
ar
X

iv
:2

30
3.

05
63

1v
1

 [
m

at
h.

C
O

]
 1

0
M

ar
 2

02
3

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring

Districting Plans

Jared Grove1*, Dr. Suely P. Oliveira2, Anthony Pizzimenti3

and Dr. David Stewart1

1Mathematics, University of Iowa, 2 West Washington St, Iowa
City, 52242, Iowa, United States.

2Computer Science, University of Iowa, 2 West Washington St,
Iowa City, 52242, IA, United States.

3Metric Geometry and Gerrymandering Group, Tufts University,
10 Upper Campus Rd, Medford, 02155, MA, United States.

*Corresponding author(s). E-mail(s): jared-grove@uiowa.edu;
Contributing authors: suely-oliveira@uiowa.edu;
anthony@mggg.org; david-e-stewart@uiowa.edu;

Abstract

Researchers and legislators alike continue the search for methods of
drawing fair districting plans. A districting plan is a partition of a
state’s subdivisions (e.g. counties, voting precincts, etc.). By model-
ing these districting plans as graphs, they are easier to create, store,
and operate on. Since graph partitioning with balancing populations
is a computationally intractable (NP-hard) problem most attempts to
solve them use heuristic methods. In this paper, we present a variant
on the k-medoids algorithm where, given a set of initial medoids, we
find a partition of the graph’s vertices to admit a districting plan. We
first use the k-medoids process to find an initial districting plan, then
use local search strategies to fine-tune the results, such as reducing
population imbalances between districts. We also experiment with coars-
ening the graph to work with fewer vertices. The algorithm is tested on
Iowa and Florida using 2010 census data to evaluate the effectiveness.

Keywords: Redistricting, Gerrymandering, Algorithms, Computer Districting

Statements and Declarations

We wish to acknowledge the support of the National Science Foundation for
Anthony Pizzimenti through their grant NSF-1407216.

1

http://arxiv.org/abs/2303.05631v1

Springer Nature 2021 LATEX template

2 A k-medoids Approach to Exploring Districting Plans

(a) (b)

Fig. 1 County map of Iowa given in (1a) and graphical representation of Iowa
given in (1b)

1 Introduction

1.1 Districting Plans

Every 10 years the United States goes through a reapportionment process,
where states may gain or lose seats in the House of Representatives based
on population changes. States with more than one representative may need
to redistrict, or redraw the lines for their congressional districts based on
how the populations have shifted within the state or because the number of
representatives for that state changed.

When a state redistricts, lines must be drawn to divide the state into k dis-
tricts, one for each Congressional seat. This can be represented mathematically
by using a graph or network structure, where the state is a graph G = (V,E)
where V is the set of vertices and E is the set of edges. Each state is composed
of many voter tabulation districts (VTDs) that need to be assigned to districts,
and some states require that larger existing political structures remain intact.
For example, Iowa requires that counties are not split apart. We will refer to
the basic building blocks of a districting plan as tabulation blocks (TBs), which
can represent counties, VTDs, precincts, or any combination of them. If there
are N TBs, they will be represented in G as vertices { vi | i = 1, . . . , N } = V .
The edges in G, {vi, vj} ∈ E, will represent a shared geographical border
between vertices vi and vj . As an example of county level TBs, the state map
and graphical representation of Iowa can be seen in Figure 1.

To build a districting plan, each vertex vj needs to be assigned to a dis-
trict vj ∈ Di in the districting plan {Di | i = 1, . . . , k } which is a partition
of the TBs. The TBs must be assigned to districts such that the districts fit
defined criteria for contiguity, compactness, and population equality. The cri-
teria for contiguity requires a district to be a single connected region without
any holes. The criteria for compactness is less strictly defined, in that a district
is considered compact when it covers the smallest possible geographic region.
This is often interpreted to mean that a district should be as close to square

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 3

or circular as possible. A variety of compactness measures have been used pre-
viously, including Polsby-Popper [1], Reock [2], Schwartzberg [3], Convex Hull
[4], X-Symmetry [4], and Length-Width Ratio [5]. All listed measures return
a compactness value between 0 and 1 with 1 being considered compact and
0 being not compact. Non-compact districts are often long and winding with
a bizarre shape [6], and are often rejected because non-compactness is a hall-
mark of gerrymandered districts. In this work we will be using the Convex
Hull as our compactness measure as it has been used in many court cases [7]
and, as shown in [8], is less affected by choice of map projection. The Convex
Hull measure is defined by the ratio of district area to the area of the mini-
mum convex polygon bounding the district. We will report the compactness
value as the mean of the compactness values of each district in the districting
plan. Lastly, population equality requires that each district has approximately
equal populations. Thus an ideal district would have a population equal to the
total population of the state divided by the number of districts k:

Pop∗ =
1

k

N
∑

i=1

Pop(vi), (1)

where Pop(vi) is the population of the TB represented by vertex vi. In order
to evaluate a districting plan we will compare the population of each district,
Pop(Di) =

∑

j:vj∈Di
Pop(vj) to Pop∗. The deviation of a districting plan will

be the maximum absolute percent deviation of the districts:

Dev = max
i∈{1,...,k}

(

|Pop(Di)− Pop∗|

Pop∗ · 100%

)

(2)

We aim to create an algorithm to generate districting plans with Dev < 1,
which is equivalent to a districting plan that has maximum population devi-
ation of less than 1%. We will do this only using the geographic data and
population information.

1.2 Gerrymandering

While redistricting is a necessary process that can allow the people to be
properly represented in Congress, it can also be manipulated by the agents
that draw the lines. This is known as gerrymandering and can be done to
retain political power, take power away from opponents, or to further various
other political goals. In the worst cases, political officials are essentially able
to select their voters, rather than voter selecting their officials.

