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Abstract—In this work, we investigate a challenging problem,
which has been considered to be an important criterion in
designing codewords for DNA computing purposes, namely
secondary structure avoidance in single-stranded DNA molecules.
In short, secondary structure refers to the tendency of a single-
stranded DNA sequence to fold back upon itself, thus becoming
inactive in the computation process. While some design criteria
that reduces the possibility of secondary structure formation has
been proposed by Milenkovic and Kashyap (2006), the main
contribution of this work is to provide an explicit construction
of DNA codes that completely avoid secondary structure of
arbitrary stem length.

Formally, given codeword length n and arbitrary integer m >
2, we provide efficient methods to construct DNA codes of length
n that avoid secondary structure of any stem length more than
or equal to m. Particularly, when m = 3, our constructions yield
a family of DNA codes of rate 1.3031 bits/nt, while the highest
rate found in the prior art was 1.1609 bits/nt. In addition, for
m > 3 logn+4, we provide an efficient encoder that incurs only
one redundant symbol.

I. INTRODUCTION

DNA computing is an emerging branch of computing that
uses DNA, biochemistry, and molecular biology hardware. The
field of DNA computation started with the following demon-
stration by Adleman in 1994 [1]. In this seminal experiment,
Adleman solved an instance of the directed traveling salesper-
son problem by first representing each city with a synthetic
DNA molecule. Then by allowing the strands to hybridize
in a highly parallel fashion, Adleman obtained the desired
solution. Since then, similar methods have been expanded
to several attractive applications, including the development
of storage technologies [2]–[5], and cell-based computation
systems for cancer diagnostics and treatment [6]. Recently, the
hybridization process was exploited to allow random access in
DNA data storage [7].

In DNA computing, only short single-stranded DNA se-
quences (or oligonucleotide sequences) are used, where each
of them is an oriented word consisting of four bases (or
nucleotides): Adenine (A), Thymine (T), Cytosine (C), and
Guanine (G). A set of encoded DNA sequences (also called
DNA codewords), that satisfies certain special properties (or
constraints) for DNA computing purposes, is called a DNA
code. A broad description of the kinds of constraint problems
that arise in coding for DNA computing was introduced by
Milenkovic and Kashyap in 2006 [8], including constant GC-
content constraint (refers to the percentage of nucleotides

that are either G or C), Hamming distance constraint (that
requires DNA codewords to be sufficiently different among
themselves), and secondary structure formation avoidance
constraint (that prevents DNA sequence to fold back upon
itself, and consequently becoming inactive in the computation
process). Similar considerations were described in [9], [10]
for the design of primer address sequences in random access
of DNA-based data storage systems. While constant GC-
content constraint and Hamming distance constraint have been
extensively investigated [8], [11]–[17], the study for secondary
structure avoidance is much less profound.

For a DNA sequence, a secondary structure is formed
by a chemically active to fold back onto itself by comple-
mentary base pair hybridization (illustrated via Figure 1).
Here, the Watson-Crick complement is defined as: A =
T,T = A,C = G, and G = C. For a sequence
x = x1x2x3 . . . xn−1xn over the DNA alphabet D =
{A,T,C,G}, the reverse-complement of x is defined as
RC(x) = xn xn−1 . . . x3 x2 x1. In Figure 1, sub-sequences
x = ATACC and y = RC(x) = GGTAT of the DNA se-
quence σ bind to each other after pairing of A with T and
G with C, forming a secondary structure with a loop and a
stem of length 5. DNA sequences with secondary structures
are less active in the computation process [8], and hence,
before reading such sequences in a wet lab, they need to
be unfolded, costing more resources and energy. There exist
some simple dynamic programming techniques [18], [19] that
can approximately predict the secondary structures in a given
DNA sequence (for example, see the Nussinov-Jacobson (NJ)
algorithm in [19] as one of the most widely used schemes).
Based on the NJ algorithm, the authors in [8], [13] found
some design criteria that reduce the possibility of secondary
structure formation in a codeword. A natural question is
whether there exists efficient design of DNA constrained codes
that avoid the formation of secondary structures.

It has been shown experimentally that the number of base
pairs in stem regions (or stem length) is one important factor
influencing the secondary structure of a DNA sequence. Given
codeword length n and an integer m > 2, we study the
problem of constructing DNA codes of length n that avoid
secondary structure of any stem length more than or equal to
m. To the best of our knowledge, this work is the first attempt
aimed at providing a rigorous solution for DNA codes avoiding
secondary structure for general stem lengths.
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Fig. 1: DNA secondary structure model. Here, the Watson-Crick complement is: A = T,T = A,C = G, and G = C.

