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Abstract
The graph matching optimization problem is an essen-
tial component for many tasks in computer vision, such
as bringing two deformable objects in correspondence.
Naturally, a wide range of applicable algorithms have
been proposed in the last decades. Since a common
standard benchmark has not been developed, their per-
formance claims are often hard to verify as evaluation
on differing problem instances and criteria make the
results incomparable. To address these shortcomings,
we present a comparative study of graph matching al-
gorithms. We create a uniform benchmark where we
collect and categorize a large set of existing and publicly
available computer vision graph matching problems in
a common format. At the same timewe collect and cate-
gorize the most popular open-source implementations
of graph matching algorithms. Their performance is
evaluated in a way that is in line with the best practices
for comparing optimization algorithms. The study is
designed to be reproducible and extensible to serve as
a valuable resource in the future.

Our study provides three notable insights: (i) pop-
ular problem instances are exactly solvable in substan-
tially less than 1 second, and, therefore, are insufficient
for future empirical evaluations; (ii) the most popular
baseline methods are highly inferior to the best avail-
ablemethods; (iii) despite theNP-hardness of the prob-
lem, instances coming from vision applications are of-
ten solvable in a few seconds even for graphswithmore
than 500 vertices.

1 Introduction
Finding correspondences between elements of two dis-
crete sets, such as keypoints in images or vertices of 3D
meshes, is a fundamental problem in computer vision
and as such highly relevant for numerous vision tasks,
including 3D reconstruction [49], tracking [64], shape
model learning [29], and image alignment [7], among
others. Graph matching [24,55,63] is a standard way to

address such problems. In graph matching, vertices of
the matched graphs correspond to the elements of the
discrete sets to bematched. Graph edges define the cost
structure of the problem: pairs of matched vertices are
penalized in addition to the vertex-to-vertexmatchings.
This allows to take, e.g., the underlying geometrical re-
lationship between vertices into account, but alsomakes
the optimization problem NP-hard.

Deep graph matching [51] is a modern learning-based
approach, that combines neural networks for comput-
ing matching costs with combinatorial graph matching
algorithms to find a matching. The graph matching
algorithm plays a crucial role in this context, as it has
to provide high-quality solutions within a limited time
budget. The high demand on run-time is also due to
back-propagation learning and graph matching mini-
mization being interleaved and executed togethermany
times during training.

Hence, our work focuses on the optimization part of
the graph matching pipeline. The modeling and learn-
ing aspects are beyond its scope. We evaluate a range
of existing open-source algorithms. Our study compares
their performance on a diverse set of computer vision
problems. The focus of the evaluation lies on both,
speed and objective value of the solution.
Why do we require a benchmark? Dozens of algo-
rithms addressing the graph matching problem have
been proposed in the computer vision literature, see,
e.g., the surveys [24,55,63], and references therein. Most
works promise state-of-the-art performance, which is
persuasively demonstrated by experimental evaluation.
However, (i) results from one article are often incompa-
rable to results from another, since different problem
instances with different costs are used, even if these in-
stances are based on the same image data; (ii) not every
existing method is evaluated on all available problem
instances, even if open-source code is available. Some
methods, especially those with poor performance on
many instances, are very popular as baselines, whereas
better performing techniques are hardly considered in
comparisons; (iii) new algorithms are often only evalu-
ated on easy, small-scale problems. This does not pro-
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vide any information on how these algorithms perform
on larger, more difficult problem instances. For these
reasons, the field of graph matching has, in our view,
not developed as well as it could have done. By provid-
ing a reproducible and extensible benchmark we hope
to change this in the future. Such a benchmark is of par-
ticular importance for the fast-moving field of deep graph
matching, as it helps to select an appropriate, fast solver
for the combinatorial part of the learning pipeline.
Graph matching problem. Let V and ℒ be the two
finite sets, whose elements we want to match to each
other. For each pair 8 , 9 ∈ V and each pair B, ; ∈ ℒ a cost
28B , 9; ∈ R is given. Each pair can be interpreted as an
edge between a pair of vertices of an underlying graph.
This is where the term graph matching comes from. Note
that direct vertex-8-to-vertex-Bmatching costs are defined
by the diagonal elements 28B ,8B of the resulting cost (or
affinity) matrix � = (28B , 9;) with 8B = (8 , B) ∈ V × ℒ,
9; = (9 , ;) ∈ V × ℒ. The diagonal elements are referred
to as unary costs, in contrast to the pairwise costs defined
by non-diagonal entries. The goal of graph matching
is to find a matching, or mutual assignment, between
elements of the sets V and ℒ that minimizes the total
cost for all pairs of assignments. It can be formulated
as the following integer quadratic problem1:

min
G∈{0,1}V×ℒ

∑
8 , 9∈V

∑
B,;∈ℒ

28B , 9; G8B G 9;

s.t.

{
∀8 ∈ V :

∑
B∈ℒ G8B ≤ 1 , and

∀B ∈ ℒ :
∑
8∈V G8B ≤ 1 .

(1)

The vector G defines the matching as G8B = 1 corre-
sponds to assigning 8 to B. The inequalities in (1) allow
for this assignment to be incomplete, i.e., some elements
of both sets may remain unassigned. This is in con-
trast to complete assignments, where each element ofV
is matched to exactly one element of ℒ and vice versa.
Note that complete assignments require |V| = |ℒ|.
Relation to the quadratic assignment problem. The
graph matching problem (1) is closely related to the
NP-hard [50] quadratic assignment problem (QAP) [12],
which is well-studied in operations research [12,15,48].
The QAP only considers complete assignments, i.e.,
|V| = |ℒ| and equality is required in the constraints
in (1). In contrast, in the field of computer vision in-
complete assignments are often required in the model
to allow for, e.g., outliers or matching of images with
different numbers of features. Still, graphmatching and
the QAP are polynomially reducible to each other, see
supplement for a proof.

Themost famousQAPbenchmark is theQAPLIB [11]
containing 136 problem instances. However, the bench-
mark problems in computer vision (CV) substantially
differ from those in QAPLIB both by the feasible set
1 For sets � and � the notation G ∈ �� denotes a vector G whose coor-
dinates take on values from the set � and are indexed by elements
of �, i.e., each element of � corresponds to a value from �.

that includes incomplete assignments, as well as by the
structure of the cost matrix �: (i) CV problems are
usually of a general, more expressive Lawler form [42],
whereas QAPLIB considers factorizable costs 28B , 9; =

58 93B; known as Koopmans-Beckmann form. The latter al-
lows for more efficient specialized algorithms. (ii) the
cost matrix � in QAPLIB is often dense, whereas in
CV problems it is typically sparse, i.e., a large num-
ber of entries in � are 0; (iii) for CV problem instances
the cost matrix � may contain infinite costs on the di-
agonal to prohibit certain vertex-to-vertex mappings;
(iv) QAPLIB problems are different from an optimiza-
tion point of view. For instance, while the classical LP
relaxation [1] is often quite loose for QAPLIB problem
instances, it is tight or nearly tight for typical instances
considered in CV.

Consequently, comparison results on QAPLIB and
CV instances differ significantly. It is also typical for
NP-hard problems that instances coming from differ-
ent applied areas require different optimization tech-
niques. Therefore, a dedicated benchmarking on the
CV datasets is required.
Contributions. Our contribution is three-fold:
(i) Based on open source data, we collected, catego-
rized and generated 451 existing graph matching in-
stances grouped into 11 datasets in a common format.
Most graph matching papers use only a small subset
of these datasets for evaluation. Our format provides
a ready-to-use cost matrix � and does not require any
image analysis to extract the costs. (ii)We collected and
categorized 20 open-source graphmatching algorithms
and evaluated them on the above datasets. During that
we adapted the cost matrix to requirements of partic-
ular algorithms where needed. For each method we
provide a brief technical description. We did not con-
sider algorithmswith no publicly available open source
code. (iii) To allow our benchmark to grow further, we
set up a web site2 with all results. Our benchmark is
reproducible, extensible and follows the best practices
of [6]. We will maintain its web-page in the future and
welcome scientists to add problem instances as well as
algorithms.

Our work significantly excels evaluations in all the
papers introducing the algorithms we study. This im-
plies also to the largest existing comparison [31] so far.
The latter considers only 8 out of the 11 datasets and
evaluates 6 algorithms out of our 20.

2 Background to algorithms

In this section we briefly review the main theoretical
concepts and building blocks of the considered ap-
proaches.

2 The web site for the benchmark is available at https://vislearn.
github.io/gmbench/.
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Linearization. In case all pairwise costs are zero, the
objective in (1) linearizes to

∑
8∈V ,B∈ℒ 28B ,8BG8B , turning (1)

into the incomplete linear assignment problem (iLAP). A
typical way of how the iLAP is obtained in existing
algorithms is by considering the Taylor expansion of the
objective (1) in the vicinity of a given point G. The linear
term of this expansion forms the iLAP objective. The
iLAP can be reduced to a complete linear assignment
problem (LAP) [10], see supplement, and addressed by,
e.g., Hungarian [41] or auction [8] algorithms. Below,
when we refer to LAP this includes both LAP and iLAP
problems.
Birkhoff polytope and permutation matrices. For
|V| = |ℒ| and G ∈ [0, 1]V×ℒ , where [0, 1] denotes the
closed interval from 0 to 1, the constraints

∑
B∈ℒ G8B=1,

∀8 ∈ V, and
∑
8∈V G8B=1, ∀B ∈ ℒ, define the set of

doubly-stochastic matrices also known as Birkhoff polytope.
Its restriction to binary vectors G ∈ {0, 1}V×ℒ is called
the set of permutations or permutation matrices.
Inequality to equality transformation. By adding slack
or dummy variables, indexed by #, with zero cost in the
objective in (1), the uniqueness constraints in (1) can be
rewritten as equalities forV# :=V ¤∪{#},ℒ# := ℒ ¤∪{#},
and G ∈ [0, 1]V#×ℒ# , where ¤∪ is the disjoint union:

ℬ :=
{
G

���� ∀8 ∈ V :
∑
B∈ℒ# G8B = 1 , and

∀B ∈ ℒ :
∑
8∈V# G8B = 1

}
. (2)

Here, G8# = 1 (or G#B = 1) means that the node 8 (or
label B) is unassigned. Following [65], we refer to the
elements of ℬ as doubly-semi-stochastic matrices.
Doubly-stochastic relaxation. Replacing the integral-
ity constraints G ∈ {0, 1}V×ℒ in (1) with the respective
box constraints G ∈ [0, 1]V×ℒ leads to a doubly-stochastic
relaxation of the graph matching problem.3 Despite the
convexity of its feasible set, the doubly-stochastic re-
laxation is NP-hard because of the non-convexity of its
quadratic objective in general [53].
Probabilistic interpretation. Doubly-stochastic relax-
ations are often motivated from a probabilistic per-
spective, where the individual matrix entries represent
matching probabilities. An alternative probabilistic in-
terpretation is to consider the product graph betweenV
and ℒ, in which the edge weights directly depend on
the cost matrix �. This way, graph matching can be
understood as selecting reliable nodes in the product
graph, e.g., by random walks [17].
Injective and bĳective formulations. Assume |V| ≤
|ℒ|. A number of existing approaches consider an
asymmetric formulation of the graph matching prob-
lem (1), where the uppermost constraint in (1) is ex-
changed for equality, i.e., ∀8 ∈ V :