The most obvious gerrymanders are often identified by the bizarreness of
their shape [6], for example long narrow districts that wind throughout the
state. These types of districts are often easily identifiable using compactness
measures. However, some gerrymanders are much less obvious to the eye and
can be much harder to identify. To avoid this problem various algorithms have
been proposed to create districting plans, effectively removing politicians and

Springer Nature 2021 LATEX template

4 A k-medoids Approach to Exploring Districting Plans

their agents from the redistricting process. However, algorithm based district-
ing does not necessarily create politically neutral districts as the geographic
and population data can correlate with political affiliation.

Generating districting plans using methods that reduce political and other
bias can also help identify gerrymandering [9]. A gerrymandered districting
plan would have political outcomes (that is, election outcomes) well outside
the range of election outcomes for districting plans created without political
bias. Generating large numbers of districting plans without political bias, and
then determining the expected election outcomes for these generated plans
shows the range of outcomes to be expected where there is no gerrymander.
Expected election outcomes for a given districting plan well outside this range
then becomes strong evidence of a gerrymander

1.3 Other Approaches

The majority of computer-based districting approaches are either sampling or
optimization based methods.

This is because many of the formulations for this type of problem have
been shown to be NP-Complete (Subset Sum [10]).

Sampling based methods are generally concerned with generating many
plans quickly. Often times these are flood fill or multi-kernel methods that start
by randomly selecting several initial centers to iteratively build districts from.
Typically these will completely build one district, then the second, and so on
until there are the proper number of districts. This process has been discussed
and implemented many times [11–14]. A potential issue with this method is
that it can create enclaves, groups of TBs that cannot be added to any district,
and implementations have to monitor this and will restart if enclaves appear.
A further variation of the basic sampling method is mentioned in [15], growing
the districts in simultaneously instead of sequentially. This should keep the
shape of the districts more consistent compared to the sequential version. A
similar method [7], considers all TBs as their own district and combines them
until the correct number of districts has been achieved.

The second family of approaches is based on optimization, and seeks to find
the best plan under some objective function. These can be roughly subdivided
into two more categories; clustering and heuristics.

Clustering algorithms typically follow a k-means or warehouse location
approach to assign TBs to cluster centers while minimizing the sum of squares
distances from the TBs to the assigned cluster center. Several approaches using
these techniques can be found, [16–19]. When following a clustering approach
special care needs to be taken to ensure that the dividing lines do not break up
the TBs that make up the state; some of these legal technicalities are ignored
by certain implementations of these methods (see, for example, [17, 18]).

Heuristic algorithms often involve using a mixed integer linear program
to model districting and find an optimal solution according to some crite-
ria, often minimizing population deviation. They can be solved with various
local searches [20–22], tabu search [22, 23], genetic algorithms [24], simulated

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 5

annealing [22, 25], and many more heuristic approaches. While these can do a
great job of finding plans according to their objective function, there is always
the issue of agreeing on what the plans should optimize for: should they be
focused on minimizing cut edges in the graph, getting the populations exactly
equal, or some other criteria?

A third type of algorithm that seems to have less representation in the
literature uses random walks over the set of districting plans [25, 26]. Random
walks move from one districting plan to another in an attempt to understand
what the solution space of districting plans looks like. These types of methods
need many good quality initial seeds in order to effective sample the solution
space. Combining them with either the sampling or optimization methods can
provide these random walk methods with the starting points they need to
explore the space [26].

1.4 Our Approach

We use a k-medoids algorithm to approach this problem. It is a sampling
method that borrows ideas from some of the optimization methods. We begin
from the graph representation of the state and follow the multikernel procedure
mentioned in Section 1.3. However, instead of following the sequential building
pattern used by most implementation we loosely follow an alternating building
pattern mentioned in [15]. The basics of the k-medoids approach is to start
with k TBs as initial district centers, then alternate between assigning TBs to
the nearest centers and computing the centers of districts. It is similar to the
k-means method for clustering [16–19].

However, instead of using the physical distances between units, we use
graph-based distances. Furthermore, in k-medoids, the centers, or medoids, are
required to be vertices on the graph as opposed to any point in space. Following
the k-medoids process we move into a local search phase. We use the traditional
local search strategies, flip and swap neighborhoods, along with a tabu criteria
to fine-tune solutions. In states with many TBs we also implement a coarsening
strategy to work with fewer TBs, then follow an uncoarsening schedule to allow
for more fine-tuning as better solutions are found. To the authors’ knowledge,
the first publication of this coarsening/uncoarsening strategy for districting
plans is Magkeby and Mosessoon [27]. We explore the implemented algorithms
in more detail in Section 2.

2 Algorithms

The base of the algorithm described here is a k-medoids algorithm, which
alternates between assigning points to clusters based on proximity to a medoid
and computing the medoids of the clusters. However, in the most basic form,
k-medoids algorithms fail to create districts with equal populations. Several
additional steps are added to the basic k-medoids framework to account for
this issue and improve overall performance. Before describing the algorithm as

Springer Nature 2021 LATEX template

6 A k-medoids Approach to Exploring Districting Plans

a whole, it is first useful to walk through these additional steps. These include
various forms of local search as well as graph coarsening and uncoarsening.

2.1 Local Search

With the k-medoids process used here, deviation does not strictly decrease, so
finding a districting plan with a low deviation is not guaranteed.

To increase the likelihood of finding a good solution we look to fine tune the
output of the k-medoids algorithm by making small changes to the resultant
districting plans. These small changes can be thought of as finding neighbor-
ing districting plans. Methods of identifying neighboring districting plans are
known as neighborhood functions.

We consider three types of neighborhood functions - Flip, Swap, and a
Combination Search (CMB). The Flip neighborhood function generates all dis-
tricting plans that have exactly one TB assigned to a different district. The
Swap neighborhood function generates all districting plans that have exactly
two TBs that have mutually changed districts. The CMB neighborhood func-
tion generates all districting plans that are in either the Flip neighborhood or
Swap neighborhood. In general, we will abbreviate an arbitrary neighborhood
function as NF .

An issue that arises with these neighborhood functions is that the number
of neighboring districting plans generated can be very large, making it infea-
sible to enumerate them and find the neighboring districting plan that would
have the lowest deviation.

