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Abstract
The Geometric Bin Packing (GBP) problem is a generalization of Bin Packing where the input
is a set of d-dimensional rectangles, and the goal is to pack them into unit d-dimensional cubes
efficiently. It is NP-Hard to obtain a PTAS for the problem, even when d = 2. For general d,
the best known approximation algorithm has an approximation guarantee exponential in d, while
the best hardness of approximation is still a small constant inapproximability from the case when
d = 2. In this paper, we show that the problem cannot be approximated within d1−ε factor unless
NP=ZPP.

Recently, d-dimensional Vector Bin Packing, a closely related problem to the GBP, was shown
to be hard to approximate within Ω(log d) when d is a fixed constant, using a notion of Packing
Dimension of set families. In this paper, we introduce a geometric analog of it, the Geometric
Packing Dimension of set families. While we fall short of obtaining similar inapproximability results
for the Geometric Bin Packing problem when d is fixed, we prove a couple of key properties of the
Geometric Packing Dimension that highlight the difference between Geometric Packing Dimension
and Packing Dimension.
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1 Introduction

In the Geometric Bin Packing (GBP) problem, the input is a set of d-dimensional rectangles,
and the objective is to pack them1 into a minimum number of unit d-dimensional cubes. The
problem is widely applicable in practice and has received a lot of attention in the approxim-
ation algorithms community. It is one of the two most extensively studied generalizations of
Bin Packing (the other being Vector Bin Packing), which corresponds to the case when d = 1.
Bin Packing is a classical NP-Hard problem and has an asymptotic2 PTAS [9]. Already for
d = 2, i.e., the problem of packing (2-dimensional) rectangles in square boxes, a PTAS can
not be obtained unless P = NP. The best known algorithm for this 2-dimensional setting is
by Bansal and Khan [4] with an approximation ratio of 1.406, and the best hardness result
is 1 + 1

2196 due to Chlebik and Chlebíková [7].
Typically, multidimensional packing problems have two variants: when the dimension d

is part of the input size, or when d is a fixed constant independent of the input. The key

1 In this work, we study the case where rotations are not allowed and GBP will refer to this case unless
stated otherwise.

2 The asymptotic approximation ratio of an algorithm corresponds to the case when the optimal value
is large enough.
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2 Improved Hardness of Approximation for Geometric Bin Packing

difference is that when d is fixed, the algorithms are allowed to run in time nf(d) for an
arbitrary function f . On the algorithmic side, even with fixed d, the best known algorithm
has an approximation ratio3 T d−1

∞ [5], whereas the hardness is still the non-existence of
PTAS from the 2-dimensional case. For the GBP, for both the cases, previously, no hardness
of approximation growing with d is known, and this has been one of the ten open problems
in a recent survey on multidimensional packing problems [8]. Note that obtaining hardness
for the case when d is part of the input is an easier than (and a necessary step towards)
showing hardness for the fixed d case.

In this work, we obtain a strong inapproximability result for GBP when d is part of the
input.

I Theorem 1. Geometric Bin Packing is hard to approximate within d1−ε factor for in-
stances with d-dimensional items, for every ε > 0 when d is part of the input unless NP=ZPP.

Our proof is a direct reduction from graph coloring, similar to the hardness of d-dimensional
Vector Bin Packing due to Chekuri and Khanna [6].

When d is a fixed constant, in a recent work [15], Ω(log d) hardness for Vector Bin Packing
has been obtained. This result is obtained by a reduction from the set cover problem via
packing dimension of set systems, which is the minimum dimension in which the set cover of
a set system can be embedded as a Vector Bin Packing problem. In the set cover problem,
the input is a set family F on a universe U , and the objective is to find the minimum number
of sets from F whose union is U . The Vector Bin Packing problem can be formulated as a
set cover problem, by letting “configuration” of vectors to be a set of vectors that fit in a
unit cube, and the objective is to find the minimum number of configurations whose union
covers all the vectors. The inapproximability result for the problem is obtained by reversing
this reduction, i.e., by embedding the set cover problem as a Vector Bin Packing problem
such that the configurations in the Vector Bin Packing instance are exactly the sets in the
set cover problem. The minimum dimension of the Vector Bin Packing instance that we can
output this way starting with a set cover instance of a set family F is precisely the packing
dimension of the set family F .