∑
B∈ℒ G8B = 1. We

call this formulation injective. The strict inequality case
|V| < |ℒ| is also referred to as an unbalanced QAP in the
3 Strictly speaking, the term doubly-stochastic corresponds to the case
when equality constraints are considered in (1). In [65] the inequality
variant is called doubly semi-stochastic but we use doubly-stochastic in
both cases.

literature. Note that to address problems of the general
form (1) by such algorithms, it is necessary to extend
the set ℒ with |V| dummy elements. This is similar to
the reduction from graph matching to QAP described
in the supplement. Since availiable implementations
of multiple considered algorithms are additionally re-
stricted to the case |V| = |ℒ|, i.e. to the classical QAP
as introduced in Section 1, we adopt the term bĳective
to describe the corresponding algorithms and datasets.
Spectral relaxation. The graph matching objective
in (1) can be compactly written as G>�G. Instead of
the uniqueness constraints in (1) the spectral relaxation
considers the non-convex constraint G>G = =. This con-
straint includes all matchings with exactly = assign-
ments, which is of interest when the total number of
assignments = is known, e.g., for the injective formula-
tion where = = |V|. The minimization of G>�G subject
to G>G = = reduces to an eigenvector problem, i.e., find-
ing a vector G corresponding to the smallest eigenvalue
of the matrix �. The latter amounts to minimizing a
Rayleigh quotient [30].
Path following. Another way to deal with the
non-convexity of the graph matching problem is path-
following, represented by [69] in our study. The idea
is to solve a sequence of optimization problems with
objective 5
C (G) = (1 − 
C) 5cvx(G) + 
C 520E(G) for 
C ,
C ∈ 1, . . . , # , gradually growing from 0 to 1. The (ap-
proximate) solution of each problem in the sequence is
used as a starting point for the next. The hope is that
this iterative process, referred to as following the convex-
to-concave path, leads to a solution with low objective
value for the whole problem. The objective for 
1 = 0 is
equal to 5cvx(G) and is convex, therefore it can be solved
to global optimality. The objective for 
# = 1 is equal
to 5cav(G) and is concave. Its local optima over the set of
doubly-stochastic matrices are guaranteed to be binary,
and, therefore, feasible assignments, i.e., they satisfy all
constraints of (1).
Graphical model representation. The graph matching
problem can be represented in the form of amaximum a
posteriori (MAP) inference problem for discrete graph-
ical models [54], known also as Markov random field
(MRF) energy minimization and closely related to valued
and weighted constraint satisfaction problems. As several
graph matching works in computer vision [31, 57, 67],
use this representation, we provide it below in more
detail.

Let (V , ℰ) be an undirected graph, with the finite set
V introduced above being the set of nodes and ℰ ⊆

(V
2
)

being the set of edges. For convenience we denote edges
{8 , 9} ∈ ℰ simply by 8 9. Let the finite set ℒ introduced
above be the set of labels. We associate with each node
8 ∈ V a set ℒ#

8
= ℒ8 ¤∪ {#} with ℒ8 ⊆ ℒ. Like above, #

stands for the dummy label distinct from all labels inℒ to
encode that no label is selected. With each label B ∈ ℒ#

8
in

each node 8 ∈ V the unary cost �8B := 28B ,8B (0 for B = #) is
associated. The case |ℒ8 | < |ℒ| corresponds to infinite
unary costs 28B ,8B = ∞, B ∈ ℒ\ℒ8 , as the respective
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assignments can be excluded from the very beginning.
Likewise, with each edge 8 9 ∈ ℰ and each label pair
B; ∈ ℒ#

8
× ℒ#

9
, the pairwise cost �8B , 9; = 28B , 9; + 2 9; ,8B (0

for B or ; = #) is associated. The graph (V , ℰ) being
undirected implies 8 9 = 98 and �8B , 9; = �9; ,8B . An edge
8 9 belongs to ℰ only if there is a label pair B; ∈ ℒ8 × ℒ 9
such that �8B , 9; ≠ 0. In this way a sparse cost matrix �
may translate into a sparse graph (V , ℰ).
The problem of finding an optimal assignment of la-

bels to nodes, equivalent to the graph matching prob-
lem (1), can thus be stated as

min
H∈Y

[
�(H) :=

∑
8∈V

�8H8 +
∑
8 9∈ℰ

�8H8 , 9H9

]
s. t. ∀ 8 , 9 ∈ V , 8 ≠ 9 : H8 ≠ H 9 or H8 = #

(3)

where Y stands for the Cartesian product
>

8∈V ℒ#
8
,

and H8 = B, B ∈ ℒ8 , is equivalent to G8B = 1 in terms
of (1). Essentially, (3) corresponds to a MAP inference
problem for discrete graphical models [54] with additional
uniqueness constraints for the labels.
ILP representation and LP relaxations. Based on (3)
the graph matching problem can be expressed by a lin-
ear objective subject to linear and integrality constraints
by introducing variables G8B , 9; = G 9; ,8B for each pair of la-
bels B; ∈ ℒ#

8
× ℒ#

9
in neighboring nodes 8 9 ∈ ℰ, and

enforcing the equality G8B , 9; = G8BG 9; with suitable linear
constraints. An integer linear program (ILP) formulation
of the graph matching problem (1) can then be written
as:

min
G∈{0,1}J

∑
8∈V
B∈ℒ#

8

28BG8B +
∑
8 9∈ℰ

B;∈ℒ#
8
×ℒ#

9

(28B , 9; + 2 9; ,8B) G8B , 9; (4)

∀8 ∈ V :
∑
B∈ℒ#

8

G8B = 1 , ∀B ∈ ℒ :
∑
8∈V

G8B ≤ 1 , (5)

∀8 9 ∈ ℰ , ; ∈ ℒ#
9 :

∑
B∈ℒ#

8

G8B , 9; = G 9; . (6)

Here J = {(8 , B) : 8 ∈ V , B ∈ ℒ#
8
} ∪ {(8B , 9;) : 8 9 ∈ ℰ , B ; ∈

ℒ#
8
× ℒ#

9
} denotes the set of coordinates of the vector

G. The formulation (4)-(6) differs from the standard ILP
representation fordiscrete graphicalmodels by the label
uniqueness constraints (5, rightmost). Substitution of
the integrality constraints G ∈ {0, 1}J in (4) with the
box constraints G ∈ [0, 1]J results in the respective LP
relaxation.

3 Graph matching algorithms

Belowwe summarize the graphmatchingmethods that
we consider in our comparison, see Table 1 for an
overview of their characteristics and references.

3.1 Primal heuristics

Linearization based. These methods are based on iter-
ative linearizations of the quadratic objective (1) derived
from its Taylor expansion.

Iterated projected fixed point (ipfp) [46] solves on each
iteration the LAP obtained through linearization in the
vicinity of a current, in general non-integer, assignment.
Between iterations the quadratic objective is optimized
along the direction to the obtained LAP solution, which
yields a new, in general non-integer assignment. We
evaluate two versions of ipfp which differ by their ini-
tialization: ipfpu is initialized with G0 ∈ [0, 1]V×ℒ ,
where G0

8B
= 1/

√
# if 28B ,8B < ∞, and G0

8B
= 0 other-

wise. Here, # := |{8B ∈ V × ℒ | 28B ,8B < ∞}|. ipfps
starts from the result of the spectral matching sm [43]
described below.

Graduated assignment (ga) [27] optimizes the doubly-
stochastic relaxation. Oneach iteration it approximately
solves the LAP obtained through linearization in the
vicinity of a current, in general non-integer, assign-
ment utilizing the Sinkhorn algorithm [40] for a given
fixed temperature. The obtained approximate solution
is used afterwards as the new assignment. The temper-
ature is decreased over iterations to gradually make the
solutions closer to integral.

Fast approximate quadratic programming (fw) [62] con-
siders the Frank-Wolfe method [25] for optimizing over
the set ℬ, c.f. (2). Each iteration first solves a LAP to
find the optimum of the linearization at the current so-
lution, followed by a line search in order to find the best
convex combination of the current and the new solu-
tion. To obtain an integer solution, the objective of the
LAP solution is evaluated in each iteration, and the low-
est one among all solutions is kept. The initial LAP is
based on the unary costs only. The implementation [56]
we evaluate is applicable to the general Lawler form of
the problem (1), in contrast to theKoopmans-Beckmann
form addressed in [62].
Norm constraints based. Spectral matching (sm) [43]
uses a spectral relaxation that amounts to a Rayleigh
quotient problem [30] which can be optimized by the
power iteration method. Here, each update comprises
of a simple matrix multiplication and a subsequent
normalization, so that GC is iteratively updated via
GC+1 = −�GC/‖�GC ‖2.
Spectral matching with affine constraints (smac) [21] is

similar to sm, but additionally takes into account affine
equality constraints that enforce one-to-one matchings.
The resulting formulation amounts to a Rayleigh quo-
tient problem under affine constraints, that can effi-
ciently be computed in terms of the eigenvalue decom-
position.

Max-pooling matching (mpm) [18] resembles sm, but it
replaces the sum-pooling implemented in terms of the
matrix multiplication −�G in the power iteration up-
date of SM by a max-pooling operation. With that, only
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fgmd [69] + + + [68]
fm [31] + + [32]
fw [62] + + + [56]
ga [27] + + + + + [20]
ipfps [46] + + + + + + [44]
ipfpu [46] + + + + + [44]
lsm [33] + + + + + [66]
mpm [18] + + + + + [19]
pm [65] + + + + + + [68]
rrwm [17] + + + + + [16]
smac [21] + + + + + + [20]
sm [43] + + + + + + [44]
dd-ls(0/3/4) [59] + + + [38]
fm-bca [31] + + + + [32]
hbp [67] + + + + [66]
mp(-mcf/-fw) [57] + + + [56]

Meaning of properties (‘+’ indicates pres-
ence): IQP: addresses IQP formulation; ILP:
addresses ILP formulation; bijective: ad-
dresses bijective formulation; non-pos.: re-
quires non-positive costs, see Remark 1; 0-
unary: requires zero unary costs; lineariz.:
linearization-based method; norm: imposes
norm-constraints; doubly: addresses doubly-
stochastic relaxation; spectral: solves spec-
tral relaxation; discret.: discretization as in Re-
mark 2; path fol.: path following method; fu-
sion: utilizes fusion; duality: Lagrange duality-
based; SGA: uses dual sub-gradient ascent;
BCA: uses dual block-coordinate ascent; Mat-
lab: implemented in Matlab [reference to
code]; C++: implemented in C++ [reference to
code].

Table 1: Method properties. Purely primal heuristics are separated from the dual methods by a horizontal line.

candidatematcheswith the smallest costs are taken into
account.
Local sparse model (lsm) [33] solves the relaxation

maxG G>�G, s.t. | |G | |21,2 =
∑|V|
8=1

( ∑|ℒ|
:=1 |G8: |

)2
= 1, G ≥ 0.

The ;1,2-norm | |G | |1,2 should encourage the solution of
the above relaxation to be sparse in each rowwhen treat-
ing G as a matrix. This resembles the sparsity property
of permutation matrices, which satisfy | |G | |1,2 = |V|.