To get around this, we only generate neighboring districting plans according
to specific criteria. From the initial districting plan we consider all pairs of
neighboring districts {Dm, Dℓ} with Pop(Dm) > Pop(Dℓ). From these we find
the pair of districts with the largest population disparity. We use these districts
differently for each method:

Flip: Find the set of all vertices vi ∈ Dm that share a geographical border with
any vertex in Dℓ and that are not articulation points of the graph of Dm;
articulation points are vertices that when removed from a graph increase
the number of connected components. This will be stored as
FLIP = { (vi, v−1) } where v−1 is a dummy vertex with Pop(v−1) = 0.

Swap: Find the set of all pairs of vertices SWAP = { (vi, vj) | vi ∈ Dm, vj ∈ Dℓ }
such that neither vi nor vj are articulation points of their respective districts,
vi shares a geographical border with a vertex in Dℓ\{vj}, and vj shares a
geographical border with a vertex in Dm\{vi}.

CMB: CMB = FLIP ∪ SWAP. The set of pairs of vertices that satisfy either Flip
or Swap.

The sets of pairs of vertices derived from the above rules represent the
districting plans generated according to the corresponding neighborhood func-
tion, which we will denote NH . If no districting plans were generated, we select
the pair of neighboring districts with the next highest population disparity
until there is at least one districting plan generated.

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 7

(a) (b)

(c) (d)

Fig. 2 Example of Flip neighborhood function. First select Districts that Flip
will be performed on, Dm: and Dℓ: (2a), then find candidate vertices in
Dm: that can be flipped (2b). Next find candidate vertex that minimizes
Equation (3) (2c) and Flip minimizing vertex from Dm to Dℓ (2d)

Once a districting plan is generated, the local search considers all generated
districting plans and selects the one with the minimum population disparity.
This is done by finding

(v∗i , v
∗
j) = argmin

(vi,vj)∈NH

max

(∣

∣

∣

∣

[Pop(Dm)− Pop(vj) + Pop(vj)]− Pop∗

Pop∗

∣

∣

∣

∣

,

∣

∣

∣

∣

[Pop(Dℓ) + Pop(vi)− Pop(vj)]− Pop∗

Pop∗

∣

∣

∣

∣

)
(3)

This pair of vertices represents the districting plan with the minimum
population disparity.

To construct the districting plan we move vi to Dℓ and vj to Dm, if j is
not the dummy node −1. This can be seen in Figure 2 for Flip and Figure 3
for Swap.

Starting from this new districting plan, we repeat the process of finding the
pair of neighboring districts with the largest disparity, generating neighboring

Springer Nature 2021 LATEX template

8 A k-medoids Approach to Exploring Districting Plans

(a) (b)

(c) (d)

Fig. 3 Example of Swap neighborhood function. First select Districts that
Swap will be performed on, Dm: and Dℓ: (3a), then find pairs of candidate
vertices in Dm: and Dℓ: that can be swapped (3b). Next find candidate
vertex pair that minimizes Equation (3) (3c) and Swap minimizing vertex pair
from (3d)

districting plans, finding (v∗i , v
∗
j) according to Equation (3), and changing

districting plans until a districting plan with Dev < 1 is found or until LI
iterations of local search are reached, where LI is a user defined maximum
number of allowed local search iterations.

We noticed that these neighborhood functions could cycle one TB between
a few districts, getting stuck in a loop. To get around this we also included a
tabu list in the search process, with tabu tenure set as 0.1 × LI . This means
that after each successful neighborhood move is made, we store the move in
the tabu list, and cannot repeat it for 0.1 × LI iterations. The entire Local
Search process is presented in Algorithm 1.

2.2 Coarsening and Uncoarsening

There are 27 states with counties whose population is larger than Pop∗ for that
state. Thus, these states cannot be districted at the county level and instead
must be broken down further to the VTD level. This causes the number of
TBs to grow very large, and can greatly slow down our method. For example,

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 9

Algorithm 1 Local Search

1: Choose LI and NF

2: while Dev > 1 and Iterations < LI do

3: Store pairs of neighboring districts and population disparity between
them

4: while a valid move has not been found do

5: Set {Dm, Dℓ} as pair of districts with largest population disparity
6: Find the set of valid, non-tabu moves in NH according to NF

7: if there is a valid move then

8: Make move that minimizes Equation (3)
9: Make move tabu for 0.1× LI iterations

10: else

11: Remove {Dm, Dℓ} from the pairs of neighboring districts
12: end if

13: end while

14: Increment Iteration and compute Dev

15: end while

with Florida there are 67 counties and 9435 VTDs. The original graph has N
vertices to represent the TBs. The user can provide a parameter uc0 ∈ (0, 1] in
order to coarsen G to a graph G0 which has ⌊uc0N ⌋ vertices. To reduce the
number of vertices, the coarsening process randomly selects two neighboring
vertices. If the sum of the populations of these two vertices is less than Pop∗,
the two neighboring (parent) vertices are combined, resulting in a new (child)
vertex.

The child vertex will inherit edges from the union of the edges of the parent
vertices so that the child vertex has the same neighbors as the parent vertices.
The population of the child vertex is the sum of the parents’ populations. As
we coarsen the graph, we store the parent vertices, their populations, edges (or
neighbors), and the order they are combined in, to ensure we can reconstruct
the original graph, G. This coarsening process is repeated until there are only
⌊uc0N ⌋ vertices in the graph. This process can be seen in Figure 4.

In order to rebuild the original graph G from a coarsened graph G0 we use
the following uncoarsening process. First we find the most recently created
child vertex, remove any edges in G0 that connect to the child vertex and then
remove the child vertex from G0. We split the child vertex into it’s parent
vertices and add both of parent vertices, along with adding any edges that
the parent vertices were a part of, into G0. We ensure that the parent vertices
retain their original populations and both inherit the district assignment of
the child vertex. We repeat this until the graph has N nodes again, this will
be the original graph G.

