arXiv:2301.13108v1 [cs.CG] 30 Jan 2023

Faster Algorithm for Minimum Ply Covering of Points
with Unit Squares

Siddhartha Sarkar

Computer Science and Automation, Indian Institute of Science, Bengaluru

Abstract. Biedl et al. introduced the minimum ply cover problem in CG 2021 following the seminal work of
Erlebach and van Leeuwen in SODA 2008. They showed that determining the minimum ply cover number
for a given set of points by a given set of axis-parallel unit squares is NP-hard, and gave a polynomial time
2-approximation algorithm for instances in which the minimum ply cover number is bounded by a constant.
Durocher et al. recently presented a polynomial time (8 4 ¢€)-approximation algorithm for the general case when
the minimum ply cover number is w(1), for every fixed ¢ > 0. They divide the problem into subproblems by
using a standard grid decomposition technique. They have designed an involved dynamic programming scheme
to solve the subproblem where each subproblem is defined by a unit side length square gridcell. Then they
merge the solutions of the subproblems to obtain the final ply cover. We use a horizontal slab decomposition
technique to divide the problem into subproblems. Our algorithm uses a simple greedy heuristic to obtain a
(27 4 €)-approximation algorithm for the general problem, for a small constant € > 0. Our algorithm runs
considerably faster than the algorithm of Durocher et al. We also give a fast 2-approximation algorithm for the
special case where the input squares are intersected by a horizontal line. The hardness of this special case is
still open. Our algorithm is potentially extendable to minimum ply covering with other geometric objects such

as unit disks, identical rectangles etc.

1. Introduction

Set Cover is a fundamental problem in combinatorial optimization. Given a range space (X, R) consisting of a
set X and a family R of subsets of X called the ranges, the goal is to compute a minimum cardinality subset
of R that covers all the points of X. It is NP-hard to approximate the minimum set cover within a logarithmic
factor [Raz and Safral, (1997, Feige, [1998]]. When the ranges are derived from geometric objects, it is called
the Geometric Set Cover problem. Computing the minimum cardinality set cover remains NP-hard even for
simple 2D objects, such as unit squares on the plane [Fowler et al., [1981]]. There is a rich literature on designing
approximation algorithms for various geometric set cover problems (see [Agarwal and Pan| 2014, |Clarkson and

'Varadarajan, [2007), [Hochbaum and Maass, |1985] (Chan and Grant, 2014, Mustafa et al.,[2014, |[Erlebach and van

Email: siddharthasl@iisc.ac.in.

Siddhartha Sarkar

Leeuwen, 2010]]). More often than not, the geometric versions of the covering problems are efficiently solvable
or approximated well. Many variants of the Geometric Set Cover problem find applications in facility location,
interference minimization in wireless networks, VLSI design, etc [Demaine et al., 2006, |Calinescu et al., [2004].

In this paper, we investigate the following covering problem.

Problem Statement. Given a set of geometric objects S, the ply of S is the maximum cardinality of any subset of
S that has non-empty common intersection. A set of objects S is said to cover a set of points P if for each point
p € P there exists an object S € S such that p is contained in .S. Given a set of objects (for e.g., unit squares) S,
and a set of points P on the plane, the goal is to pick a subset S’ C S such that every point in P is covered by at

least an object in &’ while minimizing the ply.

In this paper we will deal with the minimum ply cover problem where the objects to cover with are unit side

length squares.

1.1. Our contribution

We design a simple greedy heuristic for axis-parallel unit squares on the plane that achieves an approximation
factor of (27 + €), where € > 0 is a small constant. Our algorithm runs in O(n?m?) time where n is the number
of input points and m is the number of input squares. Our algorithm is considerably faster when compared to the
DP algorithm of [Durocher et al.,[2022] that requires O(n + m8k*log k + m®log mlog k) time, where k is the

optimal ply value. Our algorithm is easy to implement and extend to other covering objects.

1.2. Related Work

The minimum ply cover problem is a generalization of the minimum membership set cover (i.e., MMSC) problem.
Given a set of points P and a family S of subsets of P, the goal in MMSC is to find a subset S’ C S that covers P
while minimizing the maximum number of elements of S’ that contain a common point of P. [Kuhn et al.,[2005]]
introduced the general problem and they presented an LP based technique to obtain an approximation factor of
In n which matches the hardness lower bound. The membership is measured at the points of P in the MMSC
problem. [Erlebach and van Leeuwen, |2008]] proved that the minimum membership set cover of points with unit
disks or unit squares is NP-hard and cannot be approximated by a ratio smaller than 2. For unit squares, they
present a H-approximation algorithm with the assumption that the minimum ply value is bounded by a constant.
In the minimum ply cover (abbr. MPC) problem, the ply (i.e., membership) is measured at any point on the plane.
[Biedl et al.,[2021]] prove that the MPC problem is NP-hard for both unit squares and unit disks, and does not
admit polynomial-time approximation algorithms with ratio smaller than 2 unless P=NP. They gave polynomial
time 2-approximation algorithms for this problem with respect to unit squares and unit disks, when the minimum

ply value is bounded by a constant.

2. Minimum Ply Covering

Our approach is to divide the problem into distinct subproblems and solve the subproblems. Then we merge
the solutions to obtain the ply cover of the original problem. First, let us define and solve a special case of the

minimum ply cover problem. The techniques used here will be useful in the future.

Siddhartha Sarkar

2.1. Squares are intersected by a horizontal line

Suppose that the input squares are intersected by a horizontal line and the input points lie in at least one of the
input squares. Refer to Figure (I)). For this special case, we give an algorithm that computes the minimum ply
cover of ply at most twice the optimal ply. The algorithm is simple to state and analyze. First, we divide the
problem into two subproblems. One corresponding to the input points above the horizontal line and the other

corresponding to the input points below the horizontal line.

Figure 1. An instance of the special case where all the input squares are intersected by a horizontal line L and the points lie on both sides.

Definition 2.1. Consider a horizontal line L. Now consider a set S of unit squares intersecting L. Let P be a set
of points located below L such that each point lies inside at least one of the squares in S. Then MPCSIHL1 is
the problem of computing the minimum ply cover of P with the squares in S.

MPCSIHLI1 stands for Minimum Ply Cover for unit Squares Intersected by a Horizontal Line where points lie
on only 1 side (i.e., above or below the horizontal line). Refer to Figure

Figure 2. An instance of the MPCSIHL1 problem where all the input points lie below L. The pink regions are ply regions with ply value
5.

For a set of squares S, we call a maximum depth region on the plane as the ply region and denote it by clique(S).
So, the ply region is the common intersection region below the line L. The corresponding depth is the ply which
is denoted by ply(S). Note that the ply region of a set of squares S may not be unique. Refer to Figure [2| The
Algorithm (T) is a heuristic that computes a minimum ply cover incrementally. The heuristic uses a greedy rule.
For multiple sets of squares 51, S2, .. ., Sk, we define the following greedy criteria for deciding which one to

prefer.

Greedy criteria. If a set of squares has multiple ply regions, consider the rightmost one as its representative. Use
following preference rules to for selection and breaking ties.

1. Prefer the set of squares having the minimum ply value.

2. If rule (1) leads to a tie, prefer the set of squares with the leftmost ply region right side.

[

[5]

10

Siddhartha Sarkar

3. If rule (2) also leads to a tie, prefer the set of squares with the narrowest ply region.

4. If the tie persists, then select a candidate set of squares arbitrarily.

Algorithm 1: Exact algorithm for MPCSIHL1
Input : A horizontal line L, a set S of m unit squares intersecting L, a set P of n points below L such that

each of them lies in at least one square in S.

Output : Returns a set of squares S’ C S covering P while minimizing ply.
Sort the points in P from left to right.
Let the sorted order of points be p1, pa, ..., pn.
T < oo [/ A2D array T of dimension n x m where each entry is initialized to co or infeasible.
fori < 1tondo

for j +— 1tomdo

‘ T[i, j] = ComputeEntry(i, j,T)

end
end
Obtain the best entry in the n-th row as per the greedy criteria, say Sol.
return Sol

The procedure ComputeEntry(-) shows the computation of each entry in the table. Observe that the entry 7', j]
takes into account all the feasible solutions in the (¢ — 1)-th row of the table 7. If T'[7, j] is formed by taking the
union of T'[i — 1, k] with s;, for some k € [m], then we say that T'[i — 1, k] is the parent of T'[¢, j] and T[4, j] is
derived from T'[i — 1, k|. Intuitively, T'[i, j] represents the minimum ply cover for P; = {p1,...,p;} as per the
greedy criteria such that the point p; is covered by the square s; € T[4, j]. Starting from Sol, it is possible to
trace a path to an entry in the first row of the table by following the parents. The path has one node from each row
of the table 7.

