Systems and Methods for Implementing m
Deterministic Finite Automata (DFA) e
via a Blockchain

Craig S. Wright

Abstract We present a novel technology for the establishment and (discretionary)
automatic execution of (financial) contracts based on the realisation of the commit-
ments of the different parties, and other clauses and provisions, as a non-deterministic
finite automaton (NFA) embodied in a computational and record-keeping structure on
the (Bitcoin) blockchain. In particular, the process provides methods for constructing
non-deterministic finite-state automata in Bitcoin script. The “best” method produces
a one-to-one relation between the definition and the state table of the automaton.

Keywords Automata - DFA - Computation - Bitcoin + Blockchain

1 Introduction

The automation of (financial) contracts has been a topic of continued academic
research (see, e.g., [1] and references therein) and practical interest since the realisa-
tion that an electronic version of the essence of such contracts can be better defined
(e.g. avoiding ambiguities and interpretations of current legalese as well as poten-
tially costly and long litigations) and executable and enforceable by computers, and
consequently cheaper and more reliable.

Among the different approaches which have been proposed in the literature (see
Chap. 1 of [1] for a short review), it has been shown that a deterministic finite automata
(DFA), also known as deterministic finite-state machines, have arich enough structure
to represent a wide range (if not all) of imaginable financial agreements, and other
kinds of contracts [2, 3].

A DFA is a mathematical model of computation conceived as an abstract machine
that can be in one of a finite set of states and can change from one state to another
(transition) when a triggering event or condition occurs. Its computational capabilities
are more than those of combinational logic but less than those of a stack machine.

C. S. Wright (<)
CNAM, Paris, France
e-mail: c.wright@nchain.com

© Springer Nature Singapore Pte Ltd. 2020 499
X.-S. Yang et al. (eds.), Fourth International Congress on Information

and Communication Technology, Advances in Intelligent Systems

and Computing 1041, https://doi.org/10.1007/978-981-15-0637-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0637-6_43&domain=pdf
mailto:c.wright@nchain.com
https://doi.org/10.1007/978-981-15-0637-6_43

500 C.S. Wright

Going beyond existing literature, we develop a technological innovation, which
facilitates the incarnation of a DFA in a practical way on the existing infrastructure
of the (Bitcoin) blockchain. The states of the machine are defined and recorded on
the permanent ledger which is the blockchain, and blockchain transactions work
as agents changing the machine from one state to another. When the DFA defines
a contract, the innovation provides with a mechanism for the automatic execution
and enforcement of the commitments of the different parties, and other clauses and
provisions.

Key Elements. The blockchain-based DFA has the following key features: legalise
and litigation-free by construction; executable and enforceable automatically by com-
puters; and permanent record of contracts, their execution, and outcomes.

And it offers the following benefits inherent to the Bitcoin blockchain: inher-
ently secure by design (the Bitcoin protocol requires no trusted parties); dis-
tributed (so avoids a large single point of failure and is not vulnerable to attack);
easy to manage and maintain (the Bitcoin network is straightforward to use);
inexpensive (just a small transaction fee is usually expected under the Bitcoin
protocol); global and can be used at any time by anyone with access to the Inter-
net; transparent—once data has been written to the blockchain, anyone can see
it; immutable—once data has been written to the blockchain, no one can change
it; privacy is maintained, as no personally identifying information is involved.

Section Organisation. The contribution is broken up into two main sections: a
functional specification, offering a high-level outline, and explanation of the matter
and nature of the proposed solution; and a technical specification, outlining the tech-
nical possibilities and novelties involving the innovation, ending with an example.

2 Functional Specification

At a high level of abstraction, the system we are proposing consists of the DFA
itself and a closely related system of agents (Botnet) which write the transactions
and submit them to the blockchain. We will concentrate here on the description
of the DFA mechanism, and possible realisations of the transactions, leaving the
specification of the system of agents for parallel companion work [4].