While the coarsening process can help speed up the k-medoids process
by working with fewer vertices, it has the trade-off of working with larger
blocks and does not allow very precise fine tuning, especially in the local search
process. To allow for more fine tuning, instead of a single value uc0, the user

Springer Nature 2021 LATEX template

10 A k-medoids Approach to Exploring Districting Plans

1 2 3

4 5 6

7

8 9 10

1

(a)

1 2 3

c1c1 6

7

8 9 10

1

(b)

1 2

c2c2

c1c1

7

8 9 10

1

(c)

1 2

c2c2

c3c3
7

8 10

1

(d)

1 2

c2c2

c3c3

8
c4c4

1

(e)

Fig. 4 Coarsening Example with uc0 = 0.6. Beginning with graph G which
has N = 10 vertices (4a) and uc0 = 0.6, coarsen to G0 with ⌊uc0N ⌋ = 6
vertices. Randomly select pairs of neighboring vertices and combine them until
there are only 6 vertices remaining. First vertices v4 and v5 are combined to
form child vertex c1 (4b), then vertices v4 and v5 are combined to form child
vertex c1 (4c), then vertices c1 and v9 are combined to form child vertex c3
(4d), lastly v7 and v10 are combined to form child vertex c4 and G0 is reached
in (4e). Colors and hatching are used to show coarsened vertices, with darker
colors representing more parent vertices, northeast lines representing vertices
with two parent vertices, and northwest lines representing vertices with three
parent vertices

can provide an uncoarsening schedule with q uncoarsening steps

UC : 0 < uc0 < uc1 < . . . < ucq−1 < ucq = 1.

This will first coarsenG to G0 with ⌊uc0N ⌋ vertices. Then, instead of uncoars-
ening to G, uncoarsen to G1, a graph with ⌊uc1N ⌋ vertices. At these partially
coarsened steps the local search procedures can be applied to allow for more
fine tuning of the solutions. Continue this process of uncoarsening graph Gi

to Gi+1 for i ∈ {0, . . . , q − 1} and doing a local search until Gq is reached.
Since Gq is the same as G, the original graph will have been reconstructed.
One final local search will be run and the uncoarsening process is complete.
This process can be seen in Figure 5. Since coarsening may not be needed in
every situation, the uncoarsening schedule

UC0 : 1

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 11

1 2

c2

c3

8
c4

1

(a)

11 22

c2c2

c3c3c3

88
c4c4

1

(b)

11 22

c2c2

c3c3c3

88

77

1010

1

(c)

11 22

c2c2

88

77

1010

c1c1

99

1

(d)

11 22

c2c2

88

77

1010

c1c1

99

1

(e)

11 22

88

77

101099

33

44 55 66

1

(f)

Fig. 5 Uncoarsening Example with UC : 0.6, 0.8, 1 on G0 from Figure 4 (5a)
with q = 2 uncoarsening steps. From G0 assign each vertex to a district (5b).
First uncoarsening step removes most recently created child vertex, c4, from
graph and add the parent vertices v7 and v10 along with their respective edges
(5c). Repeat until there are ⌊uc1N ⌋ = ⌊ 0.8 × 10 ⌋ = 8 vertices and G1 has
been found (5d), then reassign vertices to districts through local search (5e).
Repeat until G2 has been found and the graph is uncoarsened

can be used. This has uc0 = ucq = 1 and the graph will be coarsened to
⌊1×N⌋ = N vertices, which is equivalent to not coarsening.

2.3 k-medoids

The final updated k-medoids algorithm begins with the selection of an uncoars-
ening schedule (UC), a maximum number of k-medoids iterations (MI), a
neighborhood function (NF), and a maximum number of local search iterations
(LI). Then G is then coarsened to G0 and k vertices are randomly selected
from G0 to be the intial medoids. Each of these new medoids are considered
a district, while the remaining vertices are considered unassigned. To assign
vertices to districts, the algorithm first determines the district with the small-
est population. Then performs one iteration of a Breadth First Search [28]
from each of the vertices on the border of this minimum population district to
find adjacent vertices. These adjacent vertices are assigned to the district as
they are found, provided they are not already assigned to a district and their
addition will not cause the district population to exceed Pop∗. If there are
no vertices that can be added to the district, the algorithm then moves on to
the next smallest district. If no vertices can be added to the adjacent district

Springer Nature 2021 LATEX template

12 A k-medoids Approach to Exploring Districting Plans

(a)

11 22 33 44

55 66 77

1

(b)

11 22 33 44

55 66 77

1

(c)

Cp1=2 Cp3=4

11 22 33 44

55 66 77

1

(d)

Cp2=3 Cp4=1

Cp7=2

11 22 33 44

55 66 77

1

(e) (f)

Fig. 6 Selecting a new medoid example with Iowa. Begin with medoid v2:
in district: (6a). Use graphical representation (6b) and apply Broder’s

Algorithm to randomly select edges to remove to change graph into a tree (6c).
Dashed lines are used to show the selected edges. Compute length, Cp, for each
path p beginning at medoid v2 (6d). Since Cp3 > Cp1 assign first vertex along
path p3 as new medoid. Compute Cp for each path starting at medoid v3 (6e).
Since there is no path where Cp∗ >

∑

p∈PT,mp∗ Cp the medoid does not change

and the process terminates. Geographical view of new medoid location (6f)

without exceeding Pop∗ then each unassigned vertex is added to the adjacent
district with the smallest population.

When all vertices are assigned to districts, the algorithm then determines
the medoid, m, of each district. This new medoid is selected by first using
Broder’s Algorithm to randomly cut the edges of a given district until it forms
a tree T . We let PT,m be the set of paths in T that originate at m. For each
path p ∈ PT,m we compute the length, Cp, by counting the number of edges
along the path. Then we find the path p∗ such that Cp∗ >

∑

p∈PT,m\p∗ Cp, if it
exists. Next, we find the vertex neighboring m along p∗ and make this vertex
the new medoid by reassigning m. We repeat until there is no path p∗, in that
case the current medoid is the new medoid. This new medoid is sensitive to
which edges are cut in Broder’s Algorithm and since the algorithm determines
the new medoid on T , the medoid may not appear to be visually centered
within the district. An example of the selection process for a new medoids is
diagrammed in Figure 6.