After the computation is over, for the ¢-th row in 7" corresponding to the point p;, there can be multiple
entries/covers that achieve the same ply. In the next iteration, while computing 7°[i + 1, j], we will use the greedy

criteria to select the best entry from the i-th row.

Denote by P, the set {p1, p2, ..., p;} of the ¢ leftmost input points. The entry T'[z, j] is a feasible ply cover for P,
with the constraint that s; is included in the solution. The algorithm (1) computes a set cover Sol for P. We claim

that our solution is optimal. We will prove the following loop invariant to argue the correctness of our claim.

Claim 2.2. (loop invariant) At the end of the i-th iteration of the outer for loop at line 4 of Algorithm ({I)), in each
row | such that 1 <1 < i, there exists an entry T, j) corresponding to the minimum ply set cover for the set of

points P; such that it is the best as per the greedy criteria; j can vary for each row.

1

2

3

4

10

11

Siddhartha Sarkar

Function ComputeEntry (3, 7, T') :
if : == 1 then
if p; € s; then
t return {s;}
else
t return oo

Let F;_1 be the set of feasible solutions in the (i — 1)-th row, i.e., the entries with finite value.

for F' € F;,_1 do
t Compute the ply region of F'U {s;}

Select the best entry among the solutions computed in the for loop in line 9, as per the greedy criteria, say
S Olij.

return Sol;;

Proof. First, we consider the base case. For the point p;, our algorithm fills the first row of 1" with feasible
solutions containing one square each, i.e., for each square s; covering p;, the corresponding table entry 7°(1, j)
is a singleton set {s;}. The ply of each feasible solution is 1, which is trivially optimal. The entry in row 1

corresponding to the leftmost square containing p; is the optimal solution for P; based on our greedy criteria.

We fix an 1 < 7 < n. Our inductive assumption is that the algorithm has already computed the optimal solution
for the first (i — 1) iterations of the outer for loop. Specifically, we assume that our loop invariant is true after the
first (¢ — 1) iterations.

We need to prove that at the end of the i-th iteration of the outer for loop, there exists a square s; containing the
point p; such that the entry T[4, j] is the optimal ply cover for P; satisfying the greedy criteria. We term such a

solution as the optimal parametric solution.

After the i-th iteration of the outer for loop, let Sol; denote an optimal set cover (in the sense of the greedy
criteria) stored at the i-th row of the table T, for 1 < ¢ < n. Suppose for the sake of contradiction, there exists a
better solution O PT;;« for P; and p; € s« and s;« € OPT;;+. That means either

ply(OPT;;+) < ply(Sol;) (1

ply(OPT;j+) = ply(Sol;), but OPT;j« is better than Sol; as per the greedy criteria. 2)

Let’s consider the possibility (1) first. Our algorithm essentially constructs Sol; by combining a square s; with a
feasible solution T'(i — 1, ") for Pi_;. If s; € T'(i — 1, j") or s; does not intersect the ply region of 7'(i — 1, j'),
then T'(i — 1, j') U {s;} is a feasible solution for P; with ply ply(T'(i — 1, j)).

Let OPT(i,l) i © OPT;;- be a set cover (we do not claim that it has minimum ply) for 7;_; with no redundant
squares. One way to construct O PT{;_y);» from O PT;j is to simply remove the square (if any) that covers p;

Siddhartha Sarkar

exclusively from O PT;j«. Let s;» € OPT, (i—1)j" and p; 1 € s;». Because of the subset relationship, we have

ply(OPT;_1)n) < ply(OPTj+) 3)
By our inductive hypothesis, we have

ply(Sol;—1) < ply(OPT(_1y;n) 4)

Since our algorithm adds at most one square for every new point, we have
ply(Sol;) < 1+ ply(Sol;—1) 5)
Therefore, from (1)), (3), @), and (3), we conclude that
ply(OPT;1)jn) = ply(OPT;j+) = ply(Soli—1) = ply(Sol;) — 1

Now consider the solutions OPT(i_l) ;v for P;_1 and OPT;; for P;. There are two ways in which O PT;;+ can
be related to OPT(;_y);n.

Case 1: 3 a square sj« € OPT;j+ \ OPT(;_y;» covering p; such that s;« does not intersect the ply region of
OPT(,L_]_)]//

Case 2: OPT(;_1);» already covers the point p; and thus O PT;j+ = OPT(;_1)n.

Figure (3)) shows the two cases.

i Di

{OPT,_y),;0} 50 {OPTi—nr} sjp € OPTi_y)

(a) (b)

Figure 3. The two cases for OPT{;_1);» with respect to covering the point p;. (a) Case 1, (b) Case 2. The pink region {OPT;_1); }
refers to the ply region of OPT(;_1);r.

First we consider Case 1. Consider a square s;j» € OPT(;_1); that covers the point p;—1 in OPT{;_1);. By our
inductive hypothesis,

ply(Soli—1) < ply(OPT; 1))

The square s;+ cannot lie entirely to the left of the left boundary of the rightmost ply region of O PT{;_y);.
Suppose it does. The left boundary of the ply region of O PT(;_1);~ is determined by the rightmost square, say
sy, participating in the ply. Since, no square in O PT(;_y);~ is redundant, s, must cover a point, say ¢ € P;_1,
exclusively. Since, by our assumption, s;« lies to the left of the left boundary of s,., and p; lies to the right of g,

hence s+ cannot cover p;. Hence we have a contradiction. Refer to Figure (F_f[) for an illustration.

Siddhartha Sarkar

. Di
q
5 {OPT 1)}

Figure 4. The square s;+ > p; lying entirely to the left of the ply region of OPT;_1); is not possible.

Therefore, s;j~ must lie entirely to the right of the right boundary of the rightmost ply region of OPT{;_y);».
By virtue of our inductive assumption (about the greedy criteria obeyed at every iteration), Sol;—1 U {s;} is a

feasible solution of P; with ply equal to ply(Sol;—1). Therefore,
ply(Sol;) = ply(Sol;—1) < ply(OPT(;_1y;») = ply(OPT;j+)

We have arrived at a contradiction. Therefore, Case 1 is ruled out.

Now we consider Case 2 where p; is already covered by O PT{;_;);». For a square s, we write 7,(s), Tg(s) to
denote the z-coordinates of the left and right boundaries of s respectively. Similarly, write y7(s), y(s) to denote
the y-coordinates of the top and bottom boundaries of s, respectively. We assume that no two squares share the
same left boundary. More specifically, the input squares have a left-to-right ordering <. We write s; < s2 if 51

lies to the left of s, i.e., 1,(s1) < zr(s2). If i < j, then p; lies to the left of p;, i.e., x(p;) < x(pj).

Let sy be the rightmost square among the squares covering p; in OPT(;_1;». Since sy € OPT{;_1);», there
must exist at least one point to the left of p; which is exclusively covered by si in OPT(;_y) .

Let p;/, where i’ < 4, be the leftmost point among the points exclusively covered by sy in OPT, (i—1);7- Since
none of the leftmost (i — 1) points is exclusive to sy; hence OPT; \ OPTy_1 = {si}. If s contributes to the
ply, i.e., sy intersects the ply region of OPT} 4, then [OPTy] = [OPT;_1] + 1, else [OPTy] = [OPT; _4].

Claim 2.3. The square sy is the rightmost square in OPT(;_y;n as per the left to right ordering <.

Proof. Suppose there exists a square s, € OPT{;_1);» which is rightwards with respect to s, i.€., sg < so. The
left boundary of s, must lie to the left of p;_1, otherwise s, will become redundant. If y7(s,) > yr(sg), then s,
becomes redundant in O PT{;_1;» as sy covers the relevant area of s,. The other possibility is y7(s,) < yr(sk).
But the square s, will contain p; in this case. This will violate the definition of sy, i.e., si being the rightmost
among the squares containing p; in O PT(;_1);». Hence this is ruled out. Therefore, s, is the rightmost square in
OPT{; 1) Refer to Figure (5). O

Claim 2.4. All points between p; and p; must lie in the square s.

