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Alex L. Wang! and Fatma Kiling-Karzan'

Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Abstract. Quadratically constrained quadratic programs (QCQPs) are
a fundamental class of optimization problems well-known to be NP-hard
in general. In this paper we study sufficient conditions for a convex hull
result that immediately implies that the standard semidefinite program
(SDP) relaxation of a QCQP is tight. We begin by outlining a general
framework for proving such sufficient conditions. Then using this frame-
work, we show that the convex hull result holds whenever the quadratic
eigenvalue multiplicity, a parameter capturing the amount of symmetry
present in a given problem, is large enough. Our results also imply new
sufficient conditions for the tightness (as well as convex hull exactness) of
a second order cone program relaxation of simultaneously diagonalizable

QCQPs.
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1 Introduction

In this paper we study quadratically constrained quadratic programs (QCQPs)
of the following form

Opt:= inf {qo(fﬂ) . 4lo) (1)

< 0, Vi e [[m[]]
gi(z) = }’

0, Vi e [[m] +1,my —|—mE]]

where for every i € [0,m; + mg], the function ¢; : RY — R is a (possibly
nonconvex) quadratic function. We will write ¢;(z) = 2T A;x + 2b] = + ¢; where
A; € SV, b, € RY, and ¢; € R. We will assume that the number of constraints
m:=mj+ mg is at least 1.

QCQPs arise naturally in many areas. A non-exhaustive list of applications
contains facility location, production planning, pooling, max-cut, max-clique,
and certain robust optimization problems (see [2, 7, 21] and references therein).

Although QCQPs are NP-hard to solve in general, they admit tractable con-
vex relaxations. One natural relaxation is the standard (Shor) semidefinite pro-
gram (SDP) relaxation [34]. There is a vast literature on approximation guaran-
tees associated with this relaxation [9, 27, 30, 40], however, less is known about
its exactness. Recently, a number of exciting results in phase retrieval [17] and
clustering [1, 28, 31] have shown that under various assumptions on the data,
the QCQP formulation of the corresponding problem has a tight SDP relax-
ation. In contrast to these results, which address QCQPs arising from particular
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problems, Burer and Ye [16] very recently gave appealing deterministic sufficient
conditions under which the standard SDP relaxation of general QCQPs is tight.
In our paper, we continue this vein of research for general QCQPs. More pre-
cisely, we will provide sufficient conditions under which the convex hull of the
epigraph of the QCQP is given by the projection of the epigraph of its SDP re-
laxation. Note that such a result immediately implies that the optimal objective
value of the QCQP is equal to the optimal objective value of its SDP relaxation.
We will refer to these two types of results as “convex hull results” and “SDP
tightness results.” In this paper we will focus mainly on conditions that imply
the convex hull result. See the full paper [38] for additional new conditions which
imply the SDP tightness result directly.

Convex hull results will necessarily require stronger assumptions than SDP
tightness results, however they are also more broadly applicable because they
may be used to derive strong convex relaxations for complex problems. In fact,
the convexification of commonly occurring substructures has been critical in ad-
vancing the state-of-the-art computational approaches for mixed integer linear
programs and general nonlinear nonconvex programs [18, 36]. For computational
purposes, conditions guaranteeing simple convex hull descriptions are particu-
larly favorable. As we will discuss later, a number of our sufficient conditions will
guarantee that the desired convex hulls are given by a finite number of easily
computable convex quadratic constraints in the original space of variables.

Related work Convex hull results are well-known for simple QCQPs such as the
Trust Region Subproblem (TRS) and the Generalized Trust Region Subproblem
(GTRS). Recall that the TRS is a QCQP with a single strictly convex inequal-
ity constraint and that the GTRS is a QCQP with a single (possibly noncon-
vex) inequality constraint. A celebrated result due to Fradkov and Yakubovich
[19] implies that the SDP relaxation of the GTRS is tight. More recently, Ho-
Nguyen and Kiling-Karzan [22] and Wang and Kiling-Karzan [37] showed that
the (closed) convex hulls of the TRS and GTRS epigraphs are given exactly by
the projection of the SDP epigraphs. In both cases, the projections of the SDP
epigraphs can also be described in the original space of variables with at most
two convex quadratic inequalities. As a result, the TRS and the GTRS can be
solved without explicitly running costly SDP-based algorithms.