An illustration of the complete system can be found in Fig. 1. There the Bot-
net' interacts with the world (humans or other computers) to receive instructions,
e.g. which contract to create and execute, as indicated by the connection lines. The
specification of the contract itself can be provided in any format, e.g. xBRL [5], and
stored in a secure and decentralised manner, for example, in a distributed hash table
(DHT) on the torrent network. From the specification of the contract, a Botnet agent

'We will refer generally to the Botnet, often without specifying, which agent actually carry out the
actions described, this could be one of the lower-level bots, a bot manager (Botman) or any other
appropriate entity as specified in [4].

Systems and Methods for Implementing Deterministic ... 501

7
Botnet

Blockchain

|
|
|
|
|
Fig. 1 Diagram describing the blockchain-based DFA and Botnet systems

constructs the DFA, which is subsequently incarnated on the blockchain by Botnet
agents.

The DFA itself is specified as a finite set {S, L, t, sO, F}, where S stands for the
(finite) set of possible states in which the contract/DFA can be; I is a (finite) set
of inputs (also known as the alphabet), which in our context means any event or
condition which can occur in relation to the contract, e.g. a payment is made, the
maturity of the instrument is reached, a counterparty defaults, etc., in our mechanism,
these input signals are received/produced by Botnet agents, which then determine
the next state of the system (possibly the same one).

The third component of a DFA is a transition function t: S x I — S. Deterministic
refers to the uniqueness of the decision: given a state and an input there is only
one new state (possibly the same one); thus, given an initial state (sO) and a history
of inputs the outcome of the calculation (contract) is unique, one among the set of
all possible final outcomes (F € S). Once all these elements have been established,
the DFA is completely defined by a transition table, specifying the future states for
all possible current states and input signals. The states of the DFA are themselves
associated with unspent transaction outputs (UTXO) on the blockchain. Note that the
Bitcoin network continuously tracks all available UTXO. The mechanism by which
the DFA moves from one state to another is incarnated in our proposal by Bitcoin
transactions; effectively they spend the UTXO associated with one state (an input of
the transaction) and create the UTXO associated with the next state (an output). This
constitutes a key inventive element of our proposal.

To illustrate these ideas, we are going to consider a discount (zero-coupon) bond,
which is a simple debt instrument usually bought at a price (normally at a discount
with respect to its face value), then held for some time, until its principal is returned
at maturity. The possible states we will consider are S = {s0, f0, 1}, indicating,
respectively, the holding state (s0), the normal conclusion of the contract (if it follows
the happy path) or happy ending (f0), and a state (f1) in which things go wrong, e.g.

502 C. S. Wright

Table 1 Transition matrix ¢ ' d R

for a DFA representing a

zero-coupon bond S0 fo fi fi
fo - - -
fi - - -

litigation; the final states of the system are thus F = {f0, f1}. The alphabet we will
consider is I = {r, d, e}, indicating, respectively, repayment of the principal at (or
before) expiration (r), default of the issuer at (or before) expiration (d), and expiration
of the contract without repayment (e). The transition matrix for this simple contract
is presented in Table 1. Note that for the final states represent the completion of the
contract, thus no further states need to be specified from them (currently noted as ‘-’
in the transition table, although those lines could be omitted).

Figure 2 represents the embodiment of the zero-coupon bond DFA on the (Bitcoin)
blockchain. The states are represented by circles and the Bitcoin transactions which
move the machine from one state to the other by the blue triangles. Note that the
inputs received by the Botnet agents are omitted in this diagram, however, in each
state one or other transition should occur according to these inputs, which is reflected
in the diagram by the construction of one or other Bitcoin transaction (e.g. tO or t1
in state s0); no transactions are required for transitions which do not change the
state, thus they have been omitted. In addition to the transitional transactions of the
DFA (ti), an initial origination transaction (0) and transactions corresponding to the
completion of the contract (ci) are considered.