In this work, we study the analogous notion for the Geometric Bin Packing problem. In
particular, we define the Geometric Packing Dimension gpd(F) of a set system F ⊆ 2U on
a universe U to be the smallest integer d such that there is an embedding of the elements
of F to d-dimensional rectangles such that a set S of elements is in F if and only if the
corresponding rectangles fit in a d-dimensional unit cube. If no such an embedding exists,
then we say that F has no finite gpd. By obtaining such an embedding in polynomial
time, we can get a direct reduction from the set cover problem on F to a GBP instance
with dimension gpd(F). The goal is to find set families that have small packing dimension
where set cover is hard, thus implying hardness of approximation for the GBP problem. In
this work, while we fall short of this objective, we formally introduce and study gpd of set
families, and prove a couple of properties of it.

For a set family F on a universe U , gpd(F) being finite is equivalent to the fact that there
exists a Geometric Bin Packing instance where the rectangles correspond to the elements of
U , and the configurations are exactly the sets in F . It is an interesting question, then, to
characterize which set families F have finite gpd(F). Similar to the packing dimension [15],
two conditions are necessary for a set system F to have a finite gpd: first, the set system

3 T∞ denotes the Harmonic constant. It is defined as T∞ =
∑∞

i=1
1

ti−1 with t1 = 2 and ti+1 =
ti(ti − 1) + 1.
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should be downward closed, i.e., for every S ∈ F and T ⊆ S, T ∈ F as well. Second, the set
system should not have any isolated elements, i.e., for every i ∈ U , there is S ∈ F such that
i ∈ S. In [15], the author proves that these two conditions are sufficient for a set system to
have a finite packing dimension. However, we show that this does not hold for the geometric
packing dimension.

I Theorem 2. There is a set system F that is downward closed and has no isolated elements
such that gpd(F) is not finite.

Our construction is obtained using a set system defined via lines in Fn3 . The key property
that we use is that while the set system is dense enough, every pair of elements appear in
exactly one set.

As mentioned earlier, the main motivation behind defining the Geometric Packing Di-
mension is to find set systems F with small gpd(F), yet set cover is hard on them. We
are interested in set families that are structured, to let gpd be a fixed constant independent
of the input, yet set cover is hard to approximate on them. One such set families are the
(k,B)-bounded set systems, where each set has size at most k, and each element appear in
at most B sets, where k,B are fixed constants. In fact, for the d-dimensional Vector Bin
Packing, these set systems are used to show the inapproximability result in [15]. However,
we show that bounded set systems have very large gpd. This rules out any direct reduction
from set cover instances that are bounded, to the GBP problem.

I Theorem 3. Let F ⊆ 2U be a set family that is (k,B)-bounded with k,B constants and
has no isolated elements. Then, either gpd(F) is not finite, or it is at least Ω(|U |).

Our proof is obtained by studying the induced matching of set families. The bounded
set systems have a large induced matching, and that implies that gpd has to be large as well.

1.1 Related Work.
Bin Packing is a classical NP-complete problem. de la Vega and Lueker [9] used the linear
grouping technique to obtain a PTAS. The best algorithm known has an additive error of
O(log OPT) due to Hoberg and Rothvoß [11]. It is still an open problem to determine if an
additive error of 1 is possible or not.

For Geometric Bin Packing Problem when d = 2, some of the recent work include the
T∞ + ε approximation [5]. Bansal, Caprara, and Sviridenko [1] improved it further using
their Round and Approx framework to obtain a 1 + ln(T∞) ≈ 1.52 approximation. Finally,
Bansal and Khan [4] gave the 1 + ln(1.5) ≈ 1.406 approximation by showing the Round
and Approx framework applies to the 1.5 + ε approximation due to Jansen and Prädel [12].
When d > 2, the T d−1

∞ by Caprara [5] stands as the current best. On the hardness side,
Bansal et al. [2] showed that there is no PTAS even for d = 2, unless P = NP. This was
later improved by Chlebik and Chlebíková [7] to 1 + 1

2196 by modifying the construction in
[2]. As stated earlier the 1 + 1

2196 bound is the best hardness result known even for higher
dimensions.

Vector Bin Packing is another well-studied generalization of the Bin Packing Problem.
When d is part of the input, there is a (d+ε)-approximation due to de la Vega and Luekar [9].
On the hardness side, a simple modification4 to the reduction by Chekuri and Khanna [6]
gives a d1−ε hardness. When d is not part of the input the barrier of was broken by Chekuri

4 This modification is due to Jan Vondrák which appeared in [3]
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and Khanna [6] by giving ln d+2+γ appoximation.5 This was improved to ln d+1, and then
to ln(d+ 1) + 0.807 by Bansal, Caprara and Sviridenko [1] and Bansal, Eliáš and Khan [3],
respectively. Recently, Sandeep [15] improved the lower bound to Ω(ln d) from 1 + 1

599 due
to Ray [14] and Woeginger [16].