A different line of research has focused on providing explicit descriptions
for the convex hull of the intersection of a single nonconvex quadratic region
with convex sets such as convex quadratic regions, second-order cones (SOCs),
or polytopes, or with one other nonconvex quadratic region [14, 24, 29, 32, 42,

]. For example, the convex hull of the intersection of a two-term disjunction,
which is a nonconvex quadratic constraint under mild assumptions, with the
second-order cone (SOC) or its cross sections has received much attention in
mixed integer programming; see [14, 24, 43] and references therein. In contrast
to these results, we will not limit the number of nonconvex quadratic constraints
in our QCQPs. On the other hand, the nonconvex sets that we study in this
paper will arise as epigraphs of QCQPs. In particular, the epigraph variable
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will play a special role in our analysis. Therefore, we view our developments as
complementary to these results.

The convex hull question has also received attention for certain strengthened
relaxations of simple QCQPs [12, 13, 15, 35]. In this line of work, the stan-
dard SDP relaxation is strengthened by additional inequalities derived using the
Reformulation-Linearization Technique (RLT). For example, Sturm and Zhang
[35] showed that the standard SDP relaxation strengthened with an additional
SOC constraint derived from RLT gives the convex hull of the epigraph of the
TRS with one additional linear inequality. See [12] for a survey of some results in
this area. In this paper, we restrict our attention to the standard SDP relaxation
of QCQPs. Nevertheless, exactness conditions for strengthened SDP relaxations
of QCQPs are clearly of great interest and are a direction for future research.

A number of SDP tightness results are known for variants of the TRS [0, 22,

, 41], for simultaneously diagonalizable QCQPs [20], quadratic matrix pro-
grams [4, 5], and random general QCQPs [16]. See the full version of this paper
for a more complete survey of the related SDP tightness results.

Overview and outline of paper In contrast to the literature, which has
mainly focused on simple QCQPs or QCQPs under certain structural assump-
tions, in this paper, we will consider general QCQPs and develop sufficient con-
ditions for both the convex hull result and the SDP tightness result.

We first introduce the epigraph of the QCQP by writing

Opt= inf {2t: (z,t) € D},

(z,t)eRN+1

where D is the epigraph of the QCQP in (1), i.e.,

qo(x) <2t
D =< (x,t) e RN xR : ¢(x) <0, Vi € [my] . 2)
qi(z) =0,Vi € [m; +1,m]

As (z,t) — 2t is linear, we may replace the (potentially nonconvex) epigraph
D with its convex hull conv(D). Then,

Opt = inf 2t : (z,t) € D)}.
b= {20 (2.1) € con(D))

A summary of our contributions', along with an outline of the paper, is as
follows. In Section 2, we introduce and study the standard SDP relaxation of
QCQPs [31] along with its optimal value Optgpp and projected epigraph Dspp.
We set up a framework for deriving sufficient conditions for the “convex hull
result,” conv(D) = Dspp, and the “SDP tightness result,” Opt = Optgpp. This
framework is based on the Lagrangian function (v, z) — qo(z) + > iy vigi()

! Due to space constraints, we omit full proofs, more detailed comparisons of our