Once a new medoid has been found for each district, compute Dev for
the districting plan. If Dev is below 1 or the algorithm has completed MI

iterations, the k-medoids process is terminated. Otherwise, all vertices are
unassigned from their districts, the iteration variable is incremented, and the
district assignment process begins again. Since this process can cause the

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 13

deviation to increase between iterations, the districting plan with the lowest
deviation across all iterations is stored. Once the algorithm has terminated, LI
iterations of local search are performed on the districting plan with the lowest
deviation. The user defined uncoarsening schedule is then followed to alternate
between uncoarsening and performing a local search until a local search is per-
formed on Gp. The complete algorithm is presented in Algorithm 2. In addition
to the main goal of minimizing the population deviation, this method ensures
the generated districting plans are contiguous. In the k-medoids process the
Breadth First Search construction forces the initial plan to be contiguous as
TBs can only be added to adjacent districts. As each new set of medoids is
found the Breadth First Search is repeated and the districting plans remain
contiguous. In the local search process both Flip and Swap moves maintain
contiguity. A Flip will not move a TB if it is an articulation point, thus keep-
ing the districts contiguous. A Swap move will not move a pair (vi, vj) if either
TBs are articulation points of their respective districts or if they do not share
a border with any other TB in the other district, thus keeping the districts
contiguous. Since the CMB method is just the best between Flip and Swap
moves, it also maintains contiguity. Lastly the uncoarsening process also main-
tains contiguity, as when a child node is split the parent nodes are assigned to
the same district as the child node. The final districting plan criteria is com-
pactness, but this is not something we directly optimize for in our method.
Growing the districts from medoids in the k-medoids process should keep the
districts relatively compact, but we only measure the compactness at the very
end of the algorithm after the plan with the lowest deviation has been found.
This lesser focus on compactness comes from the Indiana Citizens Redistrict-
ing Commission’s 2021 public mapping competition where compactness was
considered less important than keeping cities and counties intact [29].

3 Tests and Results

3.1 Tests

For testing we have chosen to use both Iowa and Florida to evaluate our
method. Iowa because it is one of the simplest nontrivial cases, having only
99 TBs and k = 4 districts. We chose Florida for a more challenging case
with 9435 VTDs and k = 27 districts. Furthermore, Florida has been used
previously in the literature [7] and can allow us to more directly compare to
the method of Chen and Rodden. To maintain existing state boundaries we
added a preprocessing step that combines all VTDs in a county, with total
county population less than Pop∗, to a single TB. With this preprocessing
step we reduced Florida to 4700 TBs while keeping 60 of 67 counties intact.
The population data we used comes from the 2010 census by the United State
Census Bureau [30], [31] and the shape files we used to make the graphs also
come from the United States Census Bureau [32]. As a further note, we will
only consider a pair of TBs neighbors if they share a border with nonzero
length; TBs that only share a corner point are not considered neighbors. The

Springer Nature 2021 LATEX template

14 A k-medoids Approach to Exploring Districting Plans

Algorithm 2 k-Medoids

1: Choose UC, MI , LI , and NF

2: Coarsen the graph to G0

3: Randomly select k vertices to be the initial medoids
4: while Dev > 1 and Iterations < MI do

5: while there are vertices not assigned to a district do
6: WorkingDistrict ← district with minimum population
7: U ← Set of all unassigned vertices adjacent to WorkingDistrict
8: Add vertices of U to WorkingDistrict provided district population

does not exceed Pop∗

9: if no more vertices can be added to any district then
10: Add each unassigned vertex to adjacent district with minimum

population
11: end if

12: end while

13: Compute medoid of each district, these will be medoids in next iteration
14: end while

15: Perform LI iterations of Local Search with NF on districting plan with
smallest deviation

16: for i = 1, . . . , q do

17: Uncoarsen local search output to Gi

18: Perform LI iterations of local search with NF on Gi

19: end for

tests are all run on a single CPU (AMD 2950X at 3.5 GHz) with the algorithms
implemented in Python 3.8.5. First, we test parameters to see which allows
our model to perform the best. Next, we look at the results with the best
parameters. Lastly, we compare to the method used by Chen and Rodden. [7].

3.1.1 Parameter Selection

In building the algorithm we evaluated 90 possible parameter sets where
each set consisted of a neighborhood function, a maximum number of local
search iterations, and an uncoarsening schedule. We tested three neighborhood
functions (NF ∈ {Flip, Swap,CMB}), five maximum local search iteration val-
ues (LI ∈ {100, 250, 500, 750, 1000}), and six uncoarsening schedules (UC ∈
{UC1, UC2, UC3, UC4, UC5, UC6}) defined here:

UC1: 0.3 0.7 1
UC2: 0.25 0.5 0.75 1
UC3: 0.3 0.5 0.7 0.9 1
UC4: 0.1 0.3 0.5 0.7 0.9 1
UC5: 0.3 0.5 0.7 0.9 0.95 1
UC6: 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.

Using each of these parameter sets we ran the resulting algorithm 18 times
on Florida, each time with a fixed number of k-medoids iterations (MI = 100).

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 15

The summaries of results for these tests can be seen in Tables 1,2,3. The best
found parameters are used in the full tests, if multiple parameters perform well
we used both.

Examining the results for the uncoarsening schedules in Table 1, we can
see that UC6 outperforms the other uncoarsening schedules with a minimum
deviation of 4.28%, whereas no other uncoarsening schedules produce district-
ing plans with under 10% deviation. While UC6 is slower than the other
uncoarsening schedules, we feel that the lower average deviation and minimum
deviation values more than make up for the extra 60-120 seconds of runtime.
Even though UC3 is modestly faster than UC5, we claim that UC5 is the sec-
ond best uncoarsening schedule because it has the next lowest mean deviation
after UC6 and approximately matches the minimum deviation of UC3. With
this in mind our full tests have been run with uncoarsening schedules UC5 and
UC6.