Proof. Let there be a point p, such that i’ < r < i and p, ¢ s. Essentially, p, lies below the bottom boundary
of si. There must exist a square s € OPT{;_y);» covering p,. By our previous claim, sy, is the rightmost square
in OPT{;_1);». Hence s < si. Therefore, s must also cover p;; which is a contradiction since p;s is exclusively
covered by s in OPT{(;_yyn. O

Siddhartha Sarkar

Sk Di

So

Di-1 So Pi-1

Sk Sk So

(a) (b) (c)

Figure 5. Relative positions of si and s,. (a) s, 1s above sy but p;_1 is to the left of the left boundary of s,. This makes s, redundant. (b)
So is above sy but the entire area of s, to the left of p;_1 is covered by sx. This makes s, redundant. (c) s, is below s, here s, also
covers p; contradicting the definition of sx. Thus s, is the rightmost square in O PT(; _1y; .

Claim 2.5. The entry T(i', k) is a feasible set cover for P; and is as good as the solution O PT;j+. Mathematically,
ply(T (¥, k)) = ply(OPT;;+).

Proof. By the inductive hypothesis, ply(Sol;) < ply(OPTy). Since [Soly] is the optimal ply for covering Py
and due to the definition of our function Compute_Entry(-), we have

[Soly] < [T(, k)] < [Soly] + 1 (6)

Hence we need to consider only two possible cases: 1) [T'(¢/, k)] = [Sol;] and ii) [T'(¢', k)] = [Soly] + 1.

i) [T'(7', k)] = [Soly]: Since all points between p; and p; lie in sj, due to Claim (2.4), T(i', k) is a feasible
solution for P;. If we picked sy, i.e., T'(i', k) for p; then we are done. If we did not pick s, then say we picked
sy that does not contain p;. The entry T'(i', k) will continue to be present in the table till the (i — 1)-th row.
Eventually, in some (”)-th iteration, the algorithm will select T'(¢', k) since it covers p; and does not lead to an
increase in ply, where ¢/ < i < i. Thus we have a feasible solution 7'(i’, k) in the (i — 1)-th row of our table till
the i-th row and [T'(¢/, k)] < [OPT;]. Hence [Sol;] > [OPT;;+] is ruled out.

i) [T'(¢', k)] = [Soly] + 1: Since [T'(i', k)] < [Soly—1] + 1, we have [Sol;] = [Sol;_1]. In other words, picking
sy, for covering p;s will lead to an increase in the current ply value of our solution. Thus s participates in the ply
of T'(i', k). In other words, sj, intersects the ply region of Sol;_1. By our inductive assumption, {Sol; 1} lies
relatively to the left of {OPT;,_1}. Since sy, covers p; and p;, therefore, sy also intersects {OPT; _1}. Since
OPT; = OPTy_1 U{sk}, we have [OPTZ'/] = [OPTi/,l] + 1.

So, [T(i', k)] = [Soly—1] + 1 < [OPTy_1] + 1 = [OPTy]. If we picked sy, i.e., T(i', k) for p; then we are
done. If we did not pick s, then suppose we picked s that does not contain p;. The entry 7'(¢’, k) will continue
to be present in the table till the ¢-th row. Eventually, in the ¢-th iteration our algorithm will pick it since it does
not lead to an increase in ply. Thus we have [T'(i’, k)] < [OPT;] in our table. Hence [Sol;] > [OPT;;+] is ruled

out.
O

This completes the proof of the maintenance of the loop invariant. O

Siddhartha Sarkar

The argument for the possibility (2)) is similar. Now consider the running time of Algorithm (I). The sorting of
points takes O(n logn) time. There are n - m entries in 7" to be computed. For computing the entry 7(z, j), all
the feasible entries (at most m) in row (i — 1) need to be considered. Given a set of squares F', computing the ply
region of F' U {s;} takes O(1) time. Hence the overall running time is O(rnm?), where n is the number of points

and m is the number of squares.

Theorem 2.6. Algorithm (I) is a polynomial time exact algorithm for the MPCSIHLI problem (2.1)).

Proof. We have already seen that Algorithm (I)) runs in polynomial time. Due to the Claim (2.2)), the ¢-th row in
T contains an optimal solution for P;. Now consider the n-th row of the table T' corresponding to the point p,,.

The entry achieving minimum ply is the optimum solution for our input point set P = P,,. O

Theorem 2.7. The minimum ply cover for a given set of points lying within the span of a given set of squares

intersected by a horizontal line can be approximated within a 2 factor in polynomial time.

Proof. We run the Algorithm (/1)) twice. Once for the subproblem corresponding to the points lying below the
intersecting horizontal line and once for the subproblem corresponding to the points lying above the intersecting
horizontal line. Then we return the union of the two solutions, say Sol, U Sol. Clearly, our solution covers all
the input points and hence is a feasible set cover. Now consider an arbitrary point on the plane. It is covered by
at most [Sol,| + [Solp] squares, where ply(Sol,) (resp. ply(Soly)) is the ply of the problem defined for points
above (resp. below) the horizontal line. Since ply(Sol,) < ply(OPT) and ply(Soly) < ply(OPT), hence our
solution is a 2-approximation. d

2.2. Points are in a unit height horizontal slab

We consider the special case where the input points lie within a horizontal slab of height 1 and the input squares
intersect either the top boundary or the bottom boundary of the slab. Refer to Figure (6). For this case, we give a
(9 + €)-factor approximation algorithm for computing the minimum ply cover, where € > 0 is a small constant.

The algorithm is simple to state and analyze. We define our problem formally.

Definition 2.8. Consider two horizontal lines L; and Ls unit distance apart, where Lo is above L;. Now consider
a set S of unit squares where each square intersects either Ly or L. Let P be a set of points located below Lo
but above L1, each point lying inside at least one of the squares in S. The goal is to compute the minimum ply

cover of P with the squares in S.

Theorem 2.9. For unit squares, if there exists a c-approximation for the Problem then there exists a

3c-approximation for the minimum ply cover problem.

Proof. We partition the plane into horizontal slabs of unit height. If there are n input points then there are
at most n horizontal slabs containing at least 1 point. Suppose we denote the slabs from bottom to top as
Hy, Hy, ..., H,. We solve for each slab and return the union of the solutions as the final output. Our solution is
a feasible solution for all the input points. Consider an arbitrary point on the plane. This point lies within some
horizontal slab, say H;. This point may lie in some max clique, i.e., ply region of H;. Simultaneously, this point

may lie within the max cliques of the solution for H;_; and H; 1. Let Sol; denote the solution for the slab H;

Siddhartha Sarkar

returned by our algorithm. Let O PT; denote the optimal solution for the slab H;. Let Sol = U;Sol;. Clearly,
ply(OPT;) < ply(OPT) for all i, where OPT is the minimum ply for the entire input. Hence

ply(Sol) = max(ply(Soli—1) + ply(Sol;) + ply(Solit1)

<c- (ply(OPTj_1) + ply(OPTj) + ply(OPTj11)) [j :index at which the sum is max.]
< 3c-ply(OPT)

O

We use a similar greedy algorithm as in our previous section. Here the greedy tie-breaking rule is slightly modified

as shown below.

* Select the cover with the minimum ply value.

* In case of a tie, prefer a floating ply region over an anchored ply region.

* In case of a further tie, select the cover with the leftmost ply region right side.
* In case of a further tie, select the cover with the narrowest ply region.

* In case of a further tie, select a cover arbitrarily from the tied covers.

Ly

Ly

Figure 6. The unit height horizontal slab subproblem.

For 1 <i <mn,1 < j < m,we denote the (i, j)-th entry of the table as 7'(4, j). We denote the ply of a minimum
ply solution in the ¢-th row by ply;. Recall that by P;, we denote the ¢ leftmost input points. In this section, we
will prove the following lemma.

Lemma 2.10. The greedy algorithm is an (9 + €)-approximation algorithm for the problem .

Claim 2.11. For any j, if the solution T'(i + 1, j) is feasible for P;11, then the ply of T(i + 1, j) lies between
ply; and ply; + 1. Notationally,

ply; < ply(T(i+1,7)) < ply; + 1 (7

Proof. The upper bound is straightforward to prove. Since the solution 7°(¢ + 1, j) can be composed as the union

of the j-th square and the minimum ply solution in the i-th row; hence the ply of 7'(i + 1, j) can be at most one

10

Siddhartha Sarkar

more than ply;.

We prove the lower bound by contradiction. Suppose, for some j, the ply of 7'(¢ + 1, j) is strictly less than ply;.
So, s; does not belong to the optimum solution in the i-th row of the table computed by our algorithm. Two cases
are possible.