For a more comprehensive review of the recent works on approximation algorithms for
Bin Packing and related problems, we refer the reader to the survey by Christensen et al. [8].

1.2 Preliminaries.

Notations. We use [n] to denote {1, 2, . . . , n}. A set family or set system F ⊆ 2U is a family
of subsets of U . We use boldface letters to denote d-dimensional vectors or rectangles. For
a d-dimensional rectangle u, we use ui to denote the ith coordinate, and for a d-dimensional
rectangle vi, we use vi,j to denote the jth coordinate. Fk denotes a field of characteristic k.

We call an element e of a set family F as isolated if there is no set of cardinality at least
two containing e.

I Definition 1. For a given set system F ⊆ 2U we say an element e ∈ U is isolated if
{e} ( S implies S 6∈ F .

Packing d-dimensional rectangles. As mentioned earlier, in this work, we only
consider the setting where we do not allow rotations of the rectangles. Thus, a set of
d-dimensional rectangles v1,v2, . . . ,vk ∈ (0, 1]d where vi = {vi,1, vi,2, . . . , vi,d}, i ∈ [k]
fit in the d-dimensional unit cube 1d if and only if there exist positioning of these rect-
angles such that they all fit in 1d, and they don’t intersect with each other, i.e., there exist
p1,p2, . . . ,pk ∈ [0, 1]d where pi = {pi,1, pi,2, . . . , pi,d}, i ∈ [k] such that the following two
conditions hold:
1. First, the rectangles fit inside the unit cube, i.e., for every i ∈ [k], l ∈ [d], pi,l + vi,l ≤ 1.
2. The rectangles don’t intersect with each other, i.e., the k subsets of [0, 1]d for i ∈ [k]

[pi,pi + vi) := [pi,1, pi,1 + vi,1)× [pi,2, pi,2 + vi,2)× · · · × [pi,d, pi,d + vi,d)

are mutually disjoint.

2 Reduction from Graph Coloring

In this section, we prove the inapproximability result for Geometric Bin Packing. Our
reduction is reminiscent of the reduction from graph coloring to vector bin packing by
Chekuri and Khanna [6] which showed there is no d1/2−ε approximation for Vector Bin
Packing unless NP = ZPP.

Reduction. Our reduction outputs a d-dimensional geometric bin packing instance from
a given graph G = ([n], E) wherein each d-dimensional rectangle corresponds to a vertex.
The key idea is that the d-dimensional rectangles corresponding to a subset of vertices fit
in the unit d-dimensional cube if and only if the subset of vertices is a clique in the graph.
Fix a constant α ∈ (0, 0.1). We have d = n, and the d-dimensional rectangles v1,v2, . . . ,vn

5 γ denotes the Euler-Mascheroni constant. It is defined as γ = limn→∞
∑n

k=1
1
k − lnn.
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(b) The clique {1, 2}
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(c) The clique {3}

Figure 1 Embedding a graph according to Lemma 3 and packing the cliques {1, 2} , {3}.

are defined as follows.

vi,j :=


α, if i = j

0.5 + α, if (i, j) ∈ E
1, if i 6= j, (i, j) /∈ E

Before analyzing the reduction, we need the following lemma regarding packing two
d-dimensional rectangles in the unit d-dimensional cube 1d.

I Lemma 2. The d-dimensional rectangles u,v ∈ [0, 1]d fit in the unit cube 1d if and only
if there exists j ∈ [d] such that uj + vj ≤ 1.

Proof. First, suppose that there exists j ∈ [d] such that uj + vj ≤ 1. We consider the
following positions of the rectangles: p,q ∈ [0, 1]d: pl = 0∀l ∈ [d], and

ql =
{

0, if l 6= j.

uj , if l = j.

Note that [p,p + u) ∩ [q,q + v) = φ.
Now, suppose that the two d-dimensional rectangles fit in a d-dimensional cube, i.e.,

there exist p,q such that [p,p + u) ∩ [q,q + v) = φ. Note that ul + vl > 1 implies
that [pl, pl + ul) ∩ [ql, ql + vl) 6= φ. Thus, if ul + vl > 1 for every l ∈ [d], we get that
[p,p+u)∩[q,q+v) 6= φ, a contradiction. Hence, there exists l ∈ [d] such that ul+vl ≤ 1. J

We are now ready to analyze the reduction.