Table 1 Uncoarsening Schedule Tests

Uncoarsening Mean Min Mean Min
Schedule Dev Dev Runtime Runtime
(UC) (%) (%) (s) (s)

UC1 97.206 13.686 173.903 97.630
UC2 92.494 14.207 192.596 107.234

UC3 91.716 10.318 200.839 101.113
UC4 93.272 10.153 258.924 144.469

UC5 86.719 10.897 225.245 107.370
UC6 85.920 4.285 298.919 153.151

Uncoarsening Schedule: Uncoarsening Schedule being tested; Mean Dev : mean deviation
across all tests; Min Dev : minimum deviation across all tests; Mean Runtime: mean time to
coarsen to G0 and run k-medoids algorithm - including all uncoarsening and local searches;
Min Runtime: minimum time to coarsen to G0 and run k-medoids algorithm - including all
uncoarsening and local searches

Examining the neighborhood function results in Table 2, we can see that
there is very little difference in the runtimes between the three neighborhood
functions. However, there is a clear difference in terms of deviation, with CMB
attaining lower deviation in the mean and minimum cases. While we expected
CMB to perform better, as it picks between the better of Flip and Swap, the
difference between Flip and Swap was surprising. With this in mind our full
tests have been run with CMB as the neighborhood function.

Examining the results for maximum number of local search iterations in
Table 3, we see that the 750 and 1000 iterations cases outperform the other
options. The 750 and 1000 iteration cases attain the lowest deviation values of
those tested and are only about 30− 40 seconds slower than the fastest cases.
While the 500 iterations case achieves similar deviation values to the 750 and

Springer Nature 2021 LATEX template

16 A k-medoids Approach to Exploring Districting Plans

Table 2 Neighborhood Function Tests

Neighborhood Mean Min Mean Min
Function Dev Dev Runtime Runtime
(NF) (%) (%) (s) (s)

Flip 89.375 34.173 213.650 97.630

Swap 135.545 49.255 226.173 98.584

CMB 48.744 4.285 235.389 98.182

Neighborhood Function: Neighborhood Function being tested; Mean Dev : mean deviation
across all tests; Min Dev : minimum deviation across all tests; Mean Runtime: mean time to
coarsen to G0 and run k-medoids algorithm - including all uncoarsening and local searches;
Min Runtime: minimum time to coarsen to G0 and run k-medoids algorithm - including all
uncoarsening and local searches

1000 iteration cases, the runtimes are much slower. With this in mind our full
tests have been run with 750 and 1000 maximum local search iterations.

Table 3 Local Search Iterations Tests

Local Search Mean Min Mean Min
Iterations Dev Dev Runtime Runtime

(LI) (%) (%) (s) (s)

100 101.981 19.446 173.893 97.630

250 91.352 15.368 229.778 116.340

500 89.099 9.995 308.498 163.629

750 86.525 4.285 189.575 125.957

1000 85.396 7.446 216.219 138.463

Local Search Iterations: Maximal number of local search iterations being tested; Mean Dev :
mean deviation across all tests; MinDev : minimum deviation across all tests; Mean Runtime:
mean time to coarsen to G0 and run k-medoids algorithm - including all uncoarsening and
local searches; Min Runtime: minimum time to coarsen to G0 and run k-medoids algorithm
- including all uncoarsening and local searches

3.1.2 Results

We tested the algorithm on Iowa and Florida with slightly different parameter
sets. For both states we used 100 iterations of k-medoids (MI = 100), CMB
as the neighborhood function (NF = CMB), and two different maximum
local search iteration values (LI ∈ {750, 1000}). Since Iowa has so few TBs,
the algorithm performs well without any uncoarsening schedule so we chose
to not coarsen Iowa at all (UC = UC0). Since Florida has many more TBs

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 17

than Iowa, it produces a much more complicated graph. To handle the com-
plexity of the resultant graph, we used two different uncoarsening schedules
(UC ∈ {UC5, UC6}). For each parameter set for each state we ran the result-
ing algorithm 100 times - the summary of results for these tests are available
in Table 4. We split the results into two parts, the first being the results from
performing the k-medoids part of the algorithm on the fully coarsened graph
with no local search, the second being the results obtained after performing
all of the uncoarsening and local searches.

From Table 4 we can see that our method works very well for Iowa. Without
local search the k-medoids algorithm is able to attain a mean deviation of
about 1.1%, just over the legally allowed 1% deviation. Including local search
decreases the mean deviation to about 0.69%, just below the legal limit. The
local search also slightly decreases in the mean compactness value (only a
difference of ∼ 0.01). There is hardly any difference between the two parameter
settings for Iowa, with the 750 iterations case finding slightly lower deviation
values, slightly higher compactness scores, and running a bit slower than the
1000 iterations case.

Our method is less consistent for the more complicated case of Florida.
While including local search decreases the mean deviation value by more than
100%, the minimum deviation values found were still higher than 1%. As
with the Iowa case, we can see that adding local search decreases the mean
compactness score. Comparing the parameter settings we can see that the final
districting plans produced using UC6 tend to have lower deviations than final
plans produced using UC5. We can also see that districting plans produced
with 1000 iterations of local search tend to have lower deviations than plans
produced with 750 iterations of local search. Here we also note the random
nature of this algorithm, as the minimum deviation in Table 4 is 10.876% for
UC6 with 1000 iterations of local search, while the minimum deviation found
in the Section 3.1.1 parameter setting tests was 4.285% for UC6 with 750
iterations of local search.

With our method consistently finding districting plans with deviation below
1% on Iowa, we added in an extra step to find more good districting plans over
the course of a single run. Anytime the algorithm finds a districting plan that
has a deviation less than 5% during the k-medoids phase, we save it. Then we
perform the local search step on all of these additional districting plans as well.
The results of these tests are in Table 5. With this additional step we are able
to find another nine districting plans that have a mean deviation of about 0.6%
each time we run our algorithm. Moreover, these extra districting plans come
at a cost of about 2.77 seconds each, slightly lower than the approximately
3.46 seconds for the first districting plan. Overall this leads to finding about
ten districting plans below 1% deviation in just under thirty seconds.