Case 1: While processing the point p;; 1, s; can be combined with a minimum ply solution in the i-th row, say,
T(i, k) such that T'(4, k) U {s; } is a feasible solution for P, and s; does not intersect the ply region of 7'(¢, k)
and at least one square participating in the ply region of T'(i, k) is discarded. Thus ply(T'(i 4+ 1, 7)) < ply;.
Case 2: While processing the point p;; 1, s; can be combined with a minimum ply solution in the i-th row, say,
T(i, k) such that T'(é, k) U {s; } is a feasible solution for P, and s; intersects the ply region of 7'(4, k) and at
least two squares participating in the ply region of 7'(i, k) are discarded. Thus ply(T'(i + 1,5)) < ply;.

The ply region of any solution is bound to be a subset of the ply region of its parent solution in the previous row.
Hence, in both the cases above, if s; were a better pick in the (¢ 4 1)-th row it would have been picked earlier by

our greedy algorithm. Hence, we have arrived at a contradiction. O

If a set of squares have a common intersection, we say that they form a clique. We call the common intersection
region of the clique as the ply region. First, we will classify the cliques in a solution into some distinct types. Let
the size of the clique under consideration be [, i.e., [squares have a common intersection. If the top side of a
square s; lies above the top side of another square s2, we say that s; lies above so. Equivalently, we can say that
59 lies below s7. A set of squares s1, so, .. ., si such that s; is above s;4.1 forall 1 < ¢ < k — 1, is termed as
a set of descending squares. A set of squares s1, So, .. ., Si such that s; is below s; 1 forall 1 < <k —1,1is
termed as a set of ascending squares. If the left side of a square s; lies to the left of the left side of another square
59, we say that sp lies to the left of so. We denote this by s1 < s2. The following types of clique are possible.

* Top-anchored: Here all the constituent squares of the clique intersect the top line Lo. There are three
subtypes as shown in the Figure (7).

— Top-anchored ASC: Here the squares from left to right are ascending. In other words, for any two
squares s1, So in the clique such that s; < s9, the square s9 is above s;.
— Top-anchored DESC: Here the squares from left to right are descending. In other words, for any two

squares S1, So in the clique such that s; < s2, we have s below s.

— Top-anchored DESC|ASC: There is a k£ > 2 such that the squares constituting the clique are initially
descending from s; to s;. Then the square sy lies above s;. Then the squares sx4; to s; are
ascending. We term the square sy as the transition square. This type of clique can be viewed as the
merger of a descending clique with an ascending clique, in that order.

Claim 2.12. A top anchored clique of type ASC|ASC is forbidden.

Proof. Suppose not. Suppose, the left ascending sequence consists of k£ squares. Then the rightmost square sy, of
the first ASC sequence will become redundant since the second last square sj_1 of the first ASC sequence and
the transition square s will fully cover the relevant area of s. This is a contradiction since sj is redundant.
Refer to Figure (8) for an example. 0

11

Siddhartha Sarkar

Ly Lo
L1 Ll
(a)ASC (b)DESC
L2 L2
Ly L,
(¢)DESC|ASC (d)DESC|ASC|

Figure 7. (a), (b) and (c) shows three different types of top-anchored cliques. (d) Shows an invalid clique where an DESC|ASC
top-anchored clique is followed by a transition square.

(]

(a)ASC|ASC

Figure 8. A forbidden clique of type top-anchored ASC|ASC. Here the square 5 is redundant since 4 and 6 fully cover the relevant area of
5.

Claim 2.13. A top anchored clique of type DESC|DESC is forbidden.

Proof. Suppose not. Suppose, the left descending sequence consists of k squares. Then the leftmost square Sy 1
of the second DESC sequence will become redundant since the ast square s, of the first DESC sequence and the
square sy will fully cover the relevant area of s 1. This is a contradiction since si4; is redundant. Refer to

Figure [9((a) for an example. O

Claim 2.14. A top anchored clique of type ASC|DESC is forbidden.

Proof. The proof is similar to the proof of Claim (2.12)). Refer to Figure 0[b) for an example. O

12

Siddhartha Sarkar

6

7

Lo

ut

Ly

5

(a)DESC|DESC (b)ASC|DESC

Figure 9. (a) A forbidden clique of type top-anchored DESC|DESC. Here the square 6 is redundant since the squares 5 and 7 fully cover
the relevant area of 6. (b) A forbidden clique of type top-anchored ASC|DESC. Here the square 4 is redundant since the squares 3 and 5

fully cover the relevant area of 4.

LQ LQ

1 5 1y

3
4
5
L1 Ll
() DESC

Ly Ly .

4 6 - 42 6

3 3
1

Ll Ll

(c)ASC|DESC (d)ASC|DESC|

Figure 10. (a), (b) and (c) shows three different types of bottom-anchored cliques. (d) Shows an invalid clique where an ASC|DESC
bottom-anchored clique is followed by a transition square.

* Bottom-anchored: Here all the constituent squares of the clique intersect the bottom line L;. There are

three subtypes as shown in the Figure (10).

— Bottom-anchored ASC: Here the squares from left to right are ascending. In other words, for any two
squares S1, So in the clique such that s; < s9, the square s9 is above s;.

— Bottom anchored DESC: Here the squares from left to right are descending. In other words, for any
two squares s1, sg in the clique such that s; < so, the square ss is below s;.

— Bottom anchored ASC|DESC: There is a £ > 2 such that the squares constituting the clique are
initially ascending from s; to sg. Then the square sy lies below si. Then the squares si1 to s; are
descending.

13

Siddhartha Sarkar

Claim 2.15. A bottom anchored clique of type ASC|ASC, DESC|ASC or DESC|DESC is forbidden.

Proof. In all the three cases some squares will become redundant leading to a contradiction. The proof is similar

to the proof of Claim (2.12)). Refer to Figures (T1)) and (I2)) for examples. O

Ly -

4 J

3
2
1
L
8
7
6

Figure 11. A forbidden clique of type bottom-anchored ASC|ASC. Here the square 6 is redundant since the squares 5 and 7 fully cover
the relevant area of 6.

L2 L2

L Ly

5 5
(a)DESC|DESC (b)DESC|ASC

Figure 12. (a) A forbidden clique of type bottom-anchored DESC|DESC. Here the square 5 is redundant since the squares 4 and 6 fully
cover the relevant area of 5. (b) A forbidden clique of type bottom-anchored DESC|ASC. Here the square 5 is redundant since the squares
4 and 6 fully cover the relevant area of 5.

* Floating: If a set of squares have a common intersection and some of the squares intersect the top line
L» while others intersect the bottom line L;, we call the common intersection as a floating clique. In the
subtypes below, at least one of the squares intersects the bottom line L; and at least one of the squares

intersects the top line Lo.

— Floating ASC: Here, the leftmost square s; intersects the bottom line L;. The squares from left to
right are ascending. In other words, for any two squares s, so in the clique such that s; < sa, the
square s is above s;. The rightmost square s; must intersect the top line L. Refer to Figure (13]a)).

— Floating DESC: Here, the leftmost square s intersects the top line Lo. the squares from left to right
are descending. In other words, for any two squares s1, S92 in the clique such that s; < s2, the square s
is below s1. The rightmost square s; must intersect the bottom line L;. Refer to Figure (I3|b)).

— Floating ASC|ASC: There is a k& > 2 such that the squares constituting the clique are initially
ascending from s; to s;. Then the square s 1 lies below s. Then the squares sy to s; are again
ascending. Refer to Figure (I4)). A clique of this type can be thought of as the merger of two monotonic

ascending cliques, where the first clique is composed of the squares s; through s and the second clique

14

Siddhartha Sarkar

L2 L2

L1 Ll

(a)ASC (b)DESC

Figure 13. Types of monotonic floating cliques.

is composed of the squares s through s;. The structure of such a clique follows certain rules as
specified by the following claim.

Claim 2.16. In a floating clique of type ASC|ASC, at most one square of the first ascending sequence
can intersect the top line Lo and, at most one square of the second ascending sequence can intersect

the bottom line L.

Proof. Suppose not. There are at least two squares in the first ascending sequence intersecting Lo.
Then the two rightmost squares in the first ascending sequence s;_1 and s definitely intersect Lo. By
definition, s lies below sg. If si1 intersects the top line Lo, then sy is redundant as si_—1 and Sg41
cover the relevant area of si. Refer to Figure a). If s+ intersects the bottom line L1, then there are
two cases. Case 1: sio also intersects the bottom line L1, then sj is redundant as s1, sx and sgyo
cover the relevant area of sy 1. Refer to Figure @kb). Case 2: si.o intersects the top line Lo, then s
is redundant as s;_1, Sk4+1 and si42 cover the relevant area of si. Refer to Figure c).