results with the literature, and our SDP tightness results in this extended abstract.
The full version of this paper can be found at [38].
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and the eigenvalue structure of a dual object I C R™. This object I', which
consists of the convex Lagrange multipliers, has been extensively studied in
the literature (see [39, Chapter 13.4] and more recently [33]). In Section 3,
we define an integer parameter k, the quadratic eigenvalue multiplicity, that
captures the amount of symmetry in a given QCQP. We then give examples
where the quadratic eigenvalue multiplicity is large. Specifically, vectorized re-
formulations of quadratic matrix programs [4] are such an example. In Sec-
tion 4, we use our framework to derive sufficient conditions for the convex hull
result: conv(D) = Dspp. Theorem 2 states that if I' is polyhedral and k is
sufficiently large, then conv(D) = Dgpp. This theorem actually follows as a
consequence of Theorem 1, which replaces the assumption on the quadratic
eigenvalue multiplicity with a weaker assumption regarding the dimension of
zero eigenspaces related to the A; matrices. Furthermore, our results in this
section establish that if I" is polyhedral, then Dgpp is SOC representable; see
Remark 3. In particular, when the assumptions of Theorems 1 or 2 hold, we have
that conv(D) = Dgpp is SOC representable. We provide several classes of prob-
lems that satisfy the assumptions of these theorems. In particular, we recover a
number of results regarding the TRS [22], the GTRS [37], and the solvability of
systems of quadratic equations [3].

To the best of our knowledge, our results are the first to provide a unified
explanation of many of the exactness guarantees in the literature. Moreover, we
provide significant generalizations of known results in a number of settings.

Notation For nonnegative integers m < n let [n] := {1,...,n} and [m,n] =
{m,m+1,...,n—1,n}.Let S"~! = {z € R" : ||z| = 1} denote the n—1 sphere.
Let S™ denote the set of real symmetric n X n matrices. For a positive integer
n, let I = I,, denote the n x n identity matrix. When the dimension is clear,
we will simply write I. Given two matrices A and B, let A ® B denote their
Kronecker product. For a set D C R", let conv(D), cone(D), extr(D), dim(D)
and aff dim(D) denote the convex hull, conic hull, extreme points, dimension,
and affine dimension of D, respectively.

2 A general framework

In this section, we introduce a general framework for analyzing the standard Shor
SDP relaxation of QCQPs. We will examine how both the objective value and
the feasible domain change when moving from a QCQP to its SDP relaxation.
We make an assumption that can be thought of as a primal feasibility and
dual strict feasibility assumption. This assumption (or a slightly stronger version
of it) is standard and is routinely made in the literature on QCQPs [4, 10, 41].

Assumption 1. Assume the feasible region of (1) is nonempty and there exists
v* € R™ such that v; > 0 for alli € [m] and Ao+ > " v A; = 0. O

?
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The standard SDP relaxation to (1) is

127
Y= z X
Optgpp = Rj\irn)f( o (Qo,Y): (Q;,Y) <0, Vie[m/] ,  (3)
peRTAC (Qs,Y)=0,Vi € [mr+1,m]
Y >0

where Q; € SV is the matrix Q; = (b A ) Let Dspp denote the epigraph of

the relaxation (3) projected away from the X variables, i.e., define

IX e SV

127
Y= (. 'y
Dspp = { (x,t) € RNTL: (Qo,Y) <2t ) (4)
(Qi,Y) <0, Vi € [mg]
(Qs,Y)=0,Vi € [mr +1,m]
Y =0

By taking X = zz' in both (3) and (4), we see that D C Dspp and
Opt > Optgpp. Noting that Dgpp is convex (it is the projection of a convex
set), we further have that conv(D) C Dgpp. The framework that we set up in
the remainder of this section allows us to reason about when equality occurs in
either relation.

2.1 Rewriting the SDP in terms of a dual object
For v € R™, define

= Ao + Z’YiAi, b(y) =bo+ Y wibi, c(v)=co+ Y vici,
' i=1 i=1

Q(’% - qO + Z’qul

Our framework for analyzing (3) is based on the dual object

_ m . A(y) =0
F'_{VER '%ZO,WE[[WH}'

This object will play a key role our analysis for the following fundamental reason.

Lemma 1. Suppose Assumption 1 holds. Then

Dspp = {(m,t) : supq(y,z) < 2t} and Optgpp = min sup q(v, x).
yer z€RN ye

The second identity is well-known; see e.g., Fujie and Kojima [20].
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2.2 The eigenvalue structure of I"

We now define a number of objects related to I'. Noting that v — q(v, %) is
linear and that I" is closed leads to the following observation.

Observation 1 Let & € RN, If sup,cr q(7, &) is finite, then q(7y,2) achieves its
mazximum value in I' on some face F of I.