A last point to discuss before turning to the technical specification of the invention
is the flow of funds in the transactions (originations, transitions and completions).
An important observation is that because of the finite nature of the DFA, and of
(financial) contracts, they would be completed after a number of transitions. This

Fig. 2 Diagram describing a
blockchain-based DFA

Systems and Methods for Implementing Deterministic ... 503

necessarily implies (assuming some finite fees for the Botnet agents involved and
the Bitcoin miners) that the maximum costs of the establishment and execution of the
contract is bound and can be determined in advance, e.g. at the point of establishment
of the DFA. It is given by the total amount of funds required to execute the contract
following the longest imaginable path. This, of course, excludes the possibility of
infinite loops in the execution, note, however, that this is not relevant for current
(financial) contracts; even contracts such as perpetuities are bound to be completed
at some point in future, despite their name.

The particular distribution of the fees, how much each agent receives for their
work, although of obvious practical significance is not fundamental to the invention
described here. Continuing with our example of a streamlined zero-coupon bond,
we will arbitrarily assume a fee of 3 mBitcoin for the origination transaction (o), a
transition fee (ti transaction) of 1 mBitcoin and a 2 mBitcoin fee for the completion
transaction (ci); note that these fees are automatically included in the transactions
themselves. Together with 3 mBitcoin of total mining fees for the 3 transactions, this
results in a total maximum cost of 9 mBitcoin. In our example, the length of all paths
is equal, thus the final cost of the contract will certainly coincide with its maximum
cost. Since this need not be the case in general, in order to completely illustrate a
general flow of funds, we will assume that the funds provided for the execution of
the contract are 10 mBitcoin, and that 1 mBitcoin is returned to the same source of
funds after completion (this takes the place of eventual unused funds at completion,
i.e. if maximum and used funds were to differ).

We will assume that the funds for the establishment and execution of the contract
(10 mBitcoin) are initially provided by some funding source referred to as the origi-
nator (as mentioned, in our example, this source will also receive 1 mBitcoin unused
funds after completion). In principle one could also include additional inputs and
outputs of funds in the transactions, e.g. the price paid for the zero-coupon bond, the
repayment of the principal, or any other imaginable transfer of funds. Although this
may be of practical interest, at this point it would only help to obscure the essen-
tial elements of blockchain-based DFA processing. For the sake of clarity, we have
decided not to include such details in the examples below; note, however, that the
structure is completely general and such possibilities are not excluded.

Once the functional specification of the technology has been established, the
remaining components of the system ought to be specified at a technical level, in
particular, the inner working and the flow of information and funds of the Bitcoin
transactions which constitute a fundamental innovation of our proposal.

3 Technical Specification

There are several options here, depending to a large extent on the particular configu-
ration of the Botnet system [4], e.g. whether the particular agents involved are known
in advance or not. We will explicitly consider two options here. If participation on
the contract is kept fairly open, so that a variety of agents can participate, a structure

504 C. S. Wright

based on the standard transaction of the type transaction puzzle [6] is feasible. Con-
versely, if the transactions for each state can be assigned in advance to a particular
agent (or group of agents), a pay-to-script-hash (P2SH) [7] transaction can be used.
Of course, one can imagine a number of possibilities in between, e.g. a group of
agents which change in time, a hierarchy of agents, private information (keys) could
be securely interchanged just before each transaction is written, etc. The possibilities
are many and, as mentioned, depend to a large extent on the particular configuration
of the Botnet to be discussed elsewhere [4]; we will only specify explicitly the two
options mentioned.

Note, however, that which particular type of transaction is used, as specifically
who provides/receives the funds in the transactions (the issuer, the purchaser, the
payee, etc.), is ultimately not fundamental to the invention described in this paper.
The essence of the proposal is that at any point in time the state of the contract is
well defined within the blockchain, and that we describe a mechanism (whatever
its detailed concrete realisation) which generates the contract, executes it on the
blockchain, and enforces the appropriate outcome according to the sequence of events
that occurs. Note that, because the whole mechanism is embodied on the blockchain,
it automatically provides a permanent immutable record of the history and outcome
of the contract, among many other advantages.