Now consider the second part of the claim. Suppose there are at least two squares in the second
ascending sequence intersecting L. Then its two leftmost squares s;1 and s o definitely intersects

L. The square s is redundant as s1, si and si4o cover the relevant area of s 1. Refer to Figure

[[4(d). 0

Floating ASC|DESC: There is a k¥ > 2 such that the squares constituting the clique are initially
ascending from s; to si. Then the square si; lies below s;. Then the squares s;; to s; are
descending. Refer to Figure (I3]). A clique of this type can be thought of as the merger of a monotonic
ascending clique followed by a monotonic descending clique, where the first clique is composed of the
squares s1 through sj, and the second clique is composed of the squares sx1 through s;. The structure

of such a clique follows certain rules as specified by the following claim.

Claim 2.17. In a clique of type ASC|DESC, at most two squares of the clique can intersect the top line
Lo.

Proof. Suppose not. There are at least three squares intersecting Lo. The square s is the topmost
square in the clique, hence s; definitely intersects Lo. There are three cases.

Case 1: sg_o2,Sk—1, Sk intersect Lo. The square s;_; is redundant as si_o, s and sg41 cover the
relevant area of s;_;. Refer to Figure a).

15

Siddhartha Sarkar

5 5
L, ! L,_ 4
3 3
2 2
1 9 1
L, 17 s L 7
6
6
() ASC|ASC (X) (h)ASC|ASC (X)
4
Lo 3 Lo 4 8
2 3
= 2
L 1
8
T —
Ly 6 L /
_ 16
5] b}
(c)ASC|ASC (X) (d)ASC|ASC (X)
7
4 4 8
L2 3 LQ 5
2 2
1 1
]
7
Ll 6 Ll G
5 5
(e)ASC|ASC (f)ASC|ASC| (X)
. 6 7 6 7
8 8
LQ 3 LQ 5 4
2 2
1 1
Ll Ll
5 5
(9)ASC|ASC|DESC (X) (h)ASC|ASC|ASC

Figure 14. Floating ASC|ASC cliques. In (a), (b) and (c), the first ASC sequence has more than 1 square intersecting Lo. (a) Shows
an invalid clique of ASC|ASC type, where the rightmost square of the first ASC sequence, 5 is covered by 4 and 6. The second ASC
sequence has more than 1 squares intersecting L1. (b) Shows an invalid clique of ASC|ASC type where, the transition square 6 is covered
by 1,5 and 7. (c) Shows an invalid clique of ASC|ASC type where, the rightmost square of the first ASC sequence, 4 is covered by 3,5
and 6. (d) Shows an invalid clique where an ASC|ASC the second ascending sequence has more than 1 square intersecting L. Here, the
relevant area of 5 is covered by 1,4 and 6. (e) Shows a valid clique of type ASC|ASC. (h) Shows an invalid clique of type ASC|ASC
followed by a transition square. (g) Shows an invalid clique of type ASC|ASC|DESC. (h) Shows a valid clique of type ASC|ASC|ASC.

Case 2: sg—_1, Sk, Sk+1 intersect Lo. The square sy, is redundant as s;_; and s cover the relevant
area of sy. Refer to Figure[T5(b).

Case 3: sy, Sk+1, Sk+2 intersect Lo. The square si1 is redundant as s1, S and Sx4.2 cover the relevant
area of si1. Refer to Figure |'1;5kc).

Thus we have derived a contradiction in each of the cases. Hence proved. O

16

Siddhartha Sarkar

59 . 5
L2 4 7 L2 4 6
9 5} 9 5} ;
1 1 8
Ly Ly
(a) Invalid (b) Invalid
5 6 5
LZ . 4 7 L‘Z i 4 6
2 < 2. 7
1 1 8
Ll Ll
(¢) Tnvalid (d) Valid
5 5
LZ 5 : _ LQ _ 4 6
9 3 6 . 9 3
1 1
8
Ly = Ly
[
7
(e)ASC|DESC| (X) (f)ASC|DESC| (X)

Figure 15. (a), (b) and (c) show invalid cliques where more than 2 squares intersect the top line. (a) Here the relevant area of 5 is covered
by 4,6 and 7. (b) Here the relevant area of 5 is covered by 4 and 6. (c) Here the relevant area of 6 is covered by 1,5 and 7. (d) A valid
floating ASC|DESC clique where 2 squares intersect the top line. (¢) Shows an invalid clique where an ASC|DESC clique is followed by
a transition square. The transition square 8 intersects L. Here the relevant area of 6 is covered by 1,5, 7 and 8. (f) Shows an invalid
clique where an ASC|DESC clique is followed by a transition square. The transition square 8 intersects L1. Here the relevant area of 7 is
covered by 1,6 and 8.

— Floating DESC|ASC: There is a & > 2 such that the squares constituting the clique are initially
descending from s; to si. Then the square s;1 lies above s;. Then the squares sg41 to s; are
ascending. Refer to Figure (I6). A clique of this type can be thought of as the merger of a monotonic
descending clique with another monotonic ascending clique, where the first clique is composed of the
squares s1 through sj and the second clique is composed of the squares sx; through s;. The structure
of such a clique follows certain rules as specified by the following claim.

Claim 2.18. In a floating clique of type DESC|ASC, at most two squares of the clique can intersect the
bottom line L.

Proof. Suppose not. There are at least three squares intersecting L. The square sj is the bottom-most
square in the clique, hence s; definitely intersects L. There are three cases.

Case 1: si_2, sg—1, S, intersect L1. Sk41 cannot intersect L otherwise s will be rendered redundant.

17

Siddhartha Sarkar

So, si+1 must intersect Lo. Now, the square s;_; is redundant as si_o, si and sg1 cover the relevant
area of si_;. Refer to Figure @Ka).
Case 2: sg_1, Sk, Sk1 intersect Li. The square sy is redundant as s;_; and s cover the relevant
area of sj. Refer to Figure[T6(b).
Case 3: sg, Sk+1, Sk+2 intersect L. The square si1 is redundant as sy, S and sg4.2 cover the relevant
area of si1. Refer to Figure @Kc).
Thus we have derived a contradiction in each of the cases. Hence proved.

O

Floating DESC|DESC: There is a k£ > 2 such that the squares constituting the clique are initially
descending from s to sx. Then the square si 1 lies above si. Then the squares sx1 to s; are again
descending. Refer to Figure (I7). A clique of this type can be thought of as the merger of two monotonic
descending cliques, where the first clique is composed of the squares s; through sj and the second
clique is composed of the squares s through s;. The structure of such a clique follows certain rules
as specified by the following claim.

Claim 2.19. In a floating clique of type DESC|DESC, at most one square of the first descending
sequence can intersect the bottom line Ly and, at most one square of the second descending sequence

can intersect the top line Lo.

Proof. Suppose not. There are at least two squares in the first descending sequence intersecting L.
Then the two rightmost squares in the first ascending sequence s;_1 and s definitely intersect L.
By definition, sk lies above si. Since both s;_1, i are intersecting L1, hence s; must intersect Lo,
otherwise si_; will become redundant. If s;; intersects the bottom line L, then s, is redundant as
sk—1 and sy cover the relevant area of si. Refer to Figure a). On the other hand, if sg 1 intersects
the top line Lo, then there are two cases.

Case 1: s also intersects the top line Lo. Then sg4; is redundant as si, s; and si42 cover the
relevant area of sg ;. Refer to Figure b).

Case 2: spo intersects the bottom line L1, then sj is redundant as si_1, sp4+1 and siyo cover the
relevant area of sj. Refer to Figure [I7]c).

Now consider the second part of the claim. Suppose there are at least two squares in the second
descending sequence intersecting Lo. Then its two leftmost squares sx41 and sx4o definitely intersects
L. The square sy is redundant as s1, s; and s 2 cover the relevant area of s;;. Refer to Figure
[T7(d).

Thus we have derived a contradiction in each of the cases. Hence proved. O

Lemma 2.20. If three monotonic sequences of squares Sy, So, S3, from left to right respectively, merge to form a

clique then S5 consists of at most 2 squares.