In particular, the following definition is well-defined.

Definition 1. For any # € RN such that sup,cr q(7, &) is finite, define F(%)
to be the face of I' mazximizing q(v, ).

Definition 2. Let F be a face of I'. We say that F is a definite face if there
exists v € F such that A(y) = 0. Otherwise, we say that F is a semidefinite face
and let V(F) denote the shared zero eigenspace of F, i.e.,

V(F)={veR": A(y)v=0,Vy e F}.

It is possible to show that for F semidefinite, the set V(F) is nontrivial. As a
sketch, suppose otherwise, then for every v on the unit sphere, we can associate
a vy, € F such that v" A(y,)v > 0. Then we can produce a positive definite
matrix A(¥) where 7 is an “average” over the -,, a contradiction. See Lemma 2
in the full version of this paper for a formal proof.

2.3 The framework

Our framework consists of two parts: an “easy part” that only requires Assump-
tion 1 to hold and a “hard part” that may require much stronger assumptions.
The “easy part” consists of the following lemma and observation.

Lemma 2. Suppose Assumption 1 holds and let (&,t) € Dspp. If F(&) is a
definite face of I, then (,1) € D.

Observation 2 Suppose Assumption 1 holds and let F be a face of I'. If aff dim(F) =
m, then F is definite.

The “hard part” of the framework works as follows: In order to show the
convex hull result Dgpp = conv(D), it suffices to guarantee that every (i,) €
Dspp can be decomposed as a convex combination of pairs (z4,t,) for which
F(xo) is definite. Then, by Lemma 2, we will have that (zq,t,) € D. We give
examples of such sufficient conditions in Section 4. Our decomposition procedures
will be recursive and we will use Observation 2 to show that they terminate.

Remark 1. Consider performing an invertible affine transformation on the space
RY ie. let y = U(z+2) where U € RV*¥ is an invertible linear transformation
and z € RY. Define the quadratic functions ¢}, ...,q,, : RY — R such that
di(y) = ¢.(U(x+2)) = ¢;(z) for all x € RY. We will use an apostrophe to denote
all the quantities corresponding to the QCQP in the variable y.
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Define the map £ : RN+ — RN+ by (2,t) +— (U(x+2),t). Note that Opt’ =
Opt and conv(D’) = ¢(conv(D)). Furthermore a straightforward application of
Lemma 1 gives Optipp = Optgpp and Dipp = £(Dspp). We deduce that the
questions conv(D) L Dspp and Opt L Optgpp are invariant under invertible
affine transformation of the z-space. In particular, the sufficient conditions that
we will present in Theorems 1 and 2 only need to hold after some invertible
affine transformation. In this sense, the SDP relaxation will “find” structure in
a given QCQP even if it is “hidden” by an affine transformation. a

3 Symmetries in QCQPs

In this section, we examine a parameter k that captures the amount of symmetry
present in a QCQP of the form (1).

Definition 3. The quadratic eigenvalue multiplicity of a QCQP of the form (1)
is the largest integer k such that for every i € [0,m] there exists A; € S™ for
which A; = I, ® A;. Let A(y) = Ao+ Y v 1A

This value is well-defined: k is always at least 1 as we can write A; = I1 ® A;.
On the other hand, k£ must also be a divisor of N.

The next lemma states the crucial structure inherent in QCQPs with large
quadratic eigenvalue multiplicities.

Lemma 3. If F is a semidefinite face of I', then dim(V(F)) > k.
Remark 2. In quadratic matrix programming [4, 5], we are asked to optimize

tr(X T AgX) + 2tr(Bg X) +co :
inka tr(X T A X) +2tr(B X) +¢; <0, Vi € [mg] , ()
Xekr tr(X T AX) +2tr(B X) 4 ¢; =0, Vi € [m; + 1,m]

where A; € S, B; € R"*¥ and ¢; € R for all i € [0,m]. We can transform
this program to an equivalent QCQP in the vector variable 2 € R™. Then
tr(XTAX) +2tr(Bf X) +¢; = 2" (I ® A;) x + 2b] = + ¢;, where b; € R™* has
entries (b;)—1)n+s = (Bi)s,t. In particular, the vectorized reformulation of (5)
has quadratic eigenvalue value multiplicity k. a

4 Convex hull results

We now present new sufficient conditions for the convex hull result Dgspp =
conv(D). We analyze the case where the geometry of I" is particularly nice.