Remark 1. All of the norm constraints based algorithms de-
scribed above require non-positive4 costs in order to guaran-
tee convergence of the underlying iterative techniques. This
condition can be w.l.o.g. assumed for any graph matching
problem. The corresponding cost transformation is described
in the supplement.

Probabilistic interpretation based. Reweighted Random
Walks Matching (rrwm) [17] interprets graph matching
as the problem of selecting reliable nodes in an associ-
ation graph, whose weighted adjacency matrix is given
by −�. Nodes are selected through a random walk
that starts from one node and randomly visits nodes ac-
cording to a Markov transition matrix derived from the
edge weights of the association graph. In order to take
into account matching constraints, the authors of [17]
consider a reweighted random walk strategy.
Probabilistic matching (pm) [65] considers a proba-

bilistic formulation of graph matching in which the
quadratic objective is replaced by a relative entropy
objective. It is shown that by doing so one can ob-
tain a convex problem formulation via marginalization,
which is optimized in terms of an iterative successive
projection algorithm.

Remark 2. Most of the primal heuristics considered above
aim to optimize the quadratic objective (1) over a continuous
4Non-negative in original maximization formulations

set such as, e.g., the Birkhoff polytope. The resulting assign-
ment G ∈ RV×ℒ is, therefore, not guaranteed to be integer. As
suggested in [17], to obtain an integer assignment we solve
a LAP with (−G) treated as the cost matrix. We apply this
procedure as a postprocessing step for ipfp, ga, sm, smac,
mpm, lsm, rrwm, and pm. Note that this postprocessing does
not change an integer assignment.

Path following based. Factorized graph matching
(fgmd) [69] proposes an efficient factorization of the cost
matrix to speed-up computations, and is based on the
convex-concave path following strategy, see Section 2.
Individual problems from the path are solved with the
Frank-Wolfe method [25].
Randomized generation and fusion based. Fusion
moves with a greedy heuristic (fm) [31] is based on the
graphical model representation and consists of two
parts: A randomized greedy assignment generation,
and fusion of the assignments. The randomized genera-
tor greedily fixes labels in the nodes in a way that mini-
mizes the objective value restricted to the already fixed
labels. The fusion procedure merges the current as-
signmentwith the next generated one by approximately
solving an auxiliary binaryMAP inference problem uti-
lizing QPBO-I [52]. The merged solution is guaranteed
to be at least as good as the two input assignments.
This property guarantees monotonic improvement of
the objective value.

3.2 Lagrange duality-based techniques
The methods below consider the Lagrange decompo-
sitions [28] of the graph matching problem (1) [59], or
its graphical model representation (3) [31, 57, 67], and
optimize the corresponding dual. The methods differ
in the dual optimization and chosen primal solution
reconstruction algorithms.
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(i) graphical model (ii) LAP (iii) primal

hbp MPLP [26] Hungarian [41] branch&bound
mp(-mcf)

}
anisotropic diffu-
sion [54]

}
network sim-
plex [2]

LAP
mp-fw fw

fm-bca MPLP++ [60] BCA fm

Algorithms used for optimizing the graphical model
and LAP part, as well as technique used to obtain
a primal solution. For LAP in the primal column
the solution of the LAP subproblem is reused as
feasible assignment. Instead of solving the LAP
subproblem, fm-bca performs a series of BCA
steps wrt. the LAP dual variables.

Table 2: Characterization of dual BCA algorithms.

Block-coordinate methods (hbp, mp-*, fm-bca). The
works [31, 57, 67] employ a block-coordinate ascent
(BCA) technique to optimize the dual problem obtained
by relaxing the coupling (6) and label uniqueness con-
straints (5, rightmost). Since the dual is piece-wise lin-
ear, BCA algorithms may not attain the dual optimum,
but may get stuck in a sub-optimal fixed point [9, 54].
Although the elementary operations performed by

these algorithms are very similar, their convergence
speed and attained fixed points differ drastically. In a
nutshell, thesemethodsdecompose theproblem (3) into
the graphical model without uniqueness constraints,
and the LAP problem, as described, e.g., in [31]. Dual
algorithms reparametrize the problem making it more
amenable to primal techniques [54]. Table 2 gives an
overview of the evaluated combinations for (i) optimiz-
ing the dual of the graphical model, (ii) optimizing
the LAP, and (iii) obtaining the primal solution from
the reparametrized costs5, which influence the practi-
cal performance of BCA solvers. Additionally, mp-mcf
and mp-fw tighten the relaxation by considering triples
of graph nodes as subproblems.
Subgradient method (dd-ls*). The algorithms de-
noted as dd-ls* with * being 0, 3 or 4 represent
different variants of a dual subgradient optimization
method [59]. The variant dd-ls0 addresses the relax-
ation equivalent to a symmetrized graphical model for-
mulation, see supplement for a description. This is
achieved by considering the Lagrange decomposition of
the problem into two graphical models, withV and ℒ
being the set of nodes, respectively, and a LAP subprob-
lem. The graphicalmodels are further decomposed into
acyclic ones, i.e. trees, solvable by dynamic program-
ming, see, e.g., [54, Ch.9]. The tree decomposition is not
described in [59], and we reconstructed it based on the
source code [38] and communication with the authors.
As we observed it to be more efficient than themax-flow
subproblems suggested in the paper [59] the latter were
not used in our evaluation.
Variants dd-ls3 and dd-ls4 tighten the relaxation of
dd-ls0 by considering local subproblems of both graphi-
cal models in the decomposition. These are obtained by
reducing the node setsV andℒ to 3 or respectively 4 el-
ements inducing a connected subgraph of the graphical
model, see [59] for details.

5 Reparametrized costs are also known as reduced costs, e.g., in the
simplex tableau.

4 Benchmark

Datasets. The 11 datasets we collected for evaluation of
the graph matching algorithms stem from applications
in computer vision and bio-imaging. All existing graph
matching papers use only a subset of these datasets
for evaluation purposes. Together these datasets con-
tain 451 problem instances. Table 3 gives an overview
of their characteristics. We modified costs in several
datasets to make them amenable to some algorithms,
see supplement. Our modification results in a constant
shift of the objective value for each feasible assignment,
and, therefore, does not influence the quality of the so-
lution.

Below we give a brief description of each dataset.
Along with the standard computer vision datasets with
small-sized problems, hotel, house-dense/sparse,
car, motor and opengmwith |V| up to 52, our collection
contains the middle-sized problems flow, with |V| up
to 126, and the large-scale worms and pairs problems
with |V| up to 565.

Wide baseline matching (hotel, house-dense/sparse)
is based on a series of images of the same synthetic
object with manually selected landmarks from dif-
ferent viewing angles based on the work by [14].
For hotel and house-dense we use the same mod-
els as in [57] published in [58]. house-sparse con-
sists of the same image pairs as house-dense, but
the cost structure is derived following the approach
of [67] that results in significantly sparser problem in-
stances. Graphs with the landmarks as nodes are ob-
tained by Delaunay triangulation. The costs are set
to 28B , 9; = − exp(−(38 9 − 3B;)2/2500)�1

8 9
�2
B;
where 38 9 , 3B;

are Euclidean distances between two landmarks and
�1 ∈ {0, 1}V×V , �2 ∈ {0, 1}ℒ×ℒ are adjacency matrices
of the corresponding graphs. The unary costs are zero.

Keypoint matching (car, motor) contains car and mo-
torbike images from the PASCAL VOC 2007 Chal-
lenge [23] with the features and costs from [47]. We
use the instances available from [32].

Large displacement flow (flow) was introduced by [3]
for key point matching on scenes with large motion.
We use the instances from [32] which use keypoints
and costs as in [57].

OpenGMmatching (opengm) is a set of non-rigid point
matching problems by [39], now part of the OpenGM
Benchmark [36]. We use the instances from [32].
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caltech-large [17] 9 1 + + + 36-219 0.4-2.3 0.55 18.1 [16]
caltech-small [17] 21 12 + + + 9-117 0.4-3 0.99 26.8 [16]
car [23,47] 30 30 + + 19-49 1 2.9 100 [45]
flow [3,57] 6 6 48-126 ≈ 1 0.39 15.8 [4,5]
hotel [14,59] 105 105 + 30 1 12.8 100 [13,58]
house-dense [14,59] 105 105 + 30 1 12.6 100 [13,58]
house-sparse [14,67] 105 105 + + + 30 1 1.5 100 [13]
motor [23,47] 20 20 + + 15-52 1 3.8 100 [45]
opengm [36,39] 4 4 + 19-20 1 74.8 100 [37]
pairs [31,34] 16 0 511-565 ≈ 1 0.0019 3.7 [32]
worms [34] 30 28 558 ≈ 2.4 0.00038 1.6 [35]

Meaning of properties:
#inst.: number of problem instances;
#opt.: number of known optima; bijec-
tive/injective: bi-/injective assignment is
assumed; non-pos.: all costs are non-
positive; 0-unary: datasets with zero unary
costs; |V|: number of elements in V;
|ℒ|/|V|: ratio of the number of elements
in ℒ to the number of elements inV; den-
sity (%): percentage of non-zero elements
in the cost matrix �; diag. dens. (%): per-
centage of non-infinite elements on the di-
agonal of C; data: [references] to problem
instances, images, feature coordinates or
ground truth.

Table 3: Dataset properties. A ‘+’ indicates that all problem instances of the dataset have the respective property.

The caltech dataset was proposed in [17]. The data
available at the project page [16] contains the mutual
projection error matrix � = (38B , 9;), lists of possible as-
signments, and partial ground truth. We reconstructed
the dataset from this data. Unary costs are set to zero.
Pairwise costs for pairs of possible assignments are set
to 28B , 9; = −max(50 − 38B , 9; , 0). We divided the dataset
into caltech-small and caltech-large, where all in-
stances with more than 40000 non-zero pairwise costs
are considered as large.
Worm atlas matching (worms) has the goal to annotate

nuclei of C. elegans, a famous model organism used in
developmental biology, by assigning nuclei names from
a known atlas of the organism. A detailed description
can be found in [34]. We use the instances obtained
from [32] which are originally from [35].
Worm-to-worm matching (pairs) directly matches the

cell nuclei of individual C. elegansworms to each other.
The resulting models are much coarser than those of
the worms dataset. We consider the same 16 problem
instances as [31] using the models from [32].
Evaluation metrics. For fixed-time performance evalu-
ation [6] we restrict run-time (1, 10, 100 s) and evaluate
attained objective values E, lower bound D and, for
datasets with ground truth available, accuracy acc. We
also report the number of optimally solved instances
per dataset.
For fixed-target performance evaluation [6] we mea-

sure the time CB(?) until each solver B solves the prob-
lem ? within an optimality tolerance of 0.1%. For in-
stances with unknown optimum, we consider the best
achieved objective value across all methods as opti-
mum as suggested in [6]. The performance ratio to
the best solver is computed by AB(?) =

CB (?)
min{CB (?):∀B} .

We create a performance profile [6, 22] by computing
�B(�) = 1

|% | · |{AB(?) ≤ � : ∀?}| for each solver B where |% |
denotes the total number of problem instances. Intu-
itively, �B(�) is the probability of solver B being at most
� times slower than the fastest solver.