Proof. The sequence of squares S5 is either ASC or DESC. We consider the ASC case first. Suppose for the

sake of contradiction that there are at least 3 squares in the sequence S2. We denote the three leftmost ones

18

Siddhartha Sarkar

L, L,
1 8 1 78
L 2 7 2 6
! 3 6 1 Ll 3]
4 C 4 5
o)
(a)DESC|ASC (X) (b)) DESC|ASC (X)
6
L2 LZ
1 7 1 7
Ly 2 Ly _2 5
3 6 3
4 5 4
(c)DESC|ASC| (X) (d)DESC|ASC| (X)

Figure 16. (a), (b) and (c) show invalid DESC|ASC cliques where more than 2 squares intersect the bottom line. (a) Here the relevant area
of 4 is covered by 3, 5 and 6. (b) Here the relevant area of 4 is covered by 3 and 5. (c) Here the relevant area of 5 is covered by 1,4 and 6.
(d) Shows an invalid clique where a DESC|ASC clique is followed by a transition square. The transition square 7 will render either square
5 or square 6 redundant.

from left to right as sy41, Sk+2 and sj43. We know from the claims (2.15), (2.16) and (2.18) that S cannot be a
bottom-anchored clique. We have the following possibilities,

i) Sy is top-anchored ASC: Suppose, |S1| = k, |S1| + |S2| = . If the transition square of (S, S3), i.e., s;+1
is top-intersecting then, s; will be covered by s;_; and s;4.1. Thus s; will become redundant. A contradiction.
If s;41 is bottom-intersecting then, the area of s;_; will be covered si1, s; and s;41. Thus s;_; will become

redundant. A contradiction.

ii) S9 is floating ASC: If S is bottom-anchored DESC then the rightmost square of S, i.e., s; will become
redundant as its relevant area will be covered by s;_1 and si1. Hence, S is either Floating or Bottom-anchored
ASC. Now the following cases are possible.

(@) If s;12, sk+3 and the transition square of (S2, S3), i.e., s;11 are top-intersecting then the relevant area of sy 3
will be covered by sjy2 and s;11. Thus sj3 will become redundant.

(b) If sg19, Sk13 are top-intersecting but the transition square of (S3, S3), i.e., ;41 is bottom-intersecting then
there are two cases. Case 1: the transition square of (51, S2), i.e., Sx+1 is bottom-intersecting, then the relevant
area of s;;; will be entirely covered by s1, Si, Sk4+2 and s;11. Thus s; will become redundant. Case 2: the
transition square between S, S, i.e., si41 is top-intersecting, then the area of s_o will be entirely covered by
Sk+1> Sk+3 and s;y1. Thus s;4 o will become redundant.

(c) If s+1 and sy o are bottom-intersecting, sx 3 is top-intersecting and the transition square of (S2, S3), i.e.,
S14-1) is top-intersecting then there are two cases.

Case 1: The rightmost square of S1, i.e., si is bottom-intersecting, then the relevant area of s, 1 will be entirely
covered by sy, and sg42. Thus siq will become redundant.

19

Siddhartha Sarkar

6 _
‘ . {
Ly - Ly
.
< 8
12 |
L1 3 Ll 2 -
4 S 4
5 o)
(a)DESC|DESC (X) (b)DESC|DESC (X)
6 % 6
Ly _ Ly _
[4
8 8
1 1
L 27 L 27
T 3
o)
(¢)DESC|DESC (X) (d)DESC|DESC (X)
5
Lo _
{
1
L 2
37
6
(e)DESC|DESC)|

Figure 17. (a), (b) and (c) show invalid DESC|DESC cliques where more than 1 square from the first DESC sequence intersect the bottom
line L;. (a) Here the relevant area of 5 is covered by 4 and 6. (b) Here the relevant area of 6 is covered by 1,5 and 7. (c) Here the relevant
area of 5 is covered by 4, 6 and 7. (d) Shows an invalid DESC|DESC clique where more than 1 square from the second DESC sequence
intersect the top line L. Here the relevant area of 5 is covered by 1,4 and 6. (d) Shows an invalid clique where a DESC|DESC clique is
followed by a transition square. The transition square 7 will render either square 5 or square 6 redundant.

Case 2: The rightmost square of 51, i.e., si is bottom-intersecting, then the relevant area of s will be entirely
covered by si, sg12 and s;11. Thus si3 will become redundant.

(d) If g1 and spo are bottom-intersecting, s 3 is top-intersecting and the transition square of (S, Ss3), i.e.,
l;+1 is bottom-intersecting then there are two cases.

Case 1: the transition square between 51, S2, i.e., Sk+1 is bottom-intersecting, then the area of si1o will be
entirely covered by si1 and sg43. Thus sg o will become redundant.

Case 2: the transition square between S7, So, i.e., Sx11 iS top-intersecting, then the area of sy 3 will be entirely

covered by siy1, Sk+2, Sk+4, and si5. Thus si43 will become redundant.

We have shown a contradiction for each of the possibilities when S5 is a sequence of ascending type. Similar

arguments are applicable when S5 is a sequence of descending squares. O

Claim 2.21. Our algorithm irrevocably chooses a square s at a point at or to the left of the rightmost exclusive

point of s.

20

Siddhartha Sarkar

Proof. Consider a square s € Sol. The square s must have been included into Sol during processing some
point p € s. Let p, be the rightmost exclusive point of s in Sol. Suppose s does not exist in the partial solution
obtained for the points till the point p,. Then s must have been included at some point p, to the right of p,.
While processing the point p,, the algorithm must have discarded some square(s) so that p, and other points in
Ezxcl(s) can become exclusive to s. The resulting solution is a feasible solution for P,. This means that if s
was a better pick for p,, it would have been picked earlier by our greedy algorithm. Hence, we have arrived at a

contradiction. O

Claim 2.22. When a clique is considered separately, the exclusive regions of all non-extreme squares in the
clique are rectangular or L-shaped. All except at most two non-extreme squares may have two different connected

exclusive regions.

Proof. Consider any non-extreme square s;. The square s has a square s;_; to its left and a square s;41 to its
right. There are 4 cases.

i) All three squares are in ASC order. Then the exclusive regions of s; must lie around its top left corner and/or
its bottom right corner.

ii) All three squares are in DESC order. Then the exclusive regions of s; must lie around its top right corner
and/or its bottom left corner.

iii) s; is below both s;_; and s;11: Then s; has only one exclusive region which is either rectangular or L-shaped.
iv) s; is above both s;_1 and s;11: Then s; has only one exclusive region which is either rectangular or L-shaped.
Since the horizontal slab has height 1, hence there can be at most two squares having two different connected
exclusive regions. Specifically, in a monotonic DESC clique, the rightmost square intersecting Lo and the leftmost
square intersecting L. And in a monotonic ASC clique, the rightmost square intersecting L; and the leftmost

square intersecting Lo. O

Since all the squares in our solution are necessary, hence for every square s € Sol, there exists a set of points
Excl(s) such that the points in Excl(s) are contained exclusively in s and no other square in Sol. These points

in Excl(s) are called exclusive points to s. We make the following crucial claim about exclusive points.

Claim 2.23. Let s1, s2 be two consecutive squares in a maximum clique of Sol such that s1 < so and s1 is not

the leftmost square in Sol. No input square s can contain all the points in Excl(s1) U Excl(s2).

Proof. We have already established that any clique in our solution Sol containing no redundant squares can be of
only a few types. There are 6 possibilities for the consecutive squares s; and so. We analyze them below. In each
of the cases below, assume for the sake of contradiction, that there exists a square s such that s covers all the
points in Excl(s1) U Excl(s2).

1. Top Anchored DESC: Here s; and s9 are intersecting the top line Ly and s; < s3 and s; lies above sa.

Again there are two subcases.

(a) If s intersects the bottom line L;: Then at the leftmost exclusive point p of s, our algorithm has to

make a choice between s and sp. Since s; is already picked due to Claim [2.21] our algorithm will

21

Siddhartha Sarkar

51 51
52 52

L, L,

Pife

Ly Ly 5

(a) (b)

Figure 18. The squares s; and sz are top anchored and are in descending order in the clique under consideration.

(b)

prefer s to so since choosing so gives a floating clique. And our algorithm would never pick s in the
future again. Recall that our greedy algorithm prefers floating cliques to anchored cliques. Refer to
Figure[18](a) for an illustration.

If s intersects the top line Lo: Then at the leftmost exclusive point p of s2, our algorithm would have
picked s instead of s, since picking s would render s; redundant. Since the exclusive region of s; is
rectangular, and the square s covers all the points in Ezcl(s1), hence s lies to the left of so, i.e., s < so.
Therefore, s covers every point in s1 N sy lying to the left of p. Consider a point p; € s1 \ s2, which is
covered by another square sg € Sol but presumably not covered by s. Clearly, all the exclusive points
of sg lie to the left of p. By Claim[2.21] sy must have been picked by our solution already. Consider a
point pa € sy \ s1, which is covered by another square sy € Sol but presumably not covered by s. If
s2 < s then all the points of sg lie to the right of p. Hence, we need not worry about covering p, at
this stage. Else if sg < s7 then sg N sy will be contained in s; N s2 and such a point p2 cannot exist.
Thus picking s during processing p does not cause an increase in the active ply and our algorithm will
pick s greedily. Refer to Figure[I8]b) for an illustration.
52 52

S1 S1
Ly Ly

p1

Ly Ly S

(a) (b)

Figure 19. The squares s; and s are top anchored and are in ascending order in the clique under consideration.