Assumption 2. Assume that I is polyhedral. ad
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We remark that although Assumption 2 is rather restrictive, it is general enough
to cover the case where the set of quadratic forms {Ai}ie[[o,m]] is diagonal or
simultaneously diagonalizable — a class of QCQPs which have been studied
extensively in the literature [3, 25, 26]. See the full version of this paper for convex
hull and SDP tightness results without Assumption 2 as well as a discussion on
the difficulties in removing it.

Our main result in this paper is the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. If for every semidefinite face
F of I we have dim(V(F)) > aff dim({b(~) : v € F})+1, then conv(D) = Dspp.

Assumption 1 allows us to apply Lemma 2 to handle any (i,f) € Dgpp for
which F (&) is definite. Therefore, in order to prove Theorem 1, it suffices to
prove the following lemma.

Lemma 4. Suppose Assumptions 1 and 2 hold. Let (i,t) € Dspp and let F =
F(Z). If F is a semidefinite face of I and dim(V(F)) > aff dim({b(y) : v € F})+
1, then (Z,1) can be written as a convex combination of points (z4,ts) satisfying
the following properties:

L (xavta) € DSDP} and
2. aff dim(F(z,)) > aff dim(F(z)).

We give a proof sketch of Lemma 4 in Appendix A.

The proof of Theorem 1 follows at once from Lemmas 2 and 4 and Observa-
tion 2. Indeed, Lemma 4 guarantees that aff dim(F(z,)) > aff dim(F(z)). Thus,
by Observation 2, we will have successfully decomposed (&,t) as a convex com-
bination of (zq,ta), where (2q,ts) € Dspp and F(x,) is definite, after at most
m — 1 rounds of applying Lemma 4. Finally, Lemma 2 guarantees that each pair
(Za,ta) is an element of D, the epigraph of the QCQP.

The next theorem follows as a corollary to Theorem 1.

Theorem 2. Suppose Assumptions 1 and 2 hold. If for every semidefinite face
F of I we have k > aff dim({b() : v € F})+ 1, then conv(D) = Dspp.

Remark 3. We remark that when I is polyhedral (Assumption 2), the set Dspp
is actually SOC representable: By the Minkowski-Weyl Theorem, we can de-
compose I' = I'. + cone([,.) where both I, and I. are polytopes. Let G(v,z) =
>t vigi(x). Then, by Lemma 1 we can write

q(Ye, ) < 2t, V. € extr(le) }
D =1 (x,t): su ,x) <2t =< (x,t): ¢ .
SPr {( ) welr)g’(7 ) } {( V5 Ggaw) <0, Yy € exta(I3)

That is, Dgpp is defined by finitely many convex quadratic inequalities. Thus the
assumptions of Theorems 1 and 2 imply that conv(D) is SOC representable. O

We now give examples of problems where our assumptions hold.

Corollary 1. Suppose m = 1 and Assumption 1 holds. Then, conv(D) = Dspp.
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Corollary 1 recovers results associated with the epigraph of the TRS? and the
GTRS (see [22, Theorem 13] and [37, Theorems 1 and 2]).

Corollary 2. Suppose Assumptions 1 and 2 hold. If b; =0 for alli € [m], then
conv(D) = Dgpp.