3.1 Transaction-Puzzle-Based

One of the configurations of the Botnet contemplated in [4] regards the system
as an open network of computers in which anyone with some Internet-connected
processing power may join, provide some processing power to the system (e.g. a
provider of the establishment and execution of the blockchain-based DFA contracts)
and get rewarded for their resources (see [4] for details). Thus, we are compelled to
assume that it is impossible to know in advance which particular agent will submit
the transaction to the blockchain, i.e. it is not possible to use any specific information
on the agent (e.g. its public keys); however, a transaction-puzzle type is still feasible.
The general locking/unlocking mechanism of this type of transactions is [6]:

Locking Script : OP_HASH256 <state s; puzzle > OP_EQUAL

Unlocking Script : <puzzle s; solution >

where <state s; puzzle> = HASH(<state s; puzzle solution>) and the puzzle solution
itself can include any desired information, including a code for the contract, the label
of the state, and any other desired information, for example, an extra bit of salt (for
added security [8, 9]):

<state s; solution > = HASH(<contract code; states;; other data; salt >)

Systems and Methods for Implementing Deterministic ... 505

The sequence of actions is as follows. First, the Botnet system (the Botman or
another agent, as specified in [4]) creates the DFA structure, stores the transition
table externally (e.g. in a DHT), create the puzzles for each possible state of the
DFA and distributes them securely to the agents which are allowed to participate
on the execution of the contract. There are a number of possibilities for this flow of
information but, as before, since it is not fundamental to the process, we will omit
such details here.

Next, a Botnet agent (the same or a different one [4]), creates the origination
transaction as specified in Table 2. At this stage, the contract is incarnated as a
structure on the blockchain and is in its first state sy, i.e. there is an UTXO associated
with the state sy of the particular contract on the blockchain.

As canbe deduced by studying the transaction, the original funding for the contract
is received (from the originator in the example) by a P2PKH-type transaction, output
0 (puzzle-based) can be unlocked by any Botnet agent in possession of the puzzle
solution, and output 1 (P2PKH) pays the required fee to the Botnet agent which has
succeeded in placing the transaction on the blockchain.

Successive transitions on the execution of the contract are carried out by Botnet
agents in a similar fashion as exemplified in Table 3. They need to get the puzzle

Table 2 Example of an origination (to state sO) transaction (o). The funds allocated to the contract
have been assumed to be 10 mBitcoin, the Botnet fee 3 mBitcoin, and the outgoing funds for further
processing of the contract 6 mBitcoin (1 mBitcoin mining fee is implicit)

Transaction identifier origination o

Version number <version number>

Number of inputs 1

Input Previous transaction | Hash <10 mBitcoin from originator>

Output index | 00

Length of signature script <unlocking script length>
Signature script <originator signature>
<originator public key>
Sequence number <sequence number>
Number of outputs 2
Output 0 | Value 600000
Length of public key script <locking script length>
Public key script OP_HASH256 <state sg puzzle>
OP_EQUAL
Output 1 | Value 300000
Length of public key script <locking script length>
Public key script OP_DUP OP_HASH160 <Botnet

agent public key hash>
OP_EQUALVERIFY OP_CHECKSIG

Locktime 0

506 C. S. Wright

Table 3 Example of a transition (from state sO to state ff) transaction (tf).. The incoming funds
have been assumed to be 6 mBitcoin, the Botnet fee 1 mBitcoin, and the outgoing funds for further

processing of the contract 4 mBitcoin (1 mBitcoin mining fee is implicit)

Transaction identifier

transition tr

Version number

<version number>

Number of

inputs

1

Input

Previous transaction

<6 mBitcoin from
origination o>

Hash

Output index | 00

Length of signature script

<unlocking script length>

Signature script

<state sppuzzle solution>

Sequence number

<sequence number>

Number of

outputs

2

Output 0

Value

400000

Length of public key script

<locking script length>

Public key script

OP_HASH256 <state ff puzzle> OP_EQUAL

Output 1 | Value 100000
Length of public key script | <locking script length>
Public key script OP_DUP OP_HASH160 <Botnet agent
public key hash> OP_EQUALVERIFY
OP_CHECKSIG
Locktime 0

solution corresponding to the current state (o), interact with the world (or some other
computer on the Botnet) in order to receive the appropriate input, read the transition
table (or just the part of them corresponding to the current state) and get the puzzle
corresponding to the appropriate next state (f¢). They can then submit the transaction
to the blockchain, if they succeed in placing it, they will get their fee and the DFA
will be in the state fr.