II. PRELIMINARY

In this work, we use D to denote the DNA alphabet,
where D = {A,T,C,G}. Here, we have the Watson-Crick
complement where A = T,T = A,C = G, and G = C.

Given two sequences x and y, we let xy denote the
concatenation of the two sequences.

Throughout this work, given a sequence x of length n, we
say y is a subsequence of length k of x, where k 6 n, if
y = xixi+1 . . . xi+k−1 for some 1 6 i 6 n − k + 1. In
other words, we only consider the subsequences including
consecutive symbols in x. Two subsequences y and z of x are
said to be non-overlapping if we have y = xixi+1 . . . xi+k−1,
z = xjxj+1 . . . xj+`−1, where i > j + `− 1 or j > i+ k− 1.

Definition 1. For a DNA sequence x ∈ Dn, x = x1x2 . . . xn,
the reverse-complement of x, is defined as RC(x) =
xn xn−1 . . . x3 x2 x1.

Definition 2. Given 0 < m 6 n, a DNA sequence x ∈ Dn

is said to be m-secondary structure avoidance (or m-SSA)
sequence if for all k > m, there does not exist any pair of
non-overlapping subsequences y, z of length k of x such that
y = RC(z). A code C is said to be an (n,D;m) SSA code if
for every codeword x ∈ C ∩Dn, we have x is m-SSA.

The following result is immediate.

Lemma 1. Given m,n > 0, if a sequence x ∈ Dn is m-SSA
then x is m′-SSA for all m′ > m.

For a code C ⊆ Dn, the code rate is measured by
the value log |C|/n. Intuitively, it measures the number of
information bits stored in each DNA symbol. Suppose that
we have an infinite family of codes {Cn}∞n=1, where Cn is
a code of length n, then the asymptotic rate of the family is
r , limn→∞

log |Cn|
n . Here, we adopt the notation log to mean

logarithm base two.

Definition 3. Given m > 0, for n > 0, let A(n,D;m) be the
total number of DNA sequences of length n that are m-SSA.
The channel capacity, denoted by cm, is defined by:

cm = lim
n→∞

log A(n,D;m)

n
.

The following result is immediate.

Lemma 2. Given m > 0, let Sm be the set of all DNA
sequences of length m such that, there is no pair of sequences

y, z ∈ Sm, not necessary distinct, such that y = RC(z). We
then have cm 6 1/m log |Sm|.

Observe that the size of Sm can be computed easily for
constant m, a trivial upper bound is that |Sm| 6 4m/2, and
consequently, we obtain c2 6 1.5 and c3 6 1.67.

To construct an (n,D;m) SSA code for arbitrary m > 0 by
concatenation method, one can find the largest set SN for some
suitable value of N , such that, for n = Nk, each codeword
is a concatenation of k sequences of length N from SN

and each concatenation does not create a reverse-complement
subsequence from previous concatenations. The construction
yields a family of DNA codes of rate 1/N log |SN | bits/nt.
For example, for m = 3, Krishna Gopal Benerjee and Adrish
Banerjee [11] constructed an (n,D; 3) SSA code via such a
set S = {AA,CC,AC,CA,TC}.

Theorem 1 (Benerjee and Banerjee [11]). Set S =
{AA,CC,AC,CA,TC}. Let C be the DNA code of length
2n where each codeword is a concatenation of words of length
two from S. We then have C is an (n,D; 3) SSA code, i.e. every
codeword of C is 3-SSA. The size of the code is |C| = 5n, and
the code rate is 1/2 log 5 = 1.1609 bits/nt.

A. Paper Organisation and Our Main Contribution

Since the number of base pairs in stem regions (or stem
length) is one important factor influencing the secondary
structure of a DNA sequence, this work aims at providing
a rigorous solution for (n,D;m) SSA codes given arbitrary
m. The paper is organised as follows.

• Section III presents two efficient constructions of
(n,D;m) SSA codes for arbitrary m > 0. The first
construction is based on block concatenation, which con-
catenates blocks of fixed length m from a predetermined
set. On the other hand, crucial to the second construction
is the concept of symbol-composition constrained codes.
Particularly, when m = 3, the second construction yields
a family of DNA codes of rate 1.3031 bits/nt, which is
higher than the code rate in [11].

• Section IV presents a linear-time encoding method for
(n,D;m) SSA code with only one redundant symbol
whenever m > 3 log n+ 4. The coding method is based
on sequence replacement technique.