Ezxample 1. Consider the following optimization problem.

inf2 {x% + 22 4 102, :

23 —23-5<0
z€eR

—22 4+ 23 -50<0

We check that the conditions of Corollary 2 hold. Assumption 1 holds as A(0) =
Ag =1 0 and x = 0 is feasible. Next, Assumption 2 holds as

I+ =720
F={~veR?*: 1 -y +7% >0
v=>0

One can verify that I" = conv ({(0,0), (1,0), (0,1)}) + cone({(1,1)}). Finally, we
note that by = bs = 0. Hence, Corollary 2 and Remark 3 imply that

z? + 23 + 10z, < 2t
conv(D) = Dspp = { (z,t) : 222 + 10z, — 5 < 2t
222 + 1021 — 50 < 2¢

We plot D and conv(D) = Dspp in Figure 1. O

‘ N ‘ ‘JZD
0t Jot
10N -10\ |
J-20 \ »“720

5\

-5\ 10 -5\, 10

\ A 1
x1 A ) -0 x1 N 8

Fig. 1. The sets D (in orange) and conv(D) (in yellow) from Example 1

Remark 4. Barvinok [3] shows that one can decide in polynomial time (in )
whether a constant number, mpg, of quadratic forms {Ai}ie[[mE]] has a joint

nontrivial zero. That is, whether the system 2" A;z = 0 for i € [mg] and 2"z =
2 Corollary 1 fails to recover the full extent of [22, Theorem 13]. Indeed, [22, Theorem

13] also gives a description of the convex hull of the epigraph of the TRS with an
additional conic constraint under some assumptions.
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1 is feasible. We can recast this as asking whether the following optimization

problem
min { —z 'z : zle<l
rERN ’ (ETAix = O,VZ S [[mE]]

has objective value —1 or 0.

Thus, the feasibility problem studied in [3] reduces to a QCQP of the form we
study in this paper. It is easy to verify that Assumption 1 holds. Then when I is
polyhedral (Assumption 2), Corollary 2 implies that the feasibility problem (even
in a variable number of quadratic forms) can be decided using a semidefinite
programming approach. Nevertheless, Assumption 2 may not necessarily hold in
general and so Corollary 2 does not recover the full result of [3]. O

Corollary 3. Suppose Assumption 1 holds and for every i € [0, m], there exists
a; such that A; = a;Iy. If m < N, then conv(D) = Dgpp.

Remark 5. Consider the problem of finding the distance between the origin 0 €
RY and a piece of Swiss cheese C C RY. We will assume that C is nonempty
and defined as

|z — yill < 84, Vi € [ma]
C=zeRY: |x—z||>t,Viec[ms] 5,
<.’E,b2> > Ci, Vi € [mgﬂ

where y;, z;, b; € RN and s;,t;,¢; € R are arbitrary. In other words, C is defined
by mi-many “inside-ball” constraints, me-many “outside-ball” constraints, and
mg-many linear inequalities. Note that each of these constraints may be writ-
ten as a quadratic inequality constraint with quadratic form I, —I, or 0. In
particular, Corollary 3 implies that if m; 4+ mo + m3 < N, then the value

inf {lelf: 2 e c}

may be computed using the standard SDP relaxation of the problem.

Bienstock and Michalka [11] give sufficient conditions under which a related
problem

inf r): xe€C},
inf {ao(a): w € C)

is polynomial-time solvable. Here, go : RN — R may be an arbitrary quadratic
function however m; and ms must be constant. They devise an enumerative
algorithm for this problem and prove its correctness under different assumptions.

In contrast, our work deals only with the standard SDP relaxation and does not
assume that the number of quadratic forms is constant. a
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A Proof sketch of Lemma 4

For simplicity, we will assume that I is a polytope in this proof sketch. Let (&, )
satisfy the assumptions of Lemma 4. Without loss of generality, we may assume
that sup..crq(v,2) = 2t.

We claim that the following system in variables v and s

(b(v),v) =s,VyeF
veV(F),seR

has a nonzero solution. Indeed, we may replace the first constraint with at most
aff dim({b(y) : v € F}) + 1 < dim(V(F))

homogeneous linear equalities in the variables v and s. The claim then follows by
noting that the equivalent system is an under-constrained homogeneous system
of linear equalities and thus has a nonzero solution (v, s). It is easy to verify that
v # 0 and hence, by scaling, we may take v € SV—1,

We will modify (&,%) in the (v, s) direction. For a € R, define

(Tayta) = (i +av, T+ as) )

We will sketch the existence of an o > 0 such that (x4, t,) satisfies the conclu-
sions of Lemma 4. A similar line of reasoning will produce an analogous a < 0.
This will complete the proof sketch.