3.2 Comparison to Alternative Method

Next we wanted a direct comparison to a different, but similar, method. We
implemented our own version of the algorithm described by Chen and Rodden

S
p
rin

g
er

N
a
tu
re

2
0
2
1
L AT

E
X

tem
p
la
te

1
8

A
k
-m

ed
o
id
s
A
p
p
roa

ch
to

E
x
p
lo
rin

g
D
istrictin

g
P
la
n
s

Table 4 Results for k-medoids algorithm on Iowa and Florida

k-medoids Local Search Algorithm Total
State LI UC Mean Mean Mean Min Mean Runtime Runtime

Dev(%) Comp Dev(%) Dev(%) Comp (s) (s)

IA 750 UC0 1.126 0.773 0.693 0.181 0.763 0.718 3.478
IA 1000 UC0 1.171 0.769 0.699 0.271 0.760 0.690 3.450

FL 750 UC5 152.221 0.707 44.059 13.915 0.626 276.853 469.880
FL 750 UC6 163.727 0.676 40.769 12.511 0.612 328.559 512.829

FL 1000 UC5 153.110 0.707 42.043 12.061 0.616 321.880 523.083
FL 1000 UC6 169.677 0.675 36.707 10.876 0.607 391.102 579.940

State: state the tests were done on; LI : number of local search iterations; UC: uncoarsening schedule followed; k-medoids
Mean Dev : mean deviation of the algorithm without any local search; k-medoids Mean Comp: mean compactness score of the
algorithm without any local search; Local Search Mean Dev : mean deviation after LI iterations of local search; Local Search
Mean Comp: mean compactness after LI iterations of local search; Local Search Min Dev : minimum deviation across all tests
with given initial conditions; Algorithm Runtime: mean time to coarsen to G0 and run k-medoids algorithm - including all
uncoarsening and local searches; Total Runtime: Algorithm Runtime plus mean time to read in data and summarize results

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 19

Table 5 Additional District Results

Mean Mean Mean Mean Total
State LI UC Additional Dev Comp Runtime Runtime

Districts Per (%) Per Per (s) (s)
IA 750 UC0 9.290 0.667 0.755 2.775 28.577
IA 1000 UC0 8.830 0.671 0.775 2.775 28.642

State: state tests were done on; LI : number of local search iterations; UC: uncoarsening
schedule followed; Mean Additional Districts: mean number of districting plans with devi-
ation below 5% found during k-medoids process; Mean Dev Per: mean deviation of each
additional districting plan after local search is performed; Mean Comp Per: mean of com-
pactness value for each additional districting plan after local search is performed; Mean
Runtime Per: mean time to perform a local search on each additional districting plan and
summarize results; Total Runtime: mean time to read in data, run k-medoids algorithm,
perform local searches on additional districting plans and summarize all results

in [7]. We ran tests on this method to directly compare to the best versions
of k-medoids. Since coarsening allows the local search to occur many times,
directly comparing local search iterations between the two methods would be
an uneven number of searches. To make up for this difference, we allowed Chen
and Roddens’ method take LI × |UC| iterations. This way they each use the
same number of total local search iterations. We compare the methods using
the same tests from Section 3.1.2.

From Table 6 we can see that our k-medoids method produces districts
with lower deviation than the other method in the same number of iterations.
For example, in the Iowa tests our method has a mean deviation below 1%,
while the other method has a mean deviation of about 7%. In the Florida tests
our method has a mean deviation of about 40%, while the other method has
a mean deviation of about 145%. Since our method runs faster than the Chen
and Rodden method (∼ 20 − 30 seconds for Iowa and ∼ 300 − 500 seconds
for Florida), our method is able to find more districting plans faster. With
our method also tending to have lower deviation values, our method is more
likely to find a good districting plan in less time. Furthermore, if we account
for the extra districting plans found with by local searching on any plan found
with Dev < 5%, our method is able to find about ten districting plans with
Dev < 1% in the approximately the same time it takes the other method to
finish. However, the Chen and Rodden method does produce districts that are
slightly more compact than ours, with the mean compactness values being 0.02
to 0.09 higher. This indicates to us that our method outperforms the Chen
and Rodden method.

3.3 Current Districting Plans

For a baseline comparison we look at what the official districting plans for
Iowa and Florida are from the 2010 Census.

The official plan Iowa used in 2021 can be seen in Figure 7a. It has a
maximum population deviation of 0.005% and compactness of 0.78. Iowa law

S
p
rin

g
er

N
a
tu
re

2
0
2
1
L AT

E
X

tem
p
la
te

2
0

A
k
-m

ed
o
id
s
A
p
p
roa

ch
to

E
x
p
lo
rin

g
D
istrictin

g
P
la
n
s

Table 6 Comparison of k-medoids Algorithm with Chen and Rodden method

Local Search Algorithm Total
Method State LI UC Mean Min Mean Runtime Runtime

Dev(%) Dev(%) Comp (s) (s)

KMED IA 750 UC0 0.693 0.181 0.763 0.718 3.478
CR IA 750 UC0 7.162 0.426 0.782 28.155 29.663

KMED IA 1000 UC0 0.699 0.271 0.760 0.690 3.450
CR IA 1000 UC0 6.967 0.104 0.784 34.914 36.388

KMED FL 750 UC5 44.059 13.915 0.626 276.853 469.880
CR FL 4500 UC5 143.884 65.195 0.692 706.139 728.052

KMED FL 750 UC6 40.769 12.511 0.612 328.559 512.829
CR FL 7500 UC6 147.769 41.759 0.697 1080.773 1102.027

KMED FL 1000 UC5 42.043 12.061 0.616 321.880 523.083
CR FL 6000 UC5 147.096 50.079 0.694 774.962 797.021

KMED FL 1000 UC6 36.707 10.876 0.607 391.102 579.940
CR FL 10000 UC6 143.654 51.167 0.699 1201.172 1223.036

Method: method used k-medoids algorithm (KMEDS) or the Chen and Rodden method (CR); State: state the tests were done
on; LI : number of local search iterations; UC: uncoarsening schedule followed; Local Search Mean Dev : mean deviation after
LI iterations of local search; Local Search Mean Comp: mean compactness after LI iterations of local search; Local Search Min
Dev : minimum deviation across all tests with given initial conditions; Algorithm Runtime: average time to run the algorithm
(including uncoarsening and local search time if used); Total Runtime: Algorithm Runtime plus average time to read in data
and summarize results