III. CONSTRUCTIONS OF (n,D;m) SSA CODES FOR
ARBITRARY m > 0

The first method is based on block concatenation, which
concatenates blocks of length m from a predetermined set.

A. Constructions via Block Concatenation

Construction 1. Given m > 0, n = mk for some integer
k > 0, set t = dm/3e. Let S∗m be the set of all DNA sequences
of length m such that for any pair of sequences x1, x2 ∈ S∗m,
not necessary distinct, there is no pair of subsequences y of x1
and z of x2 of length t such that y = RC(z). Let C be the DNA
code of length n, where each codeword is a concatenation of
k sequences of length m in S∗m.

Theorem 2. The constructed code C from Construction 1 is
an (n,D;m) SSA code.

Proof. We prove the correctness of Theorem 2 by contra-
diction. Suppose that, there exists a codeword c ∈ C, c =
x1x2 . . . xk, where xi ∈ S∗m, and c is not m-SSA. In other
words, there exists two non-overlapping subsequences y,z of
c of length m′ > m such that y = RC(z).

Suppose that y = Y1Y2 where Y1 is a subsequence of
xi, and Y2 is a subsequence of xi+1xi+2 . . . xi+h for some
h > 1. We have z = RC(Y2)RC(Y1). The trivial case is
if h > 1, or Y2 is of length more than m, then xi+1 is
a subsequence of Y2 and RC(xi+1) is a subsequence of z.
Clearly, if RC(xi+1) ≡ xj , we have a contradiction. On the
other hand, if RC(xi+1) = W1W2 where W1 is a subsequence
of xj and W2 is a subsequence of xj+1 for some j, then at
least one subsequence W1 or W2 is of size more than t, we
also have a contradiction. We conclude that h = 1, or Y2 is
simply a subsequence of xi+1.

Now, since y = Y1Y2 is of length m′ > m, at least Y1 > t
or Y2 > t. W.l.o.g, assume that Y1 > t.

We observe that RC(Y1) cannot be a subsequence of any xj
by Construction 1. In other words, RC(Y1) = W1W2 where
W1 is a subsequence of xj and W2 is a subsequence of xj+1

for some j. Similarly, we observe that the length of W1,W2

must be strictly smaller than t, otherwise, for example, if the
length of W1 is more than or equal to t, then two sequences xi
and xj in S∗m contain RC(W1) and W1 as subsequences, we
have a contradiction. Since both the length of W1,W2 must
be strictly smaller than t, causing the length of Y1 is smaller
than 2t, we conclude that the length of Y2 is at least t.

Now, let U = RC(Y2)∩xj+1, the subsequence that belongs
to both xj+1 and RC(Y2), which is of size at least t. We
then have U is a subsequence of xj+1 while RC(U) is a
subsequence of RC(RC(Y2)) = Y2, a subsequence of xi+1.
We then have a contradiction.

In conclusion, we have C is an (n,D;m) SSA code. We
highlight our proof sketch of Theorem 2 in Figure 2. �

Remark 1. Observe that, the set S∗m can be constructed
via exhaustive search with complexity O(2m). In Section IV,
we show that when m is sufficiently large, m > 3 log n +
4 = Θ(log n), there exists an efficient encoding/decoding

Claim 1: When |Y1| > t, we observe that RC(Y1) cannot be
a subsequence of any xj+1.

xi xi+1

. . .. . . Y1 Y2

xj xj+1

. . .. . . RC(Y1)RC(Y2)

 When ,   cannot be a subsequence of any |Y1 | ≥ t RC(Y1) xj+1

Claim 2: When Y1 = W1W2 and RC(Y1) =
RC(W2)RC(W1), we must have |W1| 6 t, |W2| 6 t.

xi xi+1

. . .. . . Y1 = W1W2 Y2

xj xj+1

. . .. . . RC(W1)RC(Y2)

Suppose that  , then .  Y1 = W1W2, RC(Y1) = RC(W2)RC(W1) |W1 | < t, |W2 | < t

RC(W2)

Consequently,  and  form a pair in  that violates the condition  |Y2 | ≥ t (xi+1, xj) S*m
Consequently, |Y2| > t, and we have (xi+1, xj) form a pair in
S∗m that violate the condition.

Fig. 2: Proof Sketch of Theorem 2.

algorithm for (n,D;m) SSA codes with at most one redundant
symbol. Hence, for the case m = o(log n), we can use Con-
struction 1 to construct (n,D;m) SSA codes with complexity
2m = Θ(n).