I Lemma 3. Given a graph G = ([n], E), α ∈ (0, 1), and the d-dimensional rectangles
v1,v2, . . . ,vn ∈ [0, 1]d defined as above with d = n, for every subset of vertices S ⊆ [n], S
is a clique in G if and only if {vi : i ∈ S} fit in 1d.

Proof. First, suppose that indices i, j ∈ [n] are such that (i, j) are not adjacent in G. By
the definition of the vectors, for every l ∈ [d], we have vi,l + vj,l > 1. Thus, by Lemma 2,
vi,vj do not fit in 1d. Thus, if a subset of vertices S is not a clique, then the corresponding
d-dimensional rectangles do not fit in the d-dimensional unit cube.

Now, we define the positions p1,p2, . . . ,pn ∈ [0, 1]d as follows:

pi,j =
{

0, if i 6= j

0.6, if i = j.
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Suppose that (i, j) ∈ E. Then, we have [pi,i, pi,i + vi,i) ∩ [pj,i, pj,i + vj,i) = φ. Thus,
[pi,pi + vi)∩ [pj ,pj + vj) = φ. Hence, if a subset S = {i1, i2, . . . , is} is a clique in G, then
the cuboids [pi1 ,pi1 + vi1), . . . , [pis ,pis + vis) are all mutually disjoint. In other words, the
set of rectangles vi1 ,vi2 , . . . ,vis fit in the d-dimensional unit cube. J

Thus, the minimum number of cubes needed to cover all the rectangles is equal to the
chromatic number of G. Now, using the n1−ε hardness for graph coloring by Feige and
Kilian [10] we have the following result,

I Theorem 1. Geometric Bin Packing is hard to approximate within d1−ε factor for in-
stances with d-dimensional items, for every ε > 0 when d is part of the input unless NP=ZPP.

Finally, as a consequence of the reduction in Lemma 3 we can also conclude there is no
dε-approximation, for some ε > 0, for GBP under the weaker assumption of NP 6= P. This
is because Lund and Yannakakis [13] showed there is no polynomial-time approximation
algorithm with an approximation ratio better than nε, for some ε > 0, for graph coloring,
unless P = NP.

3 Geometric Packing Dimension

We first formally define the geometric packing dimension gpd(F) of a set family F .

I Definition 4 (Geometric Packing Dimension). For a set family F on a finite universe U ,
we say that the geometric packing dimension gpd(F) is the smallest integer d such that there
is an embedding f : U → [0, 1]d from U to d-dimensional axis parallel rectangles such that
for every subset S ⊆ U, S = {s1, s2, . . . , st}, S ∈ F if and only if the set of d-dimensional
rectangles {f(s1), f(s2), . . . , f(st)} fit in 1d. If no such d exists, we say that gpd(F) is
infinite.

3.1 GPD of downward closed set families
Before proving Theorem 2, we prove a couple of lemmas. First, we give a sufficient condition
for three d-dimensional rectangles to fit inside the d-dimensional unit cube.

I Lemma 5. Consider three d-dimensional rectangles v1,v2,v3 ∈ [0, 1]d, and suppose j12 ∈
[d] is such that v1,j12 + v2,j12 ≤ 1, and similarly, define j23 and j13. If |{j12, j23, j31}| ≥ 2,
then the three rectangles fit inside the unit d-dimensional cube.

(a) | {j12, j23, j31} | = 3 (b) | {j12, j23, j31} | = 2

Figure 2 Interaction between v1,v2,v3 from Lemma 5 projected on j12, j23, j31.
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Proof. First, we consider the case when |{j12, j23, j31}| = 3, i.e., the three indices are all
distinct. Then, we give the following positions p1,p2,p3: we set pi,l = 0∀i ∈ [3], l /∈
{j12, j23, j31}, and the rest of the values are set as follows.

p1,j12 = 0
p1,j23 = 0
p1,j31 = v3,j13

p2,j12 = v1,j12

p2,j23 = 0
p2,j31 = 0

p3,j12 = 0
p3,j23 = v2,j23

p3,j31 = 0

With these parameters, we can observe that the three subsets [pi,pi+vi), i ∈ [3] are mutually
disjoint.