In order to conclude the technical description of the mechanism, we need to define
the structure of the last kind of possible transactions, those completing the execution
of the contract (cg). This is shown in Table 4, where the input part follows the same
transaction puzzle logic as before, while output 0 pays the unused funds back to the
originator (1 mBitcoin, as discussed above), and output 1 pays the fee to the Botnet
agent (Table 5).

Systems and Methods for Implementing Deterministic ... 507

Table 4 Example of a completion (from state ff.) transaction (cf). The incoming funds have been
assumed to be 4 mBitcoin, | mBitcoin unused funds are returned to the originator, and the Botnet
fee is 2 mBitcoin (a 1 mBitcoin mining fee is implicit)

Transaction identifier completion cf

Version number <version number>

Number of inputs 1

Input Previous transaction | Hash <4 mBitcoin from transition

&>
Output index | 00

Length of signature script <unlocking script length>
Signature script <state fy puzzle solution>
Sequence number <sequence number>

Number of outputs 2

Output 0 | Value 100000
Length of public key script <locking script length>
Public key script OP_DUP OP_HASH160 <originator

public key hash>
OP_EQUALVERIFY OP_CHECKSIG

Output 1 | Value 200000
Length of public key script <locking script length>
Public key script OP_DUP OP_HASH160 <Botnet

agent public key hash>
OP_EQUALVERIFY OP_CHECKSIG

Locktime 0

3.2 P2SH Based

Instead of being open to a large number of a priori unknown participants, another
possible configuration of the Botnet could be that of a limited number of acknowl-
edged computers. In this case, transactions of the type P2SH [7] might be more
appropriate since they can be configured to include the public keys of the agents,
thereby providing an extra layer of security. In the case of a single acknowledged
agent, a feasible locking/unlocking mechanism for the transactions is:

Locking Script: OP_HASH160 <state s; redeem script hash> OP_EQUAL

Unlocking Script: OP_0 <agent signature> <state s; redeem script>

Redeem Script: OP_1 <state s; metadata> <agent public key> OP_2
OP_CHECKMULTISIG

Note that this can be trivially extended to a larger number of acknowledged agents
by including their signature as well. As before, the metadata of state a state s; can
include any desired information, for example:

<state s; metadata> = HASH (<contract code; state s;; other data>)

508 C. S. Wright

Table 5 Example analogous to that in Table 2 but using the P2SH transaction type for the DFA
states

Transaction identifier origination o

Version number <version number>

Number of inputs 1

Input Previous transaction | Hash <10 mBitcoin from originator>

Output index | 00

Length of signature script <unlocking script length>
Signature script <originator signature>
<originator public key>
Sequence number <sequence number>
Number of outputs 2
Output O | Value 600000
Length of public key script <locking script length>
Public key script OP_HASH160 <state sp redeem
script hash> OP_EQUAL
Output 1 | Value 300000
Length of public key script <locking script length>
Public key script OP_DUP OP_HASH160 <Botnet

agent public key hash>
OP_EQUALVERIFY OP_CHECKSIG

Locktime 0

The sequence of actions is similar as in the previous case. First, the Botnet system
creates the DFA structure, stores the transition table externally (e.g. in a DHT),
determines which agents will process the transactions and retrieve/generate their
public keys, which are then included in the redeem scripts for each possible state of
the DFA, note that these scripts can be stored externally and need not be transmitted
securely. Next, a Botnet agent creates the origination transaction as specified in
Table 2. At this stage the contract is incarnated as a structure on the blockchain and
is in its first state 5.