5 Empirical Results

Fixed-time evaluation presented in Table 4 addresses
small problem instances, whereas Table 5 addresses
mid-size and large problem instances. The perfor-
mance profile for fixed-target evaluation is presented
in Figure 1. More detailed results are available in the
supplement. Results have been obtained by taking the
minimum run-time across five trials on an AMD EPYC
7702 2.0GHz processor. Randomized alogrithms were
made deterministic by fixing their random seed (fm and
fm-bca). We equally treat Matlab and C++ implementa-
tions, in spite of the apparent efficiency considerations.
The reason for this is that the solution quality of all
Matlab algorithms in our evaluation is inferior to the
C++ techniques, even if run-time is ignored.
For small problems we show results for 1 second in

Table 4, as the best methods already solve almost all in-
stances to optimalitywithin this time. The bestmethods
on these datasets are fm, fm-bca and dd-ls0. dd-ls3/4
have higher costs per iteration, and require more than 1
second to arrive at the solution quality of dd-ls0. The
other dual BCA-basedmethods perform almost as good
on all but the opengm dataset, which seems to be the
most difficult dataset amongs the one in Table 4. Apart
from fm pure primal heuristics are unable to compete
with duality-based techniques. The comparison of the
results for house-dense and house-sparse shows that
most of the primal heuristics perform much better on
sparse problems.

For larger problems the most representative times
shown in Table 5 are 1, 10 and 100 seconds, depending
on the dataset. Again, the duality-based methods and
the fm heuristic lead the table. The fm-bca method
consistently attains the best or close to best objective
and accuracy values on all datasets, whereas its lower
bound is often worse than the lower bounds obtained
by the mp-* and dd-ls* methods. In contrast, most of
the primal heuristics as well as hbp fail, and, for brevity,
are omitted in Table 5.
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hotel (1s) house-dense (1s) house-sparse (1s) car (1s) motor (1s) opengm (1s) caltech-small (1s)
opt E acc opt E acc opt E acc opt E acc opt E acc opt E opt E acc

fgmd 0 —* 0 —* 0 —* 0 —* 0 —* 0 —* 0 —*
fm 97 -4292 100 100 -3778 100 100 -67 100 77 -69 88 90 -63 93 100 -171 52 -8906 58
fw 97 -4288 99 100 -3778 100 0 0 0 7 -63 63 20 -58 70 0 -152 0 0 0
ga 0 947 15 0 3491 8 100 -67 100 57 -68 84 55 -62 90 50 -167 0 —*
ipfps 0 1051 14 0 3654 8 100 -67 100 10 -65 80 25 -61 85 0 -95 19 -8983 67
ipfpu 0 1062 15 0 3659 8 100 -67 100 7 -60 69 15 -58 77 0 -86 10 -8829 62
lsm 0 —* 0 —* 46 -65 96 0 -51 52 10 -52 64 0 -67 0 —*
mpm 43 -2585 78 0 1260 53 0 -60 90 7 —* 5 —* 0 -94 0 —*
pm 0 775 33 0 3262 18 0 -54 83 0 -35 23 0 -35 32 0 -83 0 -6510 51
rrwm 0 744 15 0 2895 10 100 -67 100 37 -68 87 50 -62 89 0 -154 5 —*
sm 0 1086 13 0 3789 9 96 -67 100 7 -63 76 40 -60 87 0 -101 0 -3932 36
smac 1 -1571 61 0 2817 31 37 -44 63 0 -52 52 10 -52 66 0 -84 0 -6196 42
dd-ls0 100 -4293 100 100 -3778 100 100 -67 100 97 -69 91 100 -63 97 50 -160 43 -7414 58
dd-ls3 100 -4293 100 100 -3778 100 96 -66 100 47 -57 74 65 -57 87 0 -118 33 -6842 57
dd-ls4 98 -4291 100 92 -3763 99 18 -56 86 3 -49 59 30 -52 78 0 -105 24 -6332 54
fm-bca 100 -4293 100 100 -3778 100 100 -67 100 93 -69 92 100 -63 97 75 -170 38 -8927 62
hbp 97 —* 98 —* 100 -67 100 77 —* 95 —* 0 —* 0 —*
mp 93 -4280 99 99 -3777 100 100 -67 100 80 -69 92 90 -63 96 0 -57 14 -7967 59
mp-fw 99 -4292 100 100 -3778 100 100 -67 100 90 -69 91 95 -63 98 0 -150 33 -8886 60
mp-mcf 90 -4245 98 31 -3542 89 100 -67 100 87 -69 91 90 -63 98 0 -57 5 -7882 60

opt: optimally solved instances (%); E: average best objective value; acc: average accuracy corresponding to best objective (%)
—*: method yields no solution for at least one problem instance within the given time interval.

Table 4: Fixed-time evaluation of small problem instances. Maximal run-time per problem instance is 1 second.
Boldface marks best values, except for accuracy since algorithm do not optimize it explicitly and do not have access
to ground truth. Horizontal line separates purely primal from duality-based methods. Accuracy omitted for opengm
as no ground truth available. Dual bounds omitted as most problems are solved optimally.

flow (1s) worms (1s) caltech-large (10s) caltech-large (100s) pairs (10s) pairs (100s)
opt E D opt E D acc E D acc E D acc E D acc E D acc

fm 83 -2838 -3436 93 -48457 -55757 89 -34117 -142829 52 -34125 -142829 52 -65625 -76418 54 -65825 -76418 55
fw 67 -2828 – 0 -46974 – 81 0 – 0 0 – 0 -65797 – 54 -65802 – 54
dd-ls0 33 -2345 -2968 0 60443 -163870 26 -32973 -35007 51 -33539 -34959 52 -61482 -73521 41 -62974 -67306 57
dd-ls3 17 -2059 -3030 0 64017 -160520 24 -28653 -42079 49 -33552 -34914 49 -61638 -73528 41 -62426 -67599 50
dd-ls4 0 -2062 -3090 0 65731 -160409 24 -25599 -62120 46 -30148 -38880 51 -61634 -74053 41 -61634 -70214 41
fm-bca 83 -2838 -2898 93 -48460 -48514 89 -34040 -48223 51 -34073 -48217 51 -65567 -70163 55 -65913 -69003 58
mp 33 -2628 -2887 0 —* -32017 -46070 48 -32069 -46066 48 -64150 -68255 57 -64380 -68136 57
mp-fw 83 —* 0 —* -34237 -48882 51 -34277 -45923 51 —* —*
mp-mcf 33 -2521 -2892 0 —* -30362 -46630 47 -30737 -43833 47 -63990 -68318 56 -64174 -68053 57
opt, E, acc, —*: same as in Table 4; D: best attained lower bound if applicable, i.e., for dual methods, otherwise –

Table 5: Fixed-time evaluation of mid-size and large problem instances. Only the best performing algorithms are
shown. Notation is the same as in Table 4. For each dataset the maximum allowed run-time per instance is given in
parentheses. For flow no ground truth is available, so the column acc is omitted. For caltech-large and pairs no
global optima are known, and the column opt is omitted.
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i.e., unlabeled in gray. fm is the best solver in
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ratio is increased to � ≥ 3.7. Overall, fm-bca
solves ≈97% and fm solves ≈95% of all in-
stances. Following are duality-based meth-
ods like mp-fw and dd-ls0.

Figure 1: Run time performance profile [22] across all 451 instances.

Algorithms dd-ls3/4 consider tighter relaxations
than dd-ls0, but are slower, therefore lose in the com-
petition on short time intervals. However, they have
the ability to attain the best lower bounds given longer
runs (� 100s).
There is a significant performance gap between the

closely related hbp, mp-* and fm-bca methods. Fore-
most, this is explained by the method for reconstruct-
ing the primal solution: The fm algorithm used in the
fm-bca solver is solid also as a stand-alone technique,
and significantly outperforms the fw andLAPheuristics
used in the mp-* algorithms. The branch-and-bound
solver used in hbp is quite slow and does not scale
well. The second reason for different performance of
these methods is the specific BCA algorithm used for
the underlying discrete graphical model, c.f. Table 2.
According to the recent study [61], which provides a
unified treatment of the dual BCA methods for dense6
graphical models, MPLP++ performs best, followed by
anisotropic diffusion andMPLP as the slowest method.
Table 5 shows that there is no solution suitable for every
purpose: The speed of fm-bca comes at the price of a
looser lower bound. Nonetheless, combining a primal
heuristic with a dual optimizer consistently improves
upon the results obtained by the heuristic alone. This
holds for fm, but the effect is even more pronounced for
the fw and LAP heuristics.
The fixed-target evaluation in Figure 1 confirms that

the fm and fm-bca method are amongst the best per-
forming solvers. While fm-bcauses fm as primal heuris-
tics with additional dual BCA updates, the overhead of
the latter is visible. After increasing the allowed perfor-
mance ratio for fm-bca to a factor of 3.7, we can expect
better solutions than fm alone. Other top performers are
duality-based algorithms with mp-fw and dd-ls0 being
the closest followers.
6Most of the considered graphical models are dense in terms of [61].

6 Conclusions
Our evaluation shows that: (i) Most instances from the
popular datasets hotel, house, car and motor can be
solved to optimality in well below a second by several
optimization techniques. opengm can also be solved to
optimality in under a second, although it turns out to
be hard for many methods. Therefore, we argue that
these datasets alone are not sufficient anymore to empirically
show efficiency of new algorithms. The most difficult in
our collection are the datasets caltech-* and pairs.
For a comprehensive evaluation of new methods more
datasets are required. (ii) The most popular compari-
son baselines like ipfp, ga, rrwm, pm, sm, smac, lsm, mpm
and fgmd are not competitive, and, therefore, comparison
to these alone should not anymore be considered as sufficient.
(iii) The most efficient methods are duality-based tech-
niques equipped with efficient primal heuristics. In
particular, the fm/fm-bca method currently attains the
best or nearly best objective values for most problem
instances in the shortest time. (iv) Although being NP-
hard in general, the graph matching problem can be
often efficiently solved in computer vision practice. For
many of the considered datasets, including those with
|ℒ| > 1000 and |V| > 500, a reasonable approximate
solution can be attained in less than a second.
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Supplementary Material – A Comparative Study of
Graph Matching Algorithms in Computer Vision

A1 Equivalence Proofs
Theorem 1. The graph matching problem and the quadratic
assignment problem (QAP) are polynomially reducible to
each other.

While the formal proof can be found below, let us de-
velop an intuition for the problem behind Theorem 1.
In general, the main difference between graph match-
ing and the QAP is that while the QAP requires com-
plete matchings, graph matching allows for incomplete
matchings, i.e., not every element of the first set has to
be assigned to one of the second and vice versa. So the
equivalence construction mainly has to deal with these
side constraints.
When transitioning from graphmatching to the QAP,

we go from incomplete to complete matchings. There-
fore, the idea is to extend the two sets, usually calledV
and ℒ, by “dummy” elements to which all previously
unassigned elements can be assignedwithout changing
the total cost, see Figure A1 for an illustration.
On the other hand, when going from the QAP to

graph matching, we switch from a complete to an in-
complete matching. Here, the idea is to shift the cost
structure in such a way that the cost difference of any
two complete matchings stays the same, while at the
same time guaranteeing that any incomplete matching
can be improved by completing it, see Figure A2 for an
illustration.