Next, we consider the case when |{j12, j23, j31}| = 2 (See Figure 2 for an illustration).
Without loss of generality, suppose that j12 = j31. We give the following positions p1,p2,p3:
we set pi,l = 0∀i ∈ [3], l /∈ {j12, j23}, and the rest of the values are set as follows.

p1,j12 = 0
p1,j23 = 0

p2,j12 = v1,j12

p2,j23 = 0
p3,j12 = v1,j12

p3,j23 = v2,j23

Similar to the above case, we have that the three subsets [pi,pi + vi), i ∈ [3] are mutually
disjoint. J

Finally, we need the following technical lemma.

I Lemma 6. Suppose v1,v2,v3 ∈ [0, 1]d be three d-dimensional rectangles such that there
exists j ∈ [d] such that vi1,j + vi2,j ≤ 1 for every i1, i2 ∈ [3], i1 6= i2, and vi1,l + vi2,l > 1 for
every i1, i2 ∈ [3], i1 6= i2, l ∈ [d], l 6= j. Then, v1,j + v2,j + v3,j ≤ 1 if and only if the three
rectangles fit inside the d-dimensional unit cube.

Proof. Suppose that v1,j + v2,j + v3,j ≤ 1. Then, we give the following positions p1,p2,p3:
we set pi,l = 0∀i ∈ [3], l /∈ {j}, and the rest of the values are set as follows.

p1,j = 0
p2,j = v1,j

p3,j = v1,j + v2,j

We have that the three subsets [pi,pi + vi), i ∈ [3] are mutually disjoint.
Now, suppose that there exist positions p1,p2,p3 such that the three subsets [pi,pi +

vi), i ∈ [3] are mutually disjoint. Consider i1, i2 ∈ [3], i1 6= i2. As vi1,l + vi2,l > 1 for
every l ∈ [d], l 6= j, for [pi1 ,pi1 + vi1) to be disjoint from [pi2 ,pi2 + vi2), we need that
[pi1,j , pi1,l + vi1,l) ∩ [pi1,j , pi1,l + vi1,l) = φ. As this is true for every distinct pair of indices
i1, i2 ∈ [3], we obtain that [pi,j , pi,j + vi,j), i ∈ [3] are mutually disjoint, which proves that∑3
i=1 vi,j ≤ 1. J

We are now ready to prove that there are downward closed set systems without isolated
elements that have infinite packing dimension.

I Theorem 2. There is a set system F that is downward closed and has no isolated elements
such that gpd(F) is not finite.

Proof. Fix an integer n ≥ 2. Our counterexample is the following lines set system F :
1. The elements of the family are U = Fn3 .
2. The set family consists of all the subsets of U of size at most 2, and sets of size 3 of the

form u,u + v,u + 2v, where u,v 6= 0 are elements of U , and the addition of vectors is
the usual coordinatewise modulo 3 addition of F3.
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We claim that gpd(F) is infinite.
Suppose for contradiction that there is a mapping f : U → [0, 1]d from U to d-dimensional

rectangles that is a valid geometric packing dimension embedding. Consider an arbitrary
element a ∈ U , and arbitrary elements b1, b2 ∈ U \ {a}. Let i1 ∈ [d] be such that f(a)i1 +
f(b1)i1 ≤ 1, and similarly define i2. Note that such i1, i2 exist, since {a, b1}, {a, b2} ∈ F ,
and using Lemma 2.

First, we consider the case when i1 6= i2. As there is a coordinate j ∈ [d] where f(b1)j +
f(b2)j ≤ 1, we can infer that {a, b1, b2} ∈ F using Lemma 5. Now, consider an arbitrary
element b3 ∈ U \ {a, b1, b2}. Note that there exists i3 ∈ [d] such that f(a)i3 + f(b3)i3 ≤
1. However, there exists ` ∈ {1, 2} such that i` 6= i3, implying that a, b3, b` are a line,
contradicting the fact that a, b1, b2 form a line in Fn3 .

Now, suppose that for every choice of a, b1, b2 ∈ U , no such distinct i1, i2 exist. Recall
that for every pair of elements a, b ∈ U , there exists l ∈ [d] such that f(a)l + f(b)l ≤ 1. The
absence of such distinct i1, i2 implies that there is a single coordinate j ∈ [d] such that for
every pair of elements a, b ∈ U , f(a)j + f(b)j ≤ 1, and f(a)l + f(b)l > 1 for every l 6= j.
However, using Lemma 6, this implies that f ′ : U → [0, 1] defined as f ′(u) = f(u)j is a valid
1-dimensional geometric embedding of F .