The only change in the transaction with respect to that in Table 2 is output 0, which
now is of type P2SH and includes the public keys of the acknowledged agents as
discussed above. Although the changes are completely analogous, for completeness
we present in Tables 6 and 7 examples of transition transactions and completion
transactions based on the P2SH transaction type. The flow of funds is the same as
before.

Systems and Methods for Implementing Deterministic ... 509

Table 6 Example analogous to that in Table 3 but using the P2SH transaction type for the DFA
states

Transaction identifier transition ty

Version number <version number>

Number of inputs 1

Input Previous transaction | Hash <6 mBitcoin from origination
o>

Output index | 00

Length of signature script <unlocking script length>
Signature script OP_0 <Botnet agent signature>
<state sp redeem script>
Sequence number <sequence number>
Number of outputs 2
Output 0 | Value 400000
Length of public key script <locking script length>
Public key script OP_HASH160 <state fy redeem
script hash> OP_EQUAL
Output 1 | Value 100000
Length of public key script <locking script length>
Public key script OP_DUP OP_HASH160 <Botnet

agent public key hash>
OP_EQUALVERIFY OP_CHECKSIG

Locktime 0

3.3 Example

Imagine Alice has some savings and wants to invest them in a discount bond from a
certain bond issuer. She can contact a service provider of blockchain-based DFA con-
tracts, provides the appropriate (discounted) price funds (possibly through another
Bitcoin transaction which can be integrated in the DFA as well), and have it create
and automatically execute the contract. If everything goes well (happy path) she will
automatically receive the face value of the bond back at maturity. If, for example, the
bond issuer happens to default while Alice holds the bond, the Botnet system will
automatically take the appropriate action as defined in the contract.

4 Summary and Conclusion

The invention relates to a technique for implementing, controlling and automating a
task or process on a blockchain such as, but not limited to, the Bitcoin blockchain.
The invention is particularly suited for, but not limited to, automated execution of

510 C.S. Wright

Table 7 Example analogous to that in Table 4 but using the P2SH transaction type for the DFA
states

Transaction identifier completion ¢y
Version number <version number>
Number of inputs 1
Input Previous transaction | Hash <4 mBitcoin from transition
Er>
Output index | 00
Length of signature script <unlocking script length>
Signature script OP_0 <Botnet agent signature>
<state fy redeem script>
Sequence number <sequence number>
Number of outputs 2
Output 0 | Value 100000
Length of public key script <locking script length>
Public key script OP_DUP OP_HASH160 <originator

public key hash>
OP_EQUALVERIFY OP_CHECKSIG

Output 1 | Value 200000
Length of public key script <locking script length>
Public key script OP_DUP OP_HASH160 <Botnet

agent public key hash>
OP_EQUALVERIFY OP_CHECKSIG

Locktime 0

contracts such as smart contracts for financial agreements. However, other types of
tasks and non-financial contracts can be implemented. The invention can be viewed
as the implementation or incarnation of a state machine or DFA on a blockchain by
using the unspent outputs of blockchain transactions to represents the states of the
machine, and spending of those outputs as the transition of the machine from one
state to another. The invention provides a technical realisation and implementation
of a mathematical model of computation conceived as an abstract machine that can
be in one of a finite set of states and can change from one state to another (transition)
when a triggering event of a finite set (called input) occurs. The invention comprises
compilation and codification techniques for the DFA implementation.

As detailed, this method is a means to implementing a DFA on a blockchain,
comprising the listed steps. It is a method of implementing a DFA on a blockchain,
comprising the steps of associating a portion of data in the locking script of an unspent
output (UTXO) of a blockchain transaction (Tx;) with a given state of the DFA.