Proof. We will prove Theorem 1 by construction.
Reduction of graph matching to QAP. Consider the

graph matching problem, c.f. (1),

min
G ∈ {0,1}V×ℒ

∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G8B G 9; (A1)

subject to
∑
B ∈ ℒ

G8B ≤ 1 for all 8 ∈ V , (A2)∑
8 ∈V

G8B ≤ 1 for all B ∈ ℒ

for finite setsV andℒ, and cost function 2 : (V×ℒ)2 →
R.
Let" be the disjoint union ofV andℒ," :=V ¤∪ℒ,

and let F : "4 → R be defined as

F8B , 9; = F(8 , B , 9 , ;) :=

{
28B , 9; , if 8 , 9 ∈ V, B, ; ∈ ℒ ,
0, otherwise.

We can then formulate the QAP

min
H ∈ {0,1}"×"

∑
8 , 9 ∈"
B,; ∈"

F8B , 9; H8B H 9; (A3)

subject to
∑
B ∈"

H8B = 1 for all 8 ∈ ", (A4)∑
8 ∈"

H8B = 1 for all B ∈ ".

Let H★ be a solution of (A3) satisfying (A4), i.e.,

H★ ∈ arg min
H ∈ {0,1}"×"

∑
8 , 9 ∈"
B,; ∈"

F8B , 9; H8B H 9;

s. t.
∑
B ∈"

H8B = 1 for all 8 ∈ ",∑
8 ∈"

H8B = 1 for all B ∈ ".

Now let G★ ∈ {0, 1}V×ℒ be defined as G★
8B

= H★
8B
for all

8 ∈ V, B ∈ ℒ. It remains to show that G★ then is a
solution of (A1) satisfying (A2).

First note that G★ satisfies the constraints (A2) since
for all 8 ∈ V∑

B ∈ ℒ
G★8B =

∑
B ∈ ℒ

H★8B

≤
∑
B ∈"

H★8B as ℒ ⊆ " and H★ ∈ {0, 1}"×" ,

≤ 1 as H★ satisfies (A4).

Analogously,
∑
8 ∈V G

★
8B
≤ 1 for all B ∈ ℒ.

Suppose now that G★ is not a solution of (A1), i.e.,
there exists G′ ∈ {0, 1}V×ℒ satisfying (A2) with∑

8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G
′
8B G
′
9; <

∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G
★
8B G

★
9;
.

We can then define H′ ∈ {0, 1}"×" by

H′8B :=



G′
8B
, if 8 ∈ V, B ∈ ℒ ,

G′
B8
, if 8 ∈ ℒ, B ∈ V ,

1, if 8 ∈ V, B = 8, and
∑
;∈ℒ G

′
8;
< 1,

1, if 8 ∈ ℒ, B = 8, and
∑
9∈V G

′
9B
< 1,

0, otherwise.
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V

ℒ

" =V ¤∪ ℒ

" =V ¤∪ ℒ

graph matching problem

min
G ∈ {0,1}V×ℒ

∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G8B G 9;

s. t. ∀ 8 ∈ V :
∑
B ∈ ℒ

G8B ≤ 1

∀ B ∈ ℒ :
∑
8 ∈V

G8B ≤ 1

solution x★

constructed QAP

min
H ∈ {0,1}"×"

∑
8 , 9 ∈"
B,; ∈"

F8B , 9; H8B H9;

s. t. ∀ 8 ∈ " :
∑
B ∈"

H8B = 1

∀ B ∈ " :
∑
8 ∈"

H8B = 1

solution y★

" :=V ¤∪ ℒ

F8B,9; :=

{
28B, 9; , if 8,9∈V, B,;∈ℒ
0, otherwise

G★
8B

:= H★
8B

Figure A1: From graphmatching to the QAP. The notation corresponds to the notation used in the proof of Theorem
1. The idea behind reducing graph matching to quadratic assignment is to enable completion of the possibly
incomplete matchings feasible for graph matching. This is done by providing “dummy” nodes to which those nodes
can be matched that would otherwise be left unassigned. As potentially all nodes could be unassigned, we provide a
corresponding dummy for each.

Observe that H′ satisfies the constraints (A4) since for
all 8 ∈ "∑

B ∈"
H′8B =

∑
B ∈V

H′8B +
∑
B ∈ ℒ

H′8B

=

{
H′
88
+∑

B ∈ ℒ G
′
8B

if 8 ∈ V∑
B ∈V G

′
B8
+ H′

88
if 8 ∈ ℒ

=

{
1 −∑

; ∈ ℒ G
′
8;
+∑

B ∈ ℒ G
′
8B

if 8 ∈ V∑
B ∈V G

′
B8
+ 1 −∑

9 ∈V G
′
98

if 8 ∈ ℒ

= 1,

and, analogously,
∑
8 ∈" H′

8B
= 1 for all B ∈ ". Then we

obtain∑
8 , 9 ∈"
B,; ∈"

F8B , 9; H
′
8B H
′
9;

=

∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; H
′
8B H
′
9; by definition of F,

=

∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G
′
8B G
′
9; by definition of H′,

<
∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G
★
8B G

★
9;

due to the choice of G′,

=

∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; H
★
8B H

★
9;

by definition of G★,

=

∑
8 , 9 ∈"
B,; ∈"

F8B , 9; H
★
8B H

★
9;

by definition of F,

≤
∑
8 , 9 ∈"
B,; ∈"

F8B , 9; H
′
8B H
′
9; since H★ solution of (A3),

which is a contradiction. Hence, G★ is a solution of (A1).
Therefore, graph matching is polynomially reducible

to the quadratic assignment problem as the size of the
constructed QAP is polynomial in the size of the ini-
tial graph matching problem, and each solution of the
QAP directly induces a solution to the graph matching
problem.

Reduction of QAP to graph matching. Consider the
QAP

min
G ∈ {0,1}"×"

∑
8 , 9 ∈"
B,; ∈"

F8B , 9; G8B G 9; (A5)

subject to
∑
B ∈"

G8B = 1 for all 8 ∈ ", (A6)∑
8 ∈"

G8B = 1 for all B ∈ ",

for a finite set " and cost function F : "4 → R.
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QAP

min
G ∈ {0,1}"×"

∑
8 , 9 ∈"
B,; ∈"

F8B , 9; G8B G 9;

s. t. ∀ 8 ∈ " :
∑
B ∈"

G8B = 1

∀ B ∈ " :
∑
8 ∈"

G8B = 1

solution x★

constructed GM problem

min
G ∈ {0,1}V×ℒ

∑
8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G8B G 9;

s. t. ∀ 8 ∈ V :
∑
B ∈ ℒ

G8B ≤ 1

∀ B ∈ ℒ :
∑
8 ∈V

G8B ≤ 1

solution x★

V := ",ℒ := "

28B,9; :=

F8B,9; −max(F) − 1

cost structure F

8B
∈
"
×
"

9 ; ∈ " ×"

shifted cost structure 2

8B
∈
V
×
ℒ

9; ∈ V × ℒ

0

+

−

Figure A2: From the QAP to graph matching (GM). The notation corresponds to the notation used in the proof
of Theorem 1. The idea behind reducing quadratic assignment to graph matching is to make sure that while the
requirement for complete matchings is dropped, a better objective value can always be obtained when completing a
given incompletematching. This is guaranteed by shifting the cost structure to incur negative costs for all assignments.

We can now formulate the graph matching problem

min
G ∈ {0,1}"×"

∑
8 , 9 ∈"
B,; ∈"

28B , 9; G8B G 9; (A7)

subject to
∑
B ∈"

G8B ≤ 1 for all 8 ∈ ", (A8)∑
8 ∈"

G8B ≤ 1 for all B ∈ ",

whereV = ℒ = ", and 28B , 9; := F8B , 9; −max(F) − 1 for
all 8 , 9 , B , ; ∈ ". Note that by definition 28B , 9; < 0 for all
8 , 9 , B , ; ∈ ".
Let G★ be a solution of (A7) satisfying (A8). We now

want to prove that G★ also satisfies (A6) and is a solution
of (A5).

Suppose that G★ does not satisfy (A6), i.e., there exists
8′ ∈ "with

∑
B ∈" G★

8′B < 1. Then there also exists B′ ∈ "
with

∑
8 ∈" G★

8B′ < 1. Observe that G★
8′B = 0 for all B ∈ ",

and G★
8B′ = 0 for all 8 ∈ " since G★ ∈ {0, 1}"×" .

We can now define G′ as

G′8B =

{
1, if 8 = 8′, B = B′,

G★
8B
, otherwise.

Due to the choice of 8′ and B′, G′ also satisfies the con-
straints (A8). Furthermore,∑

8 , 9 ∈"
B,; ∈"

28B , 9; G
′
8B G
′
9;

=

∑
8 , 9 ∈"
B,; ∈"

28B , 9; G
★
8B G

★
9;
+

∑
8 ,B ∈"
8B≠8′B′

28B ,8′B′ G
★
8B

+
∑
9 ,; ∈"
9;≠8′B′

28′B′ , 9; G
★
9;
+ 28′B′ ,8′B′

<
∑
8 , 9 ∈"
B,; ∈"

28B , 9; G
★
8B G

★
9;
,

since 28B , 9; < 0 for all 8 , 9 , B , ; ∈ ". This contradicts G★
being a solution of (A7). Hence, G★ satisfies (A6).

Suppose now that G★ is not a solution of (A5), i.e.,
there exists G ∈ {0, 1}"×" satisfying (A6) with∑

8 , 9 ∈"
B,; ∈"

F8B , 9; G 8B G 9; <
∑
8 , 9 ∈"
B,; ∈"

F8B , 9; G
★
8B G

★
9;
.

Note that G also satisfies (A8) as it satisfies (A6).
Due to the constraints (A6), G★ and G have exactly |" |

nonzero entries, hencewhen summing over all 8 , 9 , B , ; ∈
", both, G★

8B
G★
9;

and G 8BG 9; , are nonzero exactly |" |2
times. Therefore, we obtain∑

8 , 9 ∈"
B,; ∈"

F8B , 9; G 8B G 9; − |" |2(max(F) + 1)

<
∑
8 , 9 ∈"
B,; ∈"

F8B , 9; G
★
8B G

★
9;
− |" |2(max(F) + 1)
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8 , 9 ∈"
B,; ∈"

(
F8B , 9; −max(F) − 1

)
G 8B G 9;

<
∑
8 , 9 ∈"
B,; ∈"

(
F8B , 9; −max(F) − 1

)
G★8B G

★
9;

∑
8 , 9 ∈"
B,; ∈"

28B , 9; G 8B G 9; <
∑
8 , 9 ∈"
B,; ∈"

28B , 9; G
★
8B G

★
9;

Thiswould contradict G★ being a solution of (A7). Thus,
G★ is a solution of (A5).
This proves that the quadratic assignment problem is

polynomially reducible to graphmatching as the size of
the constructed graphmatching problem is polynomial
in the size of the initial QAP. Each solution of the graph
matching problem directly yields a solution of the QAP.