2. Top Anchored ASC: Here s; and s, are intersecting the top line Ly and s; < s2 and s; lies above s5. Again

there are two subcases.

(a)

(b)

If s intersects the bottom line Li: Then at the leftmost exclusive point p of s9, our algorithm would
have picked s instead of s5. The reason is exactly same as the argument for the case 1(a) above.

If s intersects the top line Lo: While processing the leftmost exclusive point p of so, our algorithm has

22

Siddhartha Sarkar

already picked s; since the rightmost exclusive point of 51 must lie to the left of p. At p our algorithm
would have picked s instead of sy since picking s would also render s; redundant. There are two
possibilities. First, if s < s, then our algorithm would prefer s to sy as it would give a narrower
clique of same size. Second, if s; < s < s92, then s covers every point in s; M s2. Consider a point
p1 € s1\ s2, which is covered by another square sg € Sol but presumably not covered by s. If sg < s1,
then sg is already picked by our algorithm when we are processing p. If so < sg, then such a p cannot
exist. Refer to Figure Consider a point pa € s \ s1, which is covered by another square sy € Sol
but presumably not covered by s. If sy < sg then s covers p2 as s covers p. Else if sg < s; then such a
point py cannot exist. Thus picking s during processing p does not cause an increase in the active ply

and our algorithm will pick s greedily.

3. Bottom Anchored DESC: s; and so are intersecting the bottom line L; and s; < sg and s; is above so.
Again there are two subcases.

(a) If s intersects the top line Lo: Then at the leftmost exclusive point p of so, our algorithm would have
picked s instead of so. The reason is exactly same as the argument for the case 1(a) above.

(b) If s intersects the bottom line L: While processing the leftmost exclusive point p of s, our algorithm
has already picked s; since the rightmost exclusive point of s; must lie to the left of p. At p, our
algorithm would have picked s instead of sy since picking s would render s; redundant. There are
two possibilities. First, if so < s, then our algorithm would prefer s to s, as it would give a narrower
clique of same size. Second, if s; < s < sa, then s covers every point in s; N s3. Consider a point
p1 € s1 \ s2, which is covered by another square sy € Sol. If so < s1, then s is already picked by
our algorithm when we are processing p. If so < sg, then such a p cannot exist. Refer to Figure ().
Consider a point p2 € s3 \ s1, which is covered by another square sy € Sol. If s < sg then such a
point po lies to the right of p. Else if s9 < s1 then such a point p cannot exist. Thus picking s for p

does not cause an increase in the active ply and this conforms to our greedy choice.

L, L,

S1 S1
Ly Ly

S92 S9
(a) (b)

Figure 20. The squares s; and sz are bottom anchored and are in descending order in the clique under consideration.

4. Bottom Anchored ASC: s; and sy are intersecting the bottom line L and s1 < sg and z7(s1) < z7(s2).
Again there are two subcases.

(a) If s intersects the top line Lo: Then at the leftmost exclusive point p of s, our algorithm has to make a
choice between s and ss. Since s; is already picked, our algorithm will prefer s to s; since choosing
so gives a floating clique. And our algorithm would never pick s2 in the future again. Recall that our

greedy algorithm prefers floating cliques to anchored cliques.

23

Siddhartha Sarkar

(b) If s intersects the bottom line L;: Then at the leftmost exclusive point p of so, our algorithm would
have picked s instead of sy since picking s would render s; redundant. Since the exclusive region of
s1 is rectangular, and the square s covers all the points in Excl(s2), hence s lies to the left of so, i.e.,
s < s9. Therefore, s covers every point in s; N sg lying to the left of p. Consider a point p; € s1 \ s2,
which is covered by another square sg € Sol. Clearly, all the exclusive points of sq lie to the left of p.
By lemma , so must have been picked by our solution already. Consider a point py € sg \ s1,
which is covered by another square sy € Sol. If so < sq then all the points of sy lie to the right of
p. Hence, we need not worry about covering p- at this stage. Else if sg < s1 then sg N so will be
contained in s; M s2 and such a point pa cannot exist. Thus picking s during processing p does not

cause an increase in the active ply and our algorithm will pick s greedily.

5. Floating DESC: s; intersects the top line L9 and s, intersects the bottom line L and s; < s3. Again there

are two subcases.

(a) The square s intersects the top line Li: If so < s, then at the leftmost exclusive point p of s;, our
algorithm would have picked s instead of s; since picking s also leads to a narrower clique of same size.
If s1 < s < s2, then at the leftmost exclusive point p of s1, our algorithm would have picked s instead
of s1 since picking s leads to a narrower clique of same size. If there exists a point p; € s1 N s2 which
is not covered by any other square in Sol, then while processing p1, our algorithm will pick s, instead
of s; since it leads to a narrower clique. Thus our algorithm never picks s1. If s < s1 < s2, then at the
leftmost exclusive point p of sg, our algorithm would have picked s instead of sy and discarded s;. If
there exists a point p; € s N so which is not covered by any other square in Sol or by s, then while

processing p1, our algorithm will pick ss instead of s;. Thus our algorithm never picks s;.

(b) The square s intersects the bottom line L;: Exact same arguments as in Case 5(a) are applicable.

6. Floating ASC: s; intersects the bottom line L; and s, intersects the top line Ly and s; < sg. Similar

arguments as presented in the Floating DESC case apply to this case.

Since there are no other possibilities for s1, so and s, this completes the proof of our claim. O

Lemma 2.24. Consider one of the maximum cliques, say K, in our solution Sol. To cover the exclusive points of

the squares forming K, any feasible set cover has to pick | k/3| squares where | K| = k.

Proof. The necessity of | k/3] squares to cover the exclusive points of the squares in the clique K of Sol is a
direct consequence of Claim (2.23). We have already shown that the exclusive points in a ASC clique (resp.
DESC clique) are monotonically ascending (resp. descending) from left to right except possibly at 4 squares.
First we argue for the case when K is a monotonic clique of ASC type. Consider four consecutive squares in
K, say, s1, s2, s3 and s4, all of which intersect the top line Lo. No square s can cover exclusive points from all
the 4 squares. Otherwise such a square s would end up covering all points in Exzcl(s1) U Exzcl(s2). Refer to
Figure Similar argument is applicable if the squares are all bottom-intersecting. The only exception can take
place if some squares are top-intersecting and some are bottom-intersecting as shown in Figure In this case, a

square s may cover exclusive points from all of sy, s2, 53, s4. But covering exclusive points from 5 squares will

24

Siddhartha Sarkar

be impossible for similar reasons.
Now partition the squares of the maximum clique into groups of 3 from left to right. For each such group at least

1 square is necessary except possibly for one group at the transition from top-to-bottom or bottom-to-top. Similar

arguments apply for transition squares if any. Hence | k/3] squares are necessary. O

6

2, 4°)

3, 5
5 12
6
7

7

(a) (b)

Figure 21. (a) Consider the 4 consecutive squares 2, 3,4, 5 in this top-anchored monotonic descending clique. The square 7 covers
exclusive points from all the four squares. Specifically it covers all the points in Excl(3) U Excl(4). (b) Consider the 4 consecutive
squares 2, 3,4, 5 in this top-anchored monotonic ascending clique. The square 7 covers exclusive points from all the four squares.
Specifically it covers all the points in Ezcl(3) U Excl(4).

w

7

Figure 22. The square 9 in this floating clique covers exclusive points from the squares 5, 6, 7, 8 and covers all exclusive points of only
one square, i.e., square 7.

Lemma 2.25. Among the squares required to cover a clique of size k in Sol, at least L%J — 1 squares have a

common intersection.

Proof. First, consider a top-anchored ASC clique. The exclusive points are also monotonically ascending except
possibly at the leftmost square. In this clique, consider a non-extreme exclusive point p. Either p can be covered
by a top intersecting square from the left or it can be covered by a bottom intersecting square from the right as
shown in the Figure 23b). This implies that all the bottom intersecting squares covering non-extreme exclusive
points intersect. Similarly, all the top intersecting squares covering non-extreme exclusive points intersect. Hence,

two cliques are formed. Applying the pigeonhole principle, one of the cliques is of size at least W = L%J -1

For a monotonic floating clique or a clique which is made up of two monotonic sequences of squares, i.e., a clique
of type ASC|DESC or DESC|ASC, the exclusive points may have two different monotonic sequences. Therefore

we need a different argument.