B. Constructions via Symbol-Composition Constrained Codes

In this subsection, we present an efficient construction
for (n,D;m) SSA codes by simply restricting the symbol-
composition for every subsequence of length m. Particularly,
when m = 3, our method yields a family of DNA codes of
rate 1.3031 bits/nt, which is higher than the code rate in [11].

High Level Description. We select a nucleotide x ∈ D =
{A,T,C,G}, and let y = x ∈ D. For some 0 < k 6 m,
we present an efficient method to construct an (n,D;m)
SSA code C as follows. For every codeword c ∈ C, every
subsequence z of length m of c contains at least k symbols x
while z contains at most (k − 1) symbols y. We refer such a
constraint to as the symbol-composition constraint. It is easy
to verify that such a constructed code C is an (n,D;m) SSA
code. Clearly, suppose on the other hand, there exists a pair
of subsequences z1, z2 of length ` > m in c ∈ C, such that
z2 = RC(z1). It implies that there exists two subsequences of
length m, which are z′1 of z1 and z′2 of z2, and z′2 = RC(z′1).
Since z′1 contains at least k symbols x, we have z′2 = RC(z′1)
must contain at least k symbols y = x. We then have a
contradiction.

The following construction is for m = 3 and k = 1.

Construction 2 (Symbol-Composition Constrained Codes for
m = 3, k = 1). Given n > 0, we select x = A and y =



x = T. Set D∗ = {A,C,G}. Let Cn be the set of all DNA
sequences of length n from alphabet D∗ such that for any
c ∈ Cn, every subsequence of length three of c must contain
an A.

Theorem 3. We have |C1| = 3, |C2| = 9, |C3| = 19, and

|Cn| = |Cn−1|+ 2|Cn−2|+ 4|Cn−3|.

In addition, Cn is an (n,D; 3) SSA code for all n > 0. The
asymptotic rate of this code family is given by log(λ) ≈
1.3031, where λ ≈ 2.4675 is the largest real root of
x3 − x2 − 2x− 4 = 0.

Proof. Consider the code Cn. For a codeword c ∈ Cn, for any
subsequence x of length ` > 3 of c, we have x includes A.
On the other hand, since A = T is not used in c, there is no
reverse-complement of x in c. In conclusion, c is 3-SSA, or
Cn is an (n,D; 3) SSA code.

We now prove the cardinality of Cn. it is easy to verify that
|C1| = 3, |C2| = 9, |C3| = 19. For n > 4, we construct Cn
recursively as follows:

S1
n ={xA : for x ∈ Cn−1}

S2
n ={xAC, xAG : for x ∈ Cn−2}

S3
n ={xACC, xACG, xAGC, xAGG : for x ∈ Cn−3}, and

Cn =S1
n ∪ S2

n ∪ S3
n.

In other words, S1
n is the set formed by concatenating

all sequences in Cn−1 with A, S2
n is the set formed by

concatenating all sequences in Cn−2 with AC or AG, and
lastly, S2

n is the set formed by concatenating all sequences
in Cn−3 with ACC,ACG,AGC, or AGG. It is easy to
verify that Si

n ∩ Sj
n ≡ ∅, and the union S1

n ∪ S2
n ∪ S3

n

includes all possible sequences in Cn. Therefore, we have
|Cn| = |Cn−1|+ 2|Cn−2|+ 4|Cn−3|. �

Construction 2 can be generalized to construct (n,D;m)
SSA codes with k = 1 as follows.

Theorem 4 (Symbol-Composition Constrained Codes for Gen-
eral m, k = 1). Given n,m > 0. Set D∗ = {A,C,G},
and Cn(m) to be the set of all sequences x of length n from
alphabet D∗ such that every subsequence of length m of x
include an A. We then have |Ci(m)| = 3i for 0 6 i 6 m− 1,
and

|Cn(m)| =
m−1∑
j=0

2j |Cn−j−1(m)| for n > m.

We then have Cn(m) is an (n,D;m) SSA code for all n > 0.
The asymptotic rate of this code family is given by log(λ),
where λ is the largest real root of xm −

∑m−1
j=0 2jxm−j = 0.

Remark 2. In general, given m > k > 0, set x = A and y =
x = T. we use Cn(m, k) to denote the set of all sequences c ∈
Dn such that every subsequence z of length m of c contains
at least k symbols A while z contains at most (k−1) symbols
T. As shown earlier, Cn(m, k) is an (n,D;m) SSA code for
all m, k. A natural question is, for a given number m > 0,
what is the value of k, where 1 6 k 6 m, such that the code

Cn(m, k) has the largest cardinality? We defer the study of
Cn(m, k), including the code’s cardinality and the design of
efficient encoding algorithms to map arbitrary DNA sequences
into such a code, to future research work.