Suppose v € F. Then, by our choice of v and s, the function « — (v, x4) —
2to = q(7,2) — 2t = 0 is identically zero. Now suppose v € I' \ F. Then, the
function a — q(v, z4) — 2t, is a convex quadratic function which is negative at
a=0.

We conclude that the following set

Q={am q(v,24) — 2ts : v €extr()}\ {0},

consists of convex quadratic functions which are negative at &« = 0. The finiteness
of this set follows from the assumption that I" is polyhedral.

Assumption 1 implies that at least one of the functions in Q is strictly convex.
Then as Q is a finite set, there exists an ay > 0 such that ¢(ay) < 0 for all
q € Q with at least one equality. We emphasize that this is the step where
Assumption 2 cannot be dropped.

Finally, it is easy to check that (x4, , %, ) satisfies the conclusions of Lemma 4.



1]

[14]

[15]

[16]

Bibliography

Abbe, E., Bandeira, A.S., Hall, G.: Exact recovery in the stochastic block
model. IEEE Transactions on Information Theory 62(1), 471-487 (2015)
Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for
quadratically constrained quadratic programming: A review and compar-
isons. Mathematical programming 129(1), 129 (2011)

Barvinok, A.L.: Feasibility testing for systems of real quadratic equations.
Discrete & Computational Geometry 10(1), 1-13 (1993)

Beck, A.: Quadratic matrix programming. SIAM Journal on Optimization
17(4), 1224-1238 (2007)

Beck, A., Drori, Y., Teboulle, M.: A new semidefinite programming relax-
ation scheme for a class of quadratic matrix problems. Operations Research
Letters 40(4), 298-302 (2012)

Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization
with two quadratic constraints. STAM Journal on Optimization 17(3), 844—
860 (2006)

Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton
University Press, Princeton Series in Applied Mathematics, Philadelphia,
PA, USA (2009)

Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation of some
nonconvex quadratic optimization problems. Mathematical Programming
143(1), 1-29 (2014)

Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization.
MPS-SIAM Series on Optimization, STAM, Philadehia, PA, USA (2001)
Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadrat-
ically constrained quadratic programming. Mathematical Programming
72(1), 5163 (1996)

Bienstock, D., Michalka, A.: Polynomial solvability of variants of the trust-
region subproblem. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 380-390 (2014)

Burer, S.: A gentle, geometric introduction to copositive optimization.
Mathematical Programming 151(1), 89-116 (2015)

Burer, S., Anstreicher, K.M.: Second-order-cone constraints for extended
trust-region subproblems. STAM Journal on Optimization 23(1), 432-451
(2013)

Burer, S., Kiling-Karzan, F.: How to convexify the intersection of a second
order cone and a nonconvex quadratic. Mathematical Programming 162(1),
393429 (2017)

Burer, S., Yang, B.: The Trust Region Subproblem with non-intersecting
linear constraints. Mathematical Programming 149(1), 253-264 (2015)
Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and
non-random) nonconvex quadratic programs. Mathematical Programming

pp. 1-17 (2018)



[17]
[18]

[19]

[20]

Convex hulls of epigraphs of QCQPs 13

Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via
matrix completion. STAM review 57(2), 225-251 (2015)

Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming, vol. 271.
Springer (2014)

Fradkov, A.L., Yakubovich, V.A.: The S-procedure and duality relations
in nonconvex problems of quadratic programming. Vestn. LGU, Ser. Mat.,
Mekh., Astron 6(1), 101-109 (1979)

Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex
quadratic programs. Journal of Global Optimization 10(4), 367-380 (Jun
1997), ISSN 1573-2916, https://doi.org/10.1023/A:1008282830093, URL
https://doi.org/10.1023/A:1008282830093

Phan-huy Hao, E.: Quadratically constrained quadratic programming: Some
applications and a method for solution. Zeitschrift fiir Operations Research
26(1), 105-119 (1982)