25

Siddhartha Sarkar

Consider a clique @ is of type bottom-anchored ASC|DESC. Observe that there are two monotonic sequences of
exclusive points in () - the first sequence is ascending and the second sequence is descending. As before, two
cliques are necessary to cover the points of the first monotonic sequence of exclusive points. Denote these cliques
by Q1 and Q)2 where Q1 is top-anchored and ()9 is bottom-anchored. Also, there are two other cliques in O PT
for covering the exclusive points of the second monotonic sequence. Denote these cliques by Q3 and)4 where
()3 is bottom-anchored and ()4 is top-anchored. All the L, (i.e., bottom line) intersecting squares, i.e., the squares
in Q2 and (Y3 have a common intersection region. Refer to the Figure 23[d). Therefore, in O PT there is exists a

clique of size

max(|Q1], Q2| + Q3/, |Q4)
Applying the pigeonhole principle, one of the cliques have size at least —Lké:ﬁ - 1= L%J - L

Consider a clique @ is of type floating DESC|DESC. Observe that there are two monotonic sequences of exclusive
points in @) - both the second sequences are descending. As before, two cliques are necessary to cover the
points of the first monotonic sequence of exclusive points. Denote these cliques by ()1 and ()2 where Q)1 is
bottom-anchored and ()5 is top-anchored. Also, there are two other cliques in O PT for covering the exclusive
points of the second monotonic sequence. Denote these cliques by (03 and ()4 where Q3 is bottom-anchored and
()4 is top-anchored. Here the geometry is such that all the squares in ()2 which are intersecting Lo intersect the

squares in ()3, which intersect L;. Refer to the Figure[23(e). Therefore, in OPT there is exists a clique of size

max(|Q1], |Q2| + |Q3], |Q4])

Applying the pigeonhole principle, one of the cliques have size at least % —-1= LgJ —1. O

Theorem 2.26. Given s set of n points and m axis-parallel unit squares on the plane, our algorithm computes
a (27 + €)-factor approximation of the minimum ply cover in O((nm)?) time, where € > 0 is a small positive

constant.

Proof. The approximation factor is a direct consequence of Theorem [2.9/and Lemma[2.25] The algorithm for
the horizontal slab subproblem computes a table having nm entries. Each entry can be computed in O(m) time.
Therefore, each subproblem requires O(nm?) time. There are at most n subproblems. Hence the total time
required is O((nm)?). O

3. Conclusion

In this paper we have given an algorithmic technique that runs fast for the minimum ply cover problem with axis-
parallel unit squares. We have been able to characterize the structure of any clique in our solution and compare
it with the maximum clique of the intersection graph of an optimal solution. It may be possible to improve
the approximation ratio further. We believe that our technique can be generalized to obtain polynomial-time

approximation algorithms for broader class of objects.

Acknowledgement. I would like to thank Sathish Govindarajan for many useful discussions on the minimum ply
covering problem and for his valuable comments. I would also like to thank Aniket Basu Roy and Shirish Gosavi

for their time discussing the problem with me.

26

Siddhartha Sarkar

1 |2
Lg LE
. ;
Ly .. Ly —
J]
] | J
[(” [h]
2 1)
] |) J
)
1 Lo - Ly
Ly £ L] . Ly
2 !
2
(c) (d)
5}
3)
1]
L : Ly
L I- -
i.) l
Ly Ly s
2

(e) (f)

Figure 23. Shows the different cases for the proof of Lemma (2:23).

References

Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and set covers. In
Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, page 271-279, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450325943. doi: 10.1145/2582112.
2582152. URL https://doi.orqg/10.1145/2582112.2582152,

Therese Biedl, Ahmad Biniaz, and Anna Lubiw. Minimum ply covering of points with disks and squares. Com-
putational Geometry, 94:101712,2021. ISSN 0925-7721. doi: https://doi.org/10.1016/j.comge0.2020.101712.
URLhttps://www.sciencedirect.com/science/article/pii/S0925772120301061.

Gruia Cilinescu, lon I. Miédndoiu, Peng-Jun Wan, and Alexander Z. Zelikovsky. Selecting forwarding neighbors

27

https://doi.org/10.1145/2582112.2582152
https://www.sciencedirect.com/science/article/pii/S0925772120301061

Siddhartha Sarkar

in wireless ad hoc networks. Mobile Networks and Applications, 9(2):101-111, Apr 2004. ISSN 1572-
8153. doi: 10.1023/B:MONE.0000013622.63511.57. URL https://doi.org/10.1023/B:MONE.
0000013622.63511.57.

Timothy M. Chan and Elyot Grant. Exact algorithms and apx-hardness results for geometric packing and covering
problems. Computational Geometry, 47(2, Part A):112—-124, 2014. ISSN 0925-7721. doi: https://doi.org/10.
1016/j.comgeo.2012.04.001. URL https://www.sciencedirect.com/science/article/pii/
S0925772112000740. Special Issue: 23rd Canadian Conference on Computational Geometry (CCCGI11).

Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation algorithms for geometric set cover. Dis-
crete & Computational Geometry, 37(1):43-58, Jan 2007. ISSN 1432-0444. doi: 10.1007/s00454-006-1273-8.
URL https://doi.org/10.1007/s00454-006-1273-8l

E. D Demaine, Mohammad T. Hajiaghayi, U. Feige, and M. R Salavatipour. Combination can be hard: Approx-
imability of the unique coverage problem. In Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 162 — 171, 2006/// 2006.

Stephane Durocher, J. Mark Keil, and Debajyoti Mondal. Minimum ply covering of points with unit squares.
CoRR, abs/2208.06122, 2022. doi: 10.48550/arXiv.2208.06122. URL https://doi.org/10.48550/
arXiv.2208.06122.

Thomas Erlebach and Erik Jan van Leeuwen. Approximating geometric coverage problems. In Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA *08, page 1267-1276, USA,
2008. Society for Industrial and Applied Mathematics.

Thomas Erlebach and Erik Jan van Leeuwen. Ptas for weighted set cover on unit squares. In Maria Serna,
Ronen Shaltiel, Klaus Jansen, and José Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 166—177, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
ISBN 978-3-642-15369-3.

Uriel Feige. A threshold of In n for approximating set cover. J. ACM, 45(4):634-652, jul 1998. ISSN 0004-5411.
doi: 10.1145/285055.285059. URL https://doi.org/10.1145/285055.285059.

Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and covering in the plane are
np-complete. Information Processing Letters, 12(3):133-137, 1981. ISSN 0020-0190. doi: https://doi.org/
10.1016/0020-0190(81)90111-3. URL https://www.sciencedirect.com/science/article/
©ii/0020019081901113.

Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing problems in image
processing and vlsi. J. ACM, 32(1):130-136, jan 1985. ISSN 0004-5411. doi: 10.1145/2455.214106. URL
https://doi.org/10.1145/2455.214106.

Fabian Kuhn, Pascal von Rickenbach, Roger Wattenhofer, Emo Welzl, and Aaron Zollinger. Interference in

cellular networks: The minimum membership set cover problem. In Lusheng Wang, editor, Computing and

28

https://doi.org/10.1023/B:MONE.0000013622.63511.57
https://doi.org/10.1023/B:MONE.0000013622.63511.57
https://www.sciencedirect.com/science/article/pii/S0925772112000740
https://www.sciencedirect.com/science/article/pii/S0925772112000740
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.48550/arXiv.2208.06122
https://doi.org/10.48550/arXiv.2208.06122
https://doi.org/10.1145/285055.285059
https://www.sciencedirect.com/science/article/pii/0020019081901113
https://www.sciencedirect.com/science/article/pii/0020019081901113
https://doi.org/10.1145/2455.214106

Siddhartha Sarkar

Combinatorics, pages 188—198, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31806-
4.

Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Settling the apx-hardness status for geometric set cover. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 541-550. IEEE Computer Society, 2014. doi: 10.1109/FOCS.2014.64. URL
https://doi.org/10.1109/F0CS.2014.64l

Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-constant error-probability
pcp characterization of np. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting, STOC *97, page 475-484, New York, NY, USA, 1997. Association for Computing Machinery. ISBN
0897918886. doi: 10.1145/258533.258641. URL |https://doi.org/10.1145/258533.258641l

29

https://doi.org/10.1109/FOCS.2014.64
https://doi.org/10.1145/258533.258641

	1 Introduction
	1.1 Our contribution
	1.2 Related Work

	2 Minimum Ply Covering
	2.1 Squares are intersected by a horizontal line
	2.2 Points are in a unit height horizontal slab

	3 Conclusion