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 21

(a) (b)

Fig. 7 Districting plans used by Iowa (7a) and Florida (7b) in 2021

requires all districting plans to have deviation less than 1% and ours are
able to achieve the legal requirement, but with deviation slightly higher than
the official Iowa districting plan. Additionally, our districting plans have very
comparable compactness values, averaging about 0.76.

The official plan for Florida used in 2021 can be seen in Figure 7b. It
has a maximum population deviation of 0.0007% and compactness of 0.767,
which equates to districts with populations that differed by at most 1 person.
However, this was done using a finer grain TB than we used, breaking the
state into Census Blocks. For Florida there are 488553 Census Blocks, allowing
for much more fine tuning at the cost of less intuitive borders. This plan has
a deviation at least 4.2847 lower than the best plan our method has created
and has a compactness value about 0.1 higher than the plans produced by our
method.

4 Conclusions and Future Work

Our method works very well on the simple case of Iowa, and performs rea-
sonably on the more challenging case of Florida. In both cases it outperforms
the method used by Chen and Rodden in terms of both time and devia-
tion achieved. Our method is able to combine many of the smaller ideas used
throughout the years into one method. We also introduce a seemingly novel
method to build initial districts by allowing the smallest district to expand
next at each step.

Further work needs to be done working on the remaining states and with
the updated census data. Furthermore, we could add additional methods to
potentially improve our algorithm. Examples would be the addition of mul-
tiple object moves in the local search step from [33], the implementation of
geographs for faster local search [34, 35], forcing the local search to only make
moves that strictly decrease the deviation, different selection criteria for which
pair of districts to use in the local search phase.

Springer Nature 2021 LATEX template

22 A k-medoids Approach to Exploring Districting Plans

We could also add in a specific piece to create minority-majority districts
in states where they are required. An approach for this would be to merge
neighboring TBs with high minority populations before any clustering is done.
This would force the minority communities of interest to stay intact and could
lead to the minority-majority districts.

Declarations

Competing Interests

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

Funding

We wish to acknowledge the support of the National Science Foundation for
Anthony Pizzimenti through their grant NSF-1407216.

Availability of data and materials

The census data analyzed during the current study are avail-
able from the census bureau’s website. The Florida data is at
https://data.census.gov/cedsci/table?text=P1&g=0400000US12%24700000
&y=2010&tid=DECENNIALPL2010.P1 and the Iowa data is at
https://data.census.gov/cedsci/table?text=P1&g=0400000US19%24700000
&y=2010&tid=DECENNIALPL2010.P1. Alternatively, the data can be
reached from https://data.census.gov, searching for table P1, selecting the
year 2010, selecting Geography tab → Voting District → (Iowa or Florida)→
All Voting Districts (VTD).

The Shape files used during the current study are available from
https://www2.census.gov/geo/tiger/TIGER2012/VTD/ .

The code and results data that support the findings of this study are
available from the corresponding author upon request.

References

[1] Polsby, D.D., Popper, R.D.: The third criterion: Compactness as a pro-
cedural safeguard against partisan gerrymandering. Yale Law & Policy
Review 9, 301–353 (1991)

[2] Reock, E.C.: A note: Measuring compactness as a requirement of legisla-
tive apportionment. Midwest Journal of Political Science 1, 70–74 (1961).
https://doi.org/10.2307/2109043

[3] Schwartszberg, J.E.: Reapportionment, gerrymanders, and the notion of
compactness. Minnesota Law Review 50 (1965)

https://doi.org/10.2307/2109043

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 23

[4] McGlone, D.: Measuring district compactness in postgis. Azavea (2016)

[5] Harris, C.C.: A scientific method of districting. Behavioral Science 3, 219–
225 (1964). https://doi.org/10.1002/bs.3830090303

[6] Chambers, C.P., Miller, A.D.: A measure of bizarreness. Quarterly Jour-
nal of Political Science 5(1), 27–44 (2010). https://doi.org/10.1561/100.
00009022

[7] Chen, J., Rodden, J.: Cutting through the thicket: Redistricting simula-
tions and the detection of partisan gerrymanders. Election Law Journal:
Rules, Politics, and Policy 14(4), 331–345 (2015). https://doi.org/10.
1089/elj.2015.0317

[8] Bar-Natan, A., Najt, L., Schutzman, Z.: The gerrymandering jumble: Map
projections permute districts’ compactness scores. Cartography and Geo-
graphic Information Science 47(4), 321–335 (2020). https://doi.org/10.
1080/15230406.2020.1737575

[9] DeFord, D., Duchin, M., Solomon, J.: Recombination: A
family of markov chains for redistricting. Harvard Data Sci-
ence Review (2021). https://doi.org/10.1162/99608f92.eb30390f.
https://hdsr.mitpress.mit.edu/pub/1ds8ptxu

[10] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., USA (1990)

[11] Vickrey, W.: On the prevention of gerrymandering. Political Science
Quarterly 76(1), 105–110 (1961). https://doi.org/10.2307/2145973

[12] Rossiter, D.J., Johnston, R.J.: Program group: The identification of all
possible solutions to a constituency-delimitation problem. Environment
and Planning A: Economy and Space 13(2), 231–238 (1981). https://doi.
org/10.1068/a130231

[13] Cirincione, C., Darling, T.A., Orourke, T.G.: Assessing south caroli-
nas 1990s congressional districting. Political Geography 