A method further comprising the step of using a further transaction (Tx;) to make
a transition from the state of the DFA to a further state by spending the output
(UTXO,) of the transaction (Tx;); wherein the further state is associated with a
portion of data provided within a locking script of an unspent output (UTXO,) of the

Systems and Methods for Implementing Deterministic ... 511

further transaction. The process is completed using a portion of code to implement or
represent at least one state transition trigger which, when executed, causes a further
transaction (Tx;) to spend the output (UTXO,) of the transaction (Tx;) and thus
move the DFA to another state.

The process is a method wherein the portion of code comprises a machine-testable
condition which provides a Boolean result based upon an input. In this, the input is
determined at run time and is used by the portion of code to determine whether or not
the unspent output (UTXO,) should be spent so as to move the DFA to the further
state such that the portion of data in the unspent output (UTXO;) is provided in a
locking script and data is a tag, label or a portion of metadata. In the model, the DFA
is a model of a machine-executable smart contract.

This is conducted successfully as the unspent output (UTXO,) comprises alocking
script which includes a hash of a puzzle, the solution of which must be provided by
an input of a further transaction in order to spend the output (UTXO)) and transition
the DFA to another state.

In the system, the unspent output (UTXO;) comprises a locking script which
includes a hash of a redeem script which must be provided by an input of a further
transaction in order to spend the output (UTXO) and transition the DFA to another
state. Further, the redeem script comprises a cryptographic key. From this, we have a
step of further comprising the step of using one or more computing agents to perform
the step of any preceding state.

The DFA is constructed on a blockchain, the method comprising the steps of
executing a program which is arranged to monitor for and/or receive an input signal
and, responsive to the input signal, generate a blockchain transaction Tx, which
comprises an unspent output (UTXO) and spends an output of a previous transaction
Tx,; wherein the output of previous transaction Tx; comprises a locking script which
includes an identifier associated with a first state of the DFA, and the unspent output
(UTXO) of transaction Tx, comprises a locking script which includes a further
identifier associated with a further state of the DFA.

A method allows for the implementing a DFA on a blockchain, comprising the
steps using at least one input signal to execute at least one condition and, based on
the outcome of the execution of the condition, perform an action in accordance with
a state transition table for the DFA, wherein performance of the action is identifiable
from the state of a blockchain ledger.

This system comprises of a blockchain platform and at least one computing agent
arranged to implement the DFA via the blockchain.

References

1. T. Hvitved, Contract Formalisation and Modular Implementation of Domain-Specific Lan-
guages. Faculty of Science, University of Copenhagen, Ph.D. Thesis (2012)

2. C. Molina-Jimenez et al., Run-time monitoring and enforcement of electronic contracts. Elec-
tron. Commer. Res. Appl. 3, 108 (2004)

512 C. S. Wright

3. M.D. Flood, O.R. Goodenough, Contract as Automaton: The Computational Representation of
Financial Agreements. OFR Working Paper 1504 (2015)
4. Botman, nCrypt: Umbrella Document, WP0238 (2016)

The following resources provide background material
relating to the technological background of the present
process

5. XBRL Homepage. https://www.xbrl.org/. Last accessed 26 Jan 2019

6. On Bitcoin script. Bitcoin Wiki Homepage. https://en.bitcoin.it/wiki/Script. Last accessed 26
Jan 2019

7. On BIPs. Github Homepage. https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki.
Last accessed 26 Jan 2019

8. On “salt.” Aspheute Homepage. http://www.aspheute.com/english/20040105.asp. Last accessed
26 Jan 2019

9. On “salt.” Jasypt Homepage. http://www.jasypt.org/howtoencryptuserpasswords.html. Last
accessed 26 Jan 2019

https://www.xbrl.org/
https://en.bitcoin.it/wiki/Script
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
http://www.aspheute.com/english/20040105.asp
http://www.jasypt.org/howtoencryptuserpasswords.html

	Systems and Methods for Implementing Deterministic Finite Automata (DFA) via a Blockchain
	1 Introduction
	2 Functional Specification
	3 Technical Specification
	3.1 Transaction-Puzzle-Based
	3.2 P2SH Based
	3.3 Example

	4 Summary and Conclusion
	References