Ho-Nguyen, N., Kiling-Karzan, F.: A second-order cone based approach for
solving the Trust Region Subproblem and its variants. STAM Journal on
Optimization 27(3), 1485-1512 (2017)

Jeyakumar, V., Li, G.Y.: Trust-region problems with linear inequality con-
straints: Exact SDP relaxation, global optimality and robust optimization.
Mathematical Programming 147(1), 171-206 (2014)

Kiling-Karzan, F., Yildiz, S.: Two-term disjunctions on the second-order
cone. Mathematical Programming 154(1), 463-491 (2015)

Locatelli, M.: Some results for quadratic problems with one or two quadratic
constraints. Operations Research Letters 43(2), 126-131 (2015)

Locatelli, M.: Exactness conditions for an sdp relaxation of the extended
trust region problem. Optimization Letters 10(6), 1141-1151 (2016)
Megretski, A.: Relaxations of quadratic programs in operator theory and
system analysis. In: Borichev, A.A., Nikolski, N.K. (eds.) Systems, Ap-
proximation, Singular Integral Operators, and Related Topics, pp. 365-392,
Birkh&user Basel, Basel (2001), ISBN 978-3-0348-8362-7

Mixon, D.G., Villar, S., Ward, R.: Clustering subgaussian mixtures by
semidefinite programming. arXiv preprint arXiv:1602.06612 (2016)
Modaresi, S., Vielma, J.P.: Convex hull of two quadratic or a conic quadratic
and a quadratic inequality. Mathematical Programming 164(1-2), 383-409
(2017)

Nesterov, Y.: Quality of semidefinite relaxation for nonconvex quadratic
optimization. Tech. rep., Université catholique de Louvain, Center for Op-
erations Research and (1997)

Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Size matters:
Cardinality-constrained clustering and outlier detection via conic optimiza-
tion. STAM Journal on Optimization 29(2), 1211-1239 (2019)

Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a
polytope. arXiv preprint arXiv:1812.10160 (2018)

Sheriff, J.L.: The convexity of quadratic maps and the controllability of
coupled systems. Ph.D. thesis (2013)


https://doi.org/10.1023/A:1008282830093
https://doi.org/10.1023/A:1008282830093

14
[34]
[35]

[36]

[40]
[41]
[42]

[43]

A. Wang and F. Kiling-Karzan

Shor, N.Z.: Dual quadratic estimates in polynomial and boolean program-
ming. Annals of Operations Research 25(1), 163-168 (1990)

Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math-
ematics of Operations Research 28(2), 246-267 (2003)

Tawarmalani, M., Sahinidis, N.V., Sahinidis, N.: Convexification and global
optimization in continuous and mixed-integer nonlinear programming: the-
ory, algorithms, software, and applications, vol. 65. Springer Science & Busi-
ness Media (2002)

Wang, A.L., Kiling-Karzan, F.: The generalized trust region subproblem:
solution complexity and convex hull results. Tech. Rep. arXiv:1907.08843,
ArXiV (2019), URL https://arxiv.org/abs/1907.08843

Wang, A.L., Kiling-Karzan, F.: On the tightness of SDP relaxations of QC-
QPs. Tech. Rep. arXiv:1911.09195, ArXiV (2019), URL https://arxiv.org/
abs/1911.09195

Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of semidefinite pro-
gramming: theory, algorithms, and applications, vol. 27. Springer Science
& Business Media (2012)

Ye, Y.: Approximating quadratic programming with bound and quadratic
constraints. Mathematical programming 84(2), 219-226 (1999)

Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM Journal
on Optimization 14(1), 245-267 (2003)

Yildiran, U.: Convex hull of two quadratic constraints is an LMI set. IMA
Journal of Mathematical Control and Information 26(4), 417-450 (2009)
Yildiz, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-
order cone. Operations Research Letters 43(4), 432-437 (2015)


https://arxiv.org/abs/1907.08843
https://arxiv.org/abs/1911.09195
https://arxiv.org/abs/1911.09195

	On convex hulls of epigraphs of QCQPs