�

RemarkA1. Note that a polynomial reduction from theQAP
to graph matching can also be obtained by shifting only the
unary costs by a sufficiently large constant, i.e., by defining

28B , 9; =

{
F8B , 9; −  , if 9; = 8B, 8 , 9 , B , ; ∈ "
F8B , 9; , otherwise.

for sufficiently large  . This is relevant in practice as it
only changes the diagonal of the cost matrix, and not the
full matrix. In this way it does not as heavily influence the
sparsity of the cost structure.

The statements in the proof of Theorem 1 hold in
particular if all quadratic terms incur a cost of zero,
so we can reduce the objective function to its linear
component, i.e., the objective function∑

8 , 9 ∈V
B,; ∈ ℒ

28B , 9; G8B G 9;

of the graph matching problem, c.f. (A1) in the proof
above, can be reduced to∑

8 ∈V
B ∈ ℒ

28B G8B ,

which corresponds to the incomplete linear assignment
problem. Similarly, we can replace the objective func-
tion ∑

8 , 9 ∈"
B,; ∈"

F8B , 9; H8B H 9;

of the quadratic assignment problem, c.f. (A5), by∑
8 ,B ∈"

F8B H8B ,

which corresponds to the objective of the linear assign-
ment problem. With this in mind, the corollary below
directly follows from Theorem 1:

Corollary 1. The incomplete linear assignment problem and
the linear assignment problem (LAP) are polynomially re-
ducible to each other.

A2 Symmetry of the Formulations
Note that formulations (3) and (4)-(6) are asymmetric,
since the sets V and ℒ play different roles in the for-
mulations, in contrast to the symmetric formulation (1).
Although swapping the roles of V and ℒ does not in-
fluence the optimal solutions, it influences the problem
structure, such as the sparsity of the resulting graphi-
cal model, as well as the tightness of the correspond-
ing LP relaxation. Symmetrized formulations based on
the graphical model representation use two graphical
models, with the role of V and ℒ being swapped in
one of them [57]. These graphical models, with vari-
ables denoted correspondingly by G and Ĝ, are cou-
pled by additional constraints which enforce either the
unary variables to be equal in both representations, i.e.,
G8B = ĜB8 , or the pairwise variables, i.e., G8B , 9; = ĜB8,; 9 .
The first type of coupling constraints is computation-
ally cheaper, whereas the second one leads to a tighter
LP relaxation equivalent to the standard one considered
in operations research [1]. In our experimental evalua-
tion the second type of constraints is implicitly used by
dd-ls* algorithms.

A3 Data Format (dd-format)
As a unified data format for all datasets we use the one
introduced by [59]. It encodes a sparse representation
of the graph matching problem (1) in plain text. Due to
its origin we refer to it as dd- or dual decomposition data
format. It is used by dd-ls*, as well as fm, fm-bca and
mp-* algorithms as a native input. Table A1 presents an
overview of the file format and shows a description of
of all input line types.

With other algorithms suitable converters are used.
The one for the graphical model representation (3) is
readily available at [32]. For Matlab algorithms a ma-
trix representation of (1) is required. We implemented
this conversion by ourselves and will make the code
available.

A4 Cost Transformations
Different methods have different requirements for the
cost matrix, see columns bĳective, non-positive and zero
unary in Table 1. For datasets where the costs do not
fulfill those requirements, see equivalent columns in
Table 3, the costs have to be transformed to make them
amenable to those algorithms. The transformations are
chosen to in a way such that (i) the cost difference be-
tween any two matchings stays the same; and (ii) the

16



Supplementary Material – A Comparative Study of Graph Matching Algorithms in Computer Vision

input line description

c comment line comments are ignored
p <#V> <#L> <#A> <#E> prologue: |V|, |ℒ|, number of assignments and edges to follow
a <id> <i> <s> <cost> specifies possible assignment 8 → B for 8 ∈ V, B ∈ ℒ (unary terms 28B ,8BG8B)
e <id1> <id2> <cost> specifies edge between two assignments (pairwise terms (28B , 9; + 2 9; ,8B)G8BG 9;)
i0 <i> <x> <y> optional: coordinate of the node 8 ∈ V as a point in the left image
i1 <s> <x> <y> optional: coordinate of the node B ∈ ℒ as a point in the right image
n0 <i> <j> optional: specifies that points 8 , 9 ∈ V are neighbors in the left image
n1 <s> <l> optional: specifies that points B, ; ∈ ℒ are neighbors in the right image

Table A1: Short specification of the dd file format. The format originated in [59]. It encodes a sparse representation
of the graph matching problem (1). Unary costs are encoded as assignments and pairwise costs are encoded as edges
between two assignments. Any lines marked as optional or comments are ignoredwhen building the graphmatching
problem. They were introduced in [59] to ease visualization of matching problems between two images.

Algorithm 1: Transform into non-positive costs.
Input: Graph matching problem (V ,ℒ , 2)
Output: Equivalent non-positive cost vector 2′

/* initialize */

2′← (0 . . . 0)
/* first, shift unary costs */

for 8 ∈ V and B ∈ ℒ do

← max{28B′ | B′ ∈ ℒ and 28B′ ≠ ∞}
2′
8B
← 28B −max{0, 
}

/* second, shift pairwise costs */

for 8 , 9 ∈ V, 8 < 9 and B, C ∈ ℒ do

← max{28B′ , 9;′ | B′, ;′ ∈ ℒ}
2′
8B , 9;
← 28B , 9; −max{0, 
}

sparsity of the cost matrix is preserved as much as pos-
sible. In the following we describe each of the three
transformations. The full implementation is part of our
published source code for the benchmark. Without loss
of generality we assume the cost matrix to be upper
triangular, i.e. 28B , 9; = 0 for 8 , 9 ∈ V, B, ; ∈ ℒ and 8 > 9.
Bĳective Costs. Non-bĳective problem instances are
transformed into the bĳective ones in a way similar to
the described in the proof of Theorem 1 and illustrated
in Fig. A1.
Non-positive Costs. Here we transform the cost matrix
into a form where all finite costs are non-positive. Note
that infinite costswill staypositive, as they are identified
by corresponding algorithms and prohibit selection of
the associatedmatchings. Algorithm 1 shows the trans-
formation which shifts the costs of all bĳective assign-
ments by a fixed constant. Therefore, for non-bĳective
instances we first transform them into the bĳective form
as described in previous paragraph.
Remove Unary Costs. The pm algorithm does not take
into account unary costs, see column zero unary in Ta-
ble 1. We use Algorithm 2 to transform unary costs into
pairwise costs.

Algorithm 2: Transform unary into pairwise costs.
Input: Graph matching problem (V ,ℒ , 2)
Output: Equivalent cost vector 2′ with empty diagonal

/* initialize */

for 8 , 9 ∈ V and B, ; ∈ ℒ do

2′
8B , 9;
←

{
28B , 9; if (8 , B) ≠ (9 , ;)
0 otherwise

/* count how many additional cost entries are

necessary; remember decision with least number

of additional entries in array � */

for 8 ∈ V and B ∈ ℒ do
�8B ← arg min

9∈V
|{; ∈ ℒ | 28B , 9; = 0 and 8 ≠ 9 , B ≠ ;}|

/* distribute unaries across pairwise costs */

for 8 , 9 ∈ V, 8 < 9 and B, ; ∈ ℒ do
if �8B = 9 then

2′
8B , 9;
← 2′

8B , 9;
+ 28B ,8B

if �9; = 8 then
2′
8B , 9;
← 2′

8B , 9;
+ 2 9; , 9;

For the maximization algorithms ipfpu, ipfps, ga,
rrwm, pm, sm, smac, lsm, mpm, fgmd and hbp the sign of
the elements in the cost matrix is flipped additionally
after performing all other operations.

A5 Accuracy computation
For hotel, house-sparse, house-dense, car and motor
the complete ground truth assignments are known.
The accuracy is computed as the number of cor-
rectly assigned nodes over =V . The ground truth for
caltech-small, caltech-large, worms and pairs is
only partial i.e. not every node has a ground truth
label. This is taken into account by computing the ac-
curacy as the number of correctly assigned nodes over
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method command line

dd-ls0 tkrgm --linear --tree --max-iter N
dd-ls3 tkrgm --linear --local 2 --tree --max-iter N
dd-ls4 tkrgm --linear --local 3 --tree --max-iter N
fw graph_matching_frank_wolfe_text_input input.dd
mp graph_matching_mp -i input.dd --roundingReparametrization uniform:0.5
mp-mcf graph_matching_mp_tightening -i input.dd --tighten --tightenInterval 50 \

--tightenIteration 200 --tightenConstraintsPercentage 0.01 \
--tightenReparametrization uniform:0.5 --graphMatchingRounding mcf

mp-fw graph_matching_mp_tightening -i input.dd --tighten --tightenInterval 50 \
--tightenIteration 200 --tightenConstraintsPercentage 0.01 \
--tightenReparametrization uniform:0.5 --graphMatchingRounding fw

fm qap_dd --max-batches N --batch-size 0 --generate 1
fm-bca qap_dd --max-batches N --batch-size 10 --generate 10

Table A2: Command line parameters for all C++ methods.

the number of nodes with available ground truth label.

A6 Run Time Measurement
To make the comparison as fair as possible, we exclude
preprocessing steps and the time it takes to load the
graph matching files into the solver. This means that
the following steps are excluded from our run-time
measurements: (i) Conversion process from the dd file
format into the input format of the solvers; (ii) Loading
the file from storage intomemory; (iii)Parsing the input
file; and (iv) Dataset transformation if needed.
Practically,we start the timerdirectly before the solver

starts the optimization routine. For optimization meth-
ods that have not included this functionality, we have
modified the methods accordingly.

A7 Reproducibility
Original Source Code. References with links to the
original source code can be found in columnMatlab and
C++ in Table 1. Note that for the dd-ls*methods we use
the same command line wrapper as used in [31]. The
wrapper allows to select the problem decomposition at
run-time without need for recompilation. The specific
command lines for the C++ programs (see column C++

in Table 1) that have been used in the benchmark are
listed in Table A2.
Matlab Wrappers. We incorporated the implementa-
tions of the Matlab algorithms in our own wrappers in
order to be able to load the datasets and to make the
output standardized. No parameters have to be speci-
fied.
Reproducible Containers. For all methods we build
Linux containers so that the environment as well as the
specific version of the solvers are reproducible. The
container files contain instructions for downloading,

processing and building a fixed version of the corre-
sponding methods. The source code of each method is
fetched from the Internet. For the case that source code
is no longer online, we preserve a historical copy of the
repositories. The container build scripts will pin each
method to a specific version or commit id to preserve
reproducibility.
HPC Scripts. For usage in high-performance com-
pute clusters (HPC clusters) we provide a small script
to transform the container images into singluarity im-
age. MostHPC clusters provide tools to easily run these
singularity images. Additionally, we provide SLURM
scheduling scripts so that the benchmark can be repro-
duced easily and quickly.
Project Web Site. The wrappers, container files and
other scripts are publicly available on the project web
site, see https://vislearn.github.io/gmbench/.