IV. CONSTRUCTIONS OF (n,D;m) SSA CODES FOR
m > 3 log n+ 4 WITH ONE REDUNDANT SYMBOL

In this section, we show that when the stem length is
sufficiently large, m > 3 log n + 4 = Θ(log n), there exists
an efficient encoding/decoding algorithm for (n,D;m) SSA
codes with at most one redundant symbol. For simplicity,
we assume that log4 n is an integer, and define the DNA-
representation of an integer as follows.

Definition 4. For a positive integer N , the DNA-representation
of N is the replacement of symbols in the quaternary repre-
sentation of N over Σ4 = {0, 1, 2, 3} by the following rule:
0↔ A, 1↔ T, 2↔ C, and 3↔ G.

Example 1. If N = 100, the quaternary representation of
length 4 of N is 1210, hence, the DNA-representation of
N is TCTA. Similarly, when N = 55, the quaternary
representation of length 4 of N is 0313, thus the DNA-
representation of N is AGTG.

We now present explicit construction of the encoder
ENCSSA and the corresponding decoder DECSSA. Our method
is based on the sequence replacement technique. This method
has been widely used in the literature [21]–[23]. In addition,
we also restrict the length of the repeated patterns of size
2 (also known as pattern length limited (PLL) constraint, as
introduced in [24]).

Construction of ENCSSA. Given n > m > 0, n > 16, and
m > 3 log n + 4. Set m′ = 1.5 log n + 2. The source DNA
sequence x ∈ Dn−1. The encoding algorithm includes three
phases: prepending phase, scanning and replacing phase, and
extending phase.

Prepending phase. The source sequence x ∈ Dn−1 is
prepended with A, to obtain c = Ax of length n. If c is
an m-SSA sequence, then the encoder outputs c. Otherwise,
it proceeds to the next phase.

Scanning and replacing phase. The encoder searches for the
first pair of non-overlapping subsequences y, z of length `1
of c, where `1 > m′, such that y = RC(z), or the first
subsequence u of c of the form u = (x1x2)t whose length
is `2 = 2t > m′ = 1.5 log n + 2, where x1, x2 ∈ D =
{A,T,C,G}.
• If it finds a pair of non-overlapping subsequences y, z,

suppose that c = X1yX2zX3, where X1,X2,X3 are
subsequences of c, and y starts at index i, ends at index
j in c, where j = i + `1 − 1, and z starts at index k in
c. We have i, j, k 6 n− 1.

Type-I Replacement. The encoder sets a pointer PI, start-
ing with symbol T, and PI = Tp1p2p3, where p1,p2,p3

are the DNA-representation of i, j, and k, respectively.
Since p1,p2,p3 are of length log4 n, the pointer sequence



PI is of length 1+3 log4 n = 1+1.5 log n. It then removes
z from c and prepends PI to c. The replacing step can
be illustrated as follows.

X1yX2zX3 → X1yX2X3 → Tp1p2p3X1yX2X3

Noted that the removed sequence z is of length `1 >
m′ = 1.5 log n + 2, while the insertion pointer PI is of
length 1.5 log n + 1. Consequently, such a replacement
reduces the length of the current sequence by at least
one symbol.

• On the other hand, suppose that it finds a subsequence
u of c of the form u = (x1x2)t whose length is
`2 = 2t > m′, where x1, x2 ∈ D = {A,T,C,G}. We
further suppose that c = U1(x1x2)tU2, where U1,U2 are
subsequences of c, and u starts at index i, and ends at
index j in c, where j = i+ `2− 1. We have i, j 6 n− 1.

Type-II Replacement. Similarly, the encoder sets a pointer
PII, starting with symbol C, and PII = Cx1x2q1q2,
where q1, q2 are the DNA-representation of i and j,
respectively. Since q1, q2 are of length log4 n, the pointer
sequence PII is of length 1 + 2 + 2 log4 n = 3 + log n.
It then removes (x1x2)`2 from c and prepends PII to c.
The replacing step can be illustrated as follows.

U1(x1x2)tU2 → U1U2 → Cx1x2q1q2U1U2.

Noted that the removed sequence is of length `2 > m′ =
1.5 log n+ 2, while the insertion pointer PII is of length
log n+3. Hence, such a replacement reduces the length of
the current sequence by at least (0.5 log n− 1) symbols.
Observe that 0.5 log n− 1 > 1 for n > 16.

