 1 = bk9c − 1.

Theorem 2.26. Given s set of n points and m axis-parallel unit squares on the plane, our algorithm computes
a (27 + ε)-factor approximation of the minimum ply cover in O((nm)2) time, where ε > 0 is a small positive
constant.

Proof. The approximation factor is a direct consequence of Theorem 2.9 and Lemma 2.25. The algorithm for
the horizontal slab subproblem computes a table having nm entries. Each entry can be computed in O(m) time.
Therefore, each subproblem requires O(nm2) time. There are at most n subproblems. Hence the total time
required is O((nm)2).

3. Conclusion

In this paper we have given an algorithmic technique that runs fast for the minimum ply cover problem with axis-
parallel unit squares. We have been able to characterize the structure of any clique in our solution and compare
it with the maximum clique of the intersection graph of an optimal solution. It may be possible to improve
the approximation ratio further. We believe that our technique can be generalized to obtain polynomial-time
approximation algorithms for broader class of objects.

Acknowledgement. I would like to thank Sathish Govindarajan for many useful discussions on the minimum ply
covering problem and for his valuable comments. I would also like to thank Aniket Basu Roy and Shirish Gosavi
for their time discussing the problem with me.

26

Siddhartha Sarkar

Figure 23. Shows the different cases for the proof of Lemma (2.25).

References

Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and set covers. In
Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, page 271–279, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450325943. doi: 10.1145/2582112.
2582152. URL https://doi.org/10.1145/2582112.2582152.

Therese Biedl, Ahmad Biniaz, and Anna Lubiw. Minimum ply covering of points with disks and squares. Com-
putational Geometry, 94:101712, 2021. ISSN 0925-7721. doi: https://doi.org/10.1016/j.comgeo.2020.101712.
URL https://www.sciencedirect.com/science/article/pii/S0925772120301061.

Gruia Călinescu, Ion I. Măndoiu, Peng-Jun Wan, and Alexander Z. Zelikovsky. Selecting forwarding neighbors

27

https://doi.org/10.1145/2582112.2582152
https://www.sciencedirect.com/science/article/pii/S0925772120301061

Siddhartha Sarkar

in wireless ad hoc networks. Mobile Networks and Applications, 9(2):101–111, Apr 2004. ISSN 1572-
8153. doi: 10.1023/B:MONE.0000013622.63511.57. URL https://doi.org/10.1023/B:MONE.

0000013622.63511.57.

Timothy M. Chan and Elyot Grant. Exact algorithms and apx-hardness results for geometric packing and covering
problems. Computational Geometry, 47(2, Part A):112–124, 2014. ISSN 0925-7721. doi: https://doi.org/10.
1016/j.comgeo.2012.04.001. URL https://www.sciencedirect.com/science/article/pii/

S0925772112000740. Special Issue: 23rd Canadian Conference on Computational Geometry (CCCG11).

Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation algorithms for geometric set cover. Dis-
crete & Computational Geometry, 37(1):43–58, Jan 2007. ISSN 1432-0444. doi: 10.1007/s00454-006-1273-8.
URL https://doi.org/10.1007/s00454-006-1273-8.

E. D Demaine, Mohammad T. Hajiaghayi, U. Feige, and M. R Salavatipour. Combination can be hard: Approx-
imability of the unique coverage problem. In Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 162 – 171, 2006/// 2006.

Stephane Durocher, J. Mark Keil, and Debajyoti Mondal. Minimum ply covering of points with unit squares.
CoRR, abs/2208.06122, 2022. doi: 10.48550/arXiv.2208.06122. URL https://doi.org/10.48550/

arXiv.2208.06122.

Thomas Erlebach and Erik Jan van Leeuwen. Approximating geometric coverage problems. In Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, page 1267–1276, USA,
2008. Society for Industrial and Applied Mathematics.

Thomas Erlebach and Erik Jan van Leeuwen. Ptas for weighted set cover on unit squares. In Maria Serna,
Ronen Shaltiel, Klaus Jansen, and José Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 166–177, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
ISBN 978-3-642-15369-3.

Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, jul 1998. ISSN 0004-5411.
doi: 10.1145/285055.285059. URL https://doi.org/10.1145/285055.285059.

Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and covering in the plane are
np-complete. Information Processing Letters, 12(3):133–137, 1981. ISSN 0020-0190. doi: https://doi.org/
10.1016/0020-0190(81)90111-3. URL https://www.sciencedirect.com/science/article/

pii/0020019081901113.

Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing problems in image
processing and vlsi. J. ACM, 32(1):130–136, jan 1985. ISSN 0004-5411. doi: 10.1145/2455.214106. URL
https://doi.org/10.1145/2455.214106.

Fabian Kuhn, Pascal von Rickenbach, Roger Wattenhofer, Emo Welzl, and Aaron Zollinger. Interference in
cellular networks: The minimum membership set cover problem. In Lusheng Wang, editor, Computing and

28

https://doi.org/10.1023/B:MONE.0000013622.63511.57
https://doi.org/10.1023/B:MONE.0000013622.63511.57
https://www.sciencedirect.com/science/article/pii/S0925772112000740
https://www.sciencedirect.com/science/article/pii/S0925772112000740
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.48550/arXiv.2208.06122
https://doi.org/10.48550/arXiv.2208.06122
https://doi.org/10.1145/285055.285059
https://www.sciencedirect.com/science/article/pii/0020019081901113
https://www.sciencedirect.com/science/article/pii/0020019081901113
https://doi.org/10.1145/2455.214106

Siddhartha Sarkar

Combinatorics, pages 188–198, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31806-
4.

Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Settling the apx-hardness status for geometric set cover. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 541–550. IEEE Computer Society, 2014. doi: 10.1109/FOCS.2014.64. URL
https://doi.org/10.1109/FOCS.2014.64.

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability
pcp characterization of np. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting, STOC ’97, page 475–484, New York, NY, USA, 1997. Association for Computing Machinery. ISBN
0897918886. doi: 10.1145/258533.258641. URL https://doi.org/10.1145/258533.258641.

29

https://doi.org/10.1109/FOCS.2014.64
https://doi.org/10.1145/258533.258641

	1 Introduction
	1.1 Our contribution
	1.2 Related Work

	2 Minimum Ply Covering
	2.1 Squares are intersected by a horizontal line
	2.2 Points are in a unit height horizontal slab

	3 Conclusion