A8 Detailed Evaluation Results
More detailed evaluation results are provided on the
following pages. Figure A3 shows run-time perfor-
mance profiles similar to Figure 1 but for each dataset
separately. Tables A3 to A13 show the average results
of each method on each dataset for time limits 1s, 10s,
100s and 300s similar to Table 4 and Table 5.
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Figure A3: Run time performance profile [22] per dataset.
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caltech-small (1s) caltech-small (10s) caltech-small (100s) caltech-small (300s)
opt E D acc opt E D acc opt E D acc opt E D acc

fgmd 0 —* 14 —* 29 —* 43 —*
fm 52 -8906 -43926 58 57 -9040 -43926 62 57 -9050 -43926 63 57 -9050 -43926 63
fw 0 0 – 0 0 0 – 0 0 0 – 0 0 0 – 0
ga 0 —* 5 —* 5 —* 5 —*
ipfps 19 -8983 – 67 19 -8983 – 67 19 -8983 – 67 19 -8983 – 67
ipfpu 10 -8829 – 62 10 -8829 – 62 10 -8829 – 62 10 -8829 – 62
lsm 0 —* 0 0 – 0 0 0 – 0 0 0 – 0
mpm 0 —* 0 —* 0 —* 0 —*
pm 0 -6510 – 51 0 -6510 – 51 0 -6510 – 51 0 -6510 – 51
rrwm 5 —* 5 -8848 – 61 5 -8848 – 61 5 -8848 – 61
sm 0 -3932 – 36 0 -3932 – 36 0 -3932 – 36 0 -3932 – 36
smac 0 -6196 – 42 0 -6196 – 42 0 -6196 – 42 0 -6196 – 42
dd-ls0 43 -7414 -10658 58 48 -8251 -9502 60 48 -8251 -9502 60 48 -8251 -9502 60
dd-ls3 33 -6842 -15159 57 52 -7862 -9904 60 52 -8357 -9466 61 52 -8357 -9466 61
dd-ls4 24 -6332 -18033 54 38 -6919 -13407 53 52 -7878 -9810 60 52 -8324 -9443 61
fm-bca 38 -8927 -12827 62 43 -8943 -12797 62 48 -8953 -12797 61 52 -8960 -12797 61
hbp 0 —* 5 —* 10 —* 10 —*
mp 14 -7967 -12191 59 14 -8026 -12183 60 19 -8095 -12182 62 19 -8095 -12182 62
mp-fw 33 -8886 -12793 60 38 -9052 -12244 65 38 -9056 -11217 65 43 -9057 -10818 64
mp-mcf 5 -7882 -12380 60 10 -8030 -11737 59 14 -8324 -10987 57 14 -8435 -10731 57

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A3: Detailed fixed-time evaluation for dataset caltech-small.

caltech-large (1s) caltech-large (10s) caltech-large (100s) caltech-large (300s)
E D acc E D acc E D acc E D acc

fgmd —* —* —* —*
fm -33972 -142829 52 -34117 -142829 52 -34125 -142829 52 -34125 -142829 52
fw 0 – 0 0 – 0 0 – 0 0 – 0
ga —* —* —* —*
ipfps —* —* -33998 – 51 -33998 – 51
ipfpu —* -34216 – 52 -34216 – 52 -34216 – 52
lsm —* —* 0 – 0 0 – 0
mpm —* —* —* —*
pm -29106 – 43 -29106 – 43 -29106 – 43 -29106 – 43
rrwm —* —* —* —*
sm —* -14423 – 28 -14423 – 28 -14423 – 28
smac —* -24183 – 39 -24183 – 39 -24183 – 39
dd-ls0 -26236 -56071 48 -32973 -35007 51 -33539 -34959 52 -33539 -34959 52
dd-ls3 -25226 -72766 44 -28653 -42079 49 -33552 -34914 49 -33557 -34911 49
dd-ls4 -25268 -79327 46 -25599 -62120 46 -30148 -38880 51 -32266 -35577 51
fm-bca -33758 -48582 51 -34040 -48223 51 -34073 -48217 51 -34082 -48217 51
hbp —* —* —* —*
mp -31315 -46170 48 -32017 -46070 48 -32069 -46066 48 -32074 -46066 48
mp-fw -34227 -51526 51 -34237 -48882 51 -34277 -45923 51 -34287 -44424 51
mp-mcf -29813 -48168 45 -30362 -46630 47 -30737 -43833 47 -31230 -42564 48

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A4: Detailed fixed-time evaluation for dataset caltech-large.
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car (1s) car (10s) car (100s) car (300s)
opt E D acc opt E D acc opt E D acc opt E D acc

fgmd 0 —* 83 —* 83 -69 – 89 83 -69 – 89
fm 77 -69 -107 88 90 -69 -107 89 90 -69 -107 89 90 -69 -107 89
fw 7 -63 – 63 7 -63 – 63 7 -63 – 63 7 -63 – 63
ga 57 -68 – 84 57 -68 – 84 57 -68 – 84 57 -68 – 84
ipfps 10 -65 – 80 10 -65 – 80 10 -65 – 80 10 -65 – 80
ipfpu 7 -60 – 69 7 -60 – 69 7 -60 – 69 7 -60 – 69
lsm 0 -51 – 52 0 -51 – 52 0 -51 – 52 0 -51 – 52
mpm 7 —* 7 -57 – 65 7 -57 – 65 7 -57 – 65
pm 0 -35 – 23 0 -35 – 23 0 -35 – 23 0 -35 – 23
rrwm 37 -68 – 87 37 -68 – 87 37 -68 – 87 37 -68 – 87
sm 7 -63 – 76 7 -63 – 76 7 -63 – 76 7 -63 – 76
smac 0 -52 – 52 0 -52 – 52 0 -52 – 52 0 -52 – 52
dd-ls0 97 -69 -69 91 97 -69 -69 91 97 -69 -69 91 97 -69 -69 91
dd-ls3 47 -57 -75 74 87 -68 -70 90 97 -69 -69 91 97 -69 -69 91
dd-ls4 3 -49 -78 59 57 -59 -73 77 87 -67 -70 89 97 -69 -69 92
fm-bca 93 -69 -71 92 97 -69 -71 92 97 -69 -71 92 97 -69 -71 92
hbp 77 —* 87 —* 87 -69 -73 91 87 -69 -73 91
mp 80 -69 -71 92 83 -69 -71 92 87 -69 -71 92 87 -69 -71 92
mp-fw 90 -69 -71 91 97 -69 -70 91 100 -69 -70 91 100 -69 -70 91
mp-mcf 87 -69 -70 91 90 -69 -70 91 93 -69 -70 91 93 -69 -70 91

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A5: Detailed fixed-time evaluation for dataset car.

flow (1s) flow (10s) flow (100s) flow (300s)
opt E D opt E D opt E D opt E D

fgmd 0 —* 0 —* 0 —* 0 —*
fm 83 -2838 -3436 100 -2840 -3436 100 -2840 -3436 100 -2840 -3436
fw 67 -2828 – 67 -2828 – 67 -2828 – 67 -2828 –
ga 0 —* 0 —* 0 -2469 – 0 -2469 –
ipfps 0 -766 – 0 -766 – 0 -766 – 0 -766 –
ipfpu 0 -512 – 0 -512 – 0 -512 – 0 -512 –
lsm 0 —* 0 —* 0 31042 – 0 31042 –
mpm 0 —* 0 —* 0 —* 0 —*
pm 0 -32 – 0 -32 – 0 -32 – 0 -32 –
rrwm 0 —* 0 -226 – 0 -226 – 0 -226 –
sm 0 -139 – 0 -139 – 0 -139 – 0 -139 –
smac 0 0 – 0 0 – 0 0 – 0 0 –
dd-ls0 33 -2345 -2968 67 -2819 -2854 67 -2819 -2854 67 -2819 -2854
dd-ls3 17 -2059 -3030 83 -2821 -2847 83 -2834 -2844 83 -2834 -2844
dd-ls4 0 -2062 -3090 67 -2767 -2863 83 -2835 -2843 83 -2835 -2843
fm-bca 83 -2838 -2898 100 -2840 -2879 100 -2840 -2878 100 -2840 -2878
hbp 0 —* 0 —* 0 —* 0 —*
mp 33 -2628 -2887 33 -2674 -2882 50 -2690 -2881 50 -2690 -2881
mp-fw 83 —* 83 —* 83 -2838 -2870 83 -2838 -2862
mp-mcf 33 -2521 -2892 33 -2719 -2869 50 -2749 -2854 50 -2789 -2851

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A6: Detailed fixed-time evaluation for dataset flow.
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hotel (1s) hotel (10s) hotel (100s) hotel (300s)
opt E D acc opt E D acc opt E D acc opt E D acc

fgmd 0 —* 0 —* 96 -4283 – 98 96 -4283 – 98
fm 97 -4292 -4406 100 97 -4292 -4406 100 97 -4292 -4406 100 97 -4292 -4406 100
fw 97 -4288 – 99 97 -4288 – 99 97 -4288 – 99 97 -4288 – 99
ga 0 947 – 15 0 947 – 15 0 947 – 15 0 947 – 15
ipfps 0 1051 – 14 0 1051 – 14 0 1051 – 14 0 1051 – 14
ipfpu 0 1062 – 15 0 1062 – 15 0 1062 – 15 0 1062 – 15
lsm 0 —* 0 1729 – 12 0 1729 – 12 0 1729 – 12
mpm 43 -2585 – 78 43 -2585 – 78 43 -2585 – 78 43 -2585 – 78
pm 0 775 – 33 0 775 – 33 0 775 – 33 0 775 – 33
rrwm 0 744 – 15 0 744 – 15 0 744 – 15 0 744 – 15
sm 0 1086 – 13 0 1086 – 13 0 1086 – 13 0 1086 – 13
smac 1 -1571 – 61 1 -1571 – 61 1 -1571 – 61 1 -1571 – 61
dd-ls0 100 -4293 -4294 100 100 -4293 -4294 100 100 -4293 -4294 100 100 -4293 -4294 100
dd-ls3 100 -4293 -4294 100 100 -4293 -4293 100 100 -4293 -4293 100 100 -4293 -4293 100
dd-ls4 98 -4291 -4297 100 100 -4293 -4293 100 100 -4293 -4293 100 100 -4293 -4293 100
fm-bca 100 -4293 -4300 100 100 -4293 -4300 100 100 -4293 -4300 100 100 -4293 -4300 100
hbp 97 —* 100 -4293 -4305 100 100 -4293 -4305 100 100 -4293 -4305 100
mp 93 -4280 -4299 99 96 -4285 -4299 99 98 -4289 -4299 100 98 -4289 -4299 100
mp-fw 99 -4292 -4306 100 100 -4293 -4299 100 100 -4293 -4296 100 100 -4293 -4295 100
mp-mcf 90 -4245 -4303 98 93 -4264 -4298 99 95 -4274 -4296 99 97 -4277 -4295 99

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A7: Detailed fixed-time evaluation for dataset hotel.