The encoder repeats the scanning and replacing steps until
the current sequence c contains no pair of non-overlapping
subsequences of length more than or equal to m′ such that
one is the reverse-complement of the other, no subsequence
u of the form u = (x1x2)t whose length is `2 = 2t > m′,
or the current sequence is of length m′ − 1. Note that each
replacement (either Type-I or Type-II) reduces the length of
the current sequence by at least one symbol, and hence, this
procedure is guaranteed to terminate. Here, we also note that
the order of the scanning step is defined according to the
starting index of the corresponding subsequences. In case the
first subsequence y forming a secondary structure, is also the
starting of such a subsequence u, the encoder proceeds to type-
I replacement.

Extending phase. If the length of the current sequence c
is N0 where N0 < n, the encoder appends a suffix of
length N1 = n − N0 to obtain a sequence of length n.
Surprisingly, regardless the choice of the appending suffix,
there is an efficient algorithm to decode the source DNA
sequence uniquely (refer to the construction of DECSSA). Here,
we present one efficient method to generate a suitable suffix
so that the output codeword remains m-SSA.
• If N1 is even, we append s = (AC)N1/2 to the end of c.

• If N1 is odd, we append s = (AC)(N1−1)/2A to the end
of c.

Theorem 5. The encoder ENCSSA is correct. In other words,
ENCSSA(x) is an m-SSA sequence of length n for all x ∈
Dn−1. The redundancy of ENCSSA is one redundant symbol.

Proof. Suppose that c = ENCSSA(x) ∈ Dn, and c = c1s,
where c1 is m′-SSA and the length of the repeated patterns
of size 2 in c1 is of length at most m′ = 1.5 log n+ 2, and s
is the generated suffix of c1 at the extending phase. Consider
an arbitrary sequence y of length ` > 3 log n + 4. Suppose
that y = y1y2, where y1 is a subsequence of c1 while y2 is a
subsequence of s. We have the following cases.

• If y1 is of length less than m′ (particularly including the
case y1 ≡ ∅), hence the length of y2 is more than m′.
Clearly, there is no subsequence z in c1s that y = RC(z),
as the length of the repeated patterns of size 2 in c1 is
of length at most m′.

• If y1 is of length more than or equal to m′, we also
conclude that there is no subsequence z in c = c1z that
y = RC(z) since c1 is m′-SSA. �

We now present the corresponding decoding algorithm.

Construction of DECSSA. From a DNA sequence c of length
n, the decoder scans from left to right. If the first symbol is A,
the decoder simply removes A and identifies the last (n− 1)
symbols as the source sequence. On the other hand,

• if it starts with T, the decoder takes the prefix of length
(1 + 1.5 log n) and concludes that this prefix is a pointer
prepended after a type-I replacement. In other words, the
pointer is of the form Tp1p2p3, where p1,p2,p3, each
is of length log4 n = 0.5 log n. The decoder sets i, j, k to
be the positive integers whose DNA-representations are
p1,p2,p3, respectively and sets y to be the subsequence
containing the symbols from index i to index j. It
removes the pointer, adds z ≡ RC(y) to c at index k.

• if it starts with C, the decoder takes the prefix of length
(3 + log n) and concludes that this prefix is a pointer
prepended after a type-II replacement. In other words,
the pointer is of the form Cx1x2q1q2, where q1, q2, each
is of length log4 n = 0.5 log n. The decoder sets i, j to
be the positive integers whose DNA-representations are
q1, q2, respectively. It then removes the pointer, adds z ≡
(x1x2)(j−i+1)/2 to c at index i.

The decoding procedure terminates when the first symbol is
A, and takes the following (n− 1) symbols as the user data.

Complexity analysis. For codeword of length n, the time
complexity of the encoder (and the corresponding decoder)
is linear in n, which follows from: the number of replacing
operations is at most n−m, which is Θ(n), and the complexity
of the each replacing operation (including the prepending
prefix step or converting quaternary representation to DNA-
representation of an integer) is constant time Θ(1).



V. CONCLUSION

We have presented efficient algorithms to construct DNA
codes that avoid secondary structure of arbitrary stem length.
Particularly, when m > 3 log n + 4, we have provided an
efficient encoder that incurs only one redundant symbol, and
when m = 3, our constructions yield a family of DNA codes
of rate 1.3031 bits/nt, that improve the previous highest code
rate in the literature.
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