Finally, we prove that gpd(F) 6= 1, finishing the proof. Pick 2 disjoint sets S1, S2 ∈ F
of size 3. Note that such sets are guaranteed to exist, when n ≥ 2. Observe that for any
set S ∈ F of size 3 there exists u ∈ S with f ′(u) ≤ 1/3. Let u1 ∈ S1 and u2 ∈ S2 be
such that f ′(u1) ≤ 1/3 and f ′(u2) ≤ 1/3. Pick d ∈ Fn such that d 6= 0, u2 − u1, u1 − u2.
Now, consider the set S3 = {u1 + d, u2 + d, 2u2 − u1 + d}. Again, let u3 ∈ S3 be such that
f ′(u3) ≤ 1/3. Since d 6= 0, u2 − u1, u1 − u2, u3 6= u1, u2, 2u2 − u1 hence {u1, u2, u3} 6∈ F .
But, f ′(u1) + f ′(u2) + f ′(u3) ≤ 1, a contradiction. J

3.2 GPD of bounded set systems
In this subsection, we prove Theorem 3. First, we define induced matching of a downward
closed set system F .

I Definition 7 (Induced matching). Let F ⊆ 2U be a downward closed set system. We say it
has an induced matching of size k if there exist k mutually disjoint sets U1, U2, . . . , Uk ∈ F ,
each with cardinality at least two, such that for every non-empty set S ∈ F , S ∩ Ui 6= φ for
at most one i ∈ [k]. That is, F restricted to

⋃
i∈[k] Ui is a disjoint union of complete set

systems.

We now show that the existence of a large induced matching implies that the geometric
packing dimension of the set system is large as well.

I Lemma 8. Suppose that F ⊆ 2U has an induced matching of size k. Then, either gpd(F)
is infinite, or is at least k.

Proof. As F has an induced matching of size k, there exist k mutually disjoint sets U1, U2, . . . , Uk ∈
F such that for every S with S ∩ Ui 6= φ, S ∩ Uj 6= φ for i, j ∈ [k], i 6= [k], then S /∈ F .
Suppose for contradiction that gpd(F) < k, i.e., there exists a function f : U → [0, 1]d with
d < k that is a valid geometric packing. First, we consider 2k arbitrary distinct elements
a1, a2, . . . , ak, b1, b2, . . . , bk ∈ U such that ai, bi ∈ Ui for every i ∈ [k]. As {ai, bi} ∈ F ,
using Lemma 2, we can conclude that there exists si ∈ [d] such that f(ai)si + f(bi)si ≤ 1.

We claim that si 6= sj for every i, j ∈ [k], i 6= j. Suppose for contradiction that there
exists i, j ∈ [k], i 6= j such that si = sj . Note that we have f(ai)si + f(bi)si ≤ 1, and
f(aj)si

+ f(bj)si
≤ 1. However, by the induced matching property that {ai, aj} /∈ F ,
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using Lemma 2, we get that f(ai)si
+ f(aj)si

> 1. Similarly, we obtain that f(ai)si
+

f(bj)si
> 1, f(bi)si

+ f(aj)si
> 1 and f(bi)si

+ f(bj)si
> 1, a contradiction. J

We are now ready to prove Theorem 3.

I Theorem 3. Let F ⊆ 2U be a set family that is (k,B)-bounded with k,B constants and
has no isolated elements. Then, either gpd(F) is not finite, or it is at least Ω(|U |).

Proof. Consider the graph G = (V (G), E(G)) defined as follows.
1. The vertex set V (G) is the family of sets in F that have cardinality at least two.
2. There is an edge between two (distinct) sets S1, S2 ∈ F if there exists a set S ∈ F with

S ∩ S1 6= φ, S ∩ S2 6= φ (S could be equal to either S1 or S2 as well).
As there are no isolated elements in F , there are at least |U |k vertices in G. Furthermore, as
each set in F has cardinality at most k and each element appears in at most B elements, the
maximum degree of the graph G is at most (kB)2. Therefore, there must be an independent
setM of size at least |V (G)|

(kB)2+1 in G. By definition, the independent sets in G are exactly the
induced matchings in F . Thus, there is an induced matching of size at least |V (G)|

(kB)2+1 in F .
Hence, by Lemma 8 we get that gpd(F) ≥ |U |

k(k2B2+1) . J
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