house-dense (1s) house-dense (10s) house-dense (100s) house-dense (300s)
opt E D acc opt E D acc opt E D acc opt E D acc

fgmd 0 —* 0 —* 77 -3542 – 89 77 -3542 – 89
fm 100 -3778 -4078 100 100 -3778 -4078 100 100 -3778 -4078 100 100 -3778 -4078 100
fw 100 -3778 – 100 100 -3778 – 100 100 -3778 – 100 100 -3778 – 100
ga 0 3491 – 8 0 3491 – 8 0 3491 – 8 0 3491 – 8
ipfps 0 3654 – 8 0 3654 – 8 0 3654 – 8 0 3654 – 8
ipfpu 0 3659 – 8 0 3659 – 8 0 3659 – 8 0 3659 – 8
lsm 0 —* 0 2391 – 18 0 2391 – 18 0 2391 – 18
mpm 0 1260 – 53 0 1260 – 53 0 1260 – 53 0 1260 – 53
pm 0 3262 – 18 0 3262 – 18 0 3262 – 18 0 3262 – 18
rrwm 0 2895 – 10 0 2895 – 10 0 2895 – 10 0 2895 – 10
sm 0 3789 – 9 0 3789 – 9 0 3789 – 9 0 3789 – 9
smac 0 2817 – 31 0 2817 – 31 0 2817 – 31 0 2817 – 31
dd-ls0 100 -3778 -3779 100 100 -3778 -3779 100 100 -3778 -3779 100 100 -3778 -3779 100
dd-ls3 100 -3778 -3779 100 100 -3778 -3778 100 100 -3778 -3778 100 100 -3778 -3778 100
dd-ls4 92 -3763 -3795 99 100 -3778 -3778 100 100 -3778 -3778 100 100 -3778 -3778 100
fm-bca 100 -3778 -3779 100 100 -3778 -3778 100 100 -3778 -3778 100 100 -3778 -3778 100
hbp 98 —* 100 -3778 -3806 100 100 -3778 -3806 100 100 -3778 -3806 100
mp 99 -3777 -3782 100 99 -3777 -3780 100 99 -3777 -3780 100 99 -3777 -3780 100
mp-fw 100 -3778 -3843 100 100 -3778 -3791 100 100 -3778 -3779 100 100 -3778 -3778 100
mp-mcf 31 -3542 -3825 89 85 -3732 -3783 98 99 -3776 -3778 100 100 -3778 -3778 100

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A8: Detailed fixed-time evaluation for dataset house-dense.
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house-sparse (1s) house-sparse (10s) house-sparse (100s) house-sparse (300s)
opt E D acc opt E D acc opt E D acc opt E D acc

fgmd 0 —* 100 -67 – 100 100 -67 – 100 100 -67 – 100
fm 100 -67 -79 100 100 -67 -79 100 100 -67 -79 100 100 -67 -79 100
fw 0 0 – 0 0 0 – 0 0 0 – 0 0 0 – 0
ga 100 -67 – 100 100 -67 – 100 100 -67 – 100 100 -67 – 100
ipfps 100 -67 – 100 100 -67 – 100 100 -67 – 100 100 -67 – 100
ipfpu 100 -67 – 100 100 -67 – 100 100 -67 – 100 100 -67 – 100
lsm 46 -65 – 96 46 -65 – 96 46 -65 – 96 46 -65 – 96
mpm 0 -60 – 90 0 -60 – 90 0 -60 – 90 0 -60 – 90
pm 0 -54 – 83 0 -54 – 83 0 -54 – 83 0 -54 – 83
rrwm 100 -67 – 100 100 -67 – 100 100 -67 – 100 100 -67 – 100
sm 96 -67 – 100 96 -67 – 100 96 -67 – 100 96 -67 – 100
smac 37 -44 – 63 37 -44 – 63 37 -44 – 63 37 -44 – 63
dd-ls0 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100
dd-ls3 96 -66 -67 100 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100
dd-ls4 18 -56 -72 86 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100
fm-bca 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100
hbp 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100
mp 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100
mp-fw 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100
mp-mcf 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100 100 -67 -67 100

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A9: Detailed fixed-time evaluation for dataset house-sparse.

motor (1s) motor (10s) motor (100s) motor (300s)
opt E D acc opt E D acc opt E D acc opt E D acc

fgmd 0 —* 85 -63 – 97 85 -63 – 97 85 -63 – 97
fm 90 -63 -94 93 100 -63 -94 97 100 -63 -94 97 100 -63 -94 97
fw 20 -58 – 70 20 -58 – 70 20 -58 – 70 20 -58 – 70
ga 55 -62 – 90 55 -62 – 90 55 -62 – 90 55 -62 – 90
ipfps 25 -61 – 85 25 -61 – 85 25 -61 – 85 25 -61 – 85
ipfpu 15 -58 – 77 15 -58 – 77 15 -58 – 77 15 -58 – 77
lsm 10 -52 – 64 10 -52 – 64 10 -52 – 64 10 -52 – 64
mpm 5 —* 5 -50 – 56 5 -50 – 56 5 -50 – 56
pm 0 -35 – 32 0 -35 – 32 0 -35 – 32 0 -35 – 32
rrwm 50 -62 – 89 50 -62 – 89 50 -62 – 89 50 -62 – 89
sm 40 -60 – 87 40 -60 – 87 40 -60 – 87 40 -60 – 87
smac 10 -52 – 66 10 -52 – 66 10 -52 – 66 10 -52 – 66
dd-ls0 100 -63 -63 97 100 -63 -63 97 100 -63 -63 97 100 -63 -63 97
dd-ls3 65 -57 -65 87 100 -63 -63 97 100 -63 -63 97 100 -63 -63 97
dd-ls4 30 -52 -68 78 70 -60 -64 93 100 -63 -63 97 100 -63 -63 97
fm-bca 100 -63 -63 97 100 -63 -63 97 100 -63 -63 97 100 -63 -63 97
hbp 95 —* 100 -63 -65 97 100 -63 -65 97 100 -63 -65 97
mp 90 -63 -63 96 95 -63 -63 98 95 -63 -63 98 95 -63 -63 98
mp-fw 95 -63 -63 98 100 -63 -63 97 100 -63 -63 97 100 -63 -63 97
mp-mcf 90 -63 -63 98 95 -63 -63 99 100 -63 -63 97 100 -63 -63 97

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A10: Detailed fixed-time evaluation for dataset motor.
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opengm (1s) opengm (10s) opengm (100s) opengm (300s)
opt E D opt E D opt E D opt E D

fgmd 0 —* 50 —* 75 -166 – 75 -166 –
fm 100 -171 -192 100 -171 -192 100 -171 -192 100 -171 -192
fw 0 -152 – 0 -152 – 0 -152 – 0 -152 –
ga 50 -167 – 50 -167 – 50 -167 – 50 -167 –
ipfps 0 -95 – 0 -95 – 0 -95 – 0 -95 –
ipfpu 0 -86 – 0 -86 – 0 -86 – 0 -86 –
lsm 0 -67 – 0 -67 – 0 -67 – 0 -67 –
mpm 0 -94 – 0 -94 – 0 -94 – 0 -94 –
pm 0 -83 – 0 -83 – 0 -83 – 0 -83 –
rrwm 0 -154 – 0 -154 – 0 -154 – 0 -154 –
sm 0 -101 – 0 -101 – 0 -101 – 0 -101 –
smac 0 -84 – 0 -84 – 0 -84 – 0 -84 –
dd-ls0 50 -160 -172 75 -161 -171 75 -161 -171 75 -161 -171
dd-ls3 0 -118 -185 100 -171 -171 100 -171 -171 100 -171 -171
dd-ls4 0 -105 -214 25 -141 -178 100 -171 -171 100 -171 -171
fm-bca 75 -170 -177 100 -171 -177 100 -171 -177 100 -171 -177
hbp 0 —* 50 -164 -185 50 -164 -185 50 -164 -185
mp 0 -57 -192 0 -57 -192 0 -57 -192 0 -57 -192
mp-fw 0 -150 -192 0 -150 -192 0 -150 -192 0 -150 -192
mp-mcf 0 -57 -192 0 -57 -192 0 -57 -192 0 -57 -192

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A11: Detailed fixed-time evaluation for dataset opengm.

pairs (1s) pairs (10s) pairs (100s) pairs (300s)
E D acc E D acc E D acc E D acc

fgmd —* —* —* —*
fm -64812 -76418 51 -65625 -76418 54 -65825 -76418 55 -65870 -76418 56
fw -65722 – 54 -65797 – 54 -65802 – 54 -65802 – 54
ga —* —* —* —*
ipfps —* —* -35115 – 7 -35115 – 7
ipfpu —* —* -35666 – 7 -35666 – 7
lsm —* —* —* —*
mpm —* —* —* —*
pm —* —* —* —*
rrwm —* —* —* —*
sm —* —* —* -196 – 0
smac —* —* —* —*
dd-ls0 -61482 -76497 41 -61482 -73521 41 -62974 -67306 57 -63454 -67114 60
dd-ls3 -61638 -75656 41 -61638 -73528 41 -62426 -67599 50 -64556 -66704 60
dd-ls4 -61634 -75852 41 -61634 -74053 41 -61634 -70214 41 -62894 -67352 53
fm-bca —* -65567 -70163 55 -65913 -69003 58 -65958 -68909 58
hbp —* —* —* —*
mp —* -64150 -68255 57 -64380 -68136 57 -64418 -68130 57
mp-fw —* —* —* -65794 -69623 55
mp-mcf —* -63990 -68318 56 -64174 -68053 57 -64208 -67748 57

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A12: Detailed fixed-time evaluation for dataset pairs.
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worms (1s) worms (10s) worms (100s) worms (300s)
opt E D acc opt E D acc opt E D acc opt E D acc

fgmd 0 —* 0 —* 0 —* 0 —*
fm 93 -48457 -55757 89 93 -48458 -55757 89 93 -48461 -55757 89 93 -48461 -55757 89
fw 0 -46974 – 81 3 -48032 – 85 3 -48038 – 85 3 -48038 – 85
ga 0 —* 0 —* 0 —* 0 —*
ipfps 0 —* 0 —* 0 -1147 – 1 0 -1147 – 1
ipfpu 0 —* 0 —* 0 0 – 0 0 0 – 0
lsm 0 —* 0 —* 0 —* 0 —*
mpm 0 —* 0 —* 0 —* 0 —*
pm 0 —* 0 —* 0 —* 0 —*
rrwm 0 —* 0 —* 0 —* 0 —*
sm 0 —* 0 —* 0 -6453 – 6 0 -6453 – 6
smac 0 —* 0 —* 0 —* 0 —*
dd-ls0 0 60443 -163870 26 0 50517 -148830 25 0 -3982 -58449 58 0 -43824 -48682 87
dd-ls3 0 64017 -160520 24 0 49257 -144842 24 0 11744 -71523 46 0 -40882 -48943 85
dd-ls4 0 65731 -160409 24 0 58300 -153566 25 0 31066 -109434 33 0 12795 -75088 44
fm-bca 93 -48460 -48514 89 93 -48464 -48498 89 93 -48464 -48498 89 93 -48464 -48498 89
hbp 0 —* 0 —* 0 —* 0 —*
mp 0 —* 67 -48391 -48498 89 70 -48393 -48497 89 70 -48393 -48496 89
mp-fw 0 —* 3 —* 57 -48402 -48759 88 83 -48435 -48631 88
mp-mcf 0 —* 3 -47942 -48588 88 3 -48027 -48558 88 3 -48057 -48552 88

opt: optimally solved instances (%); E: average best objective value; D: average best lower bound if applicable;
acc: average accuracy corresponding to best objective (%); —*: method yields no solution for at least one problem instance

Table A13: Detailed fixed-time evaluation for dataset worms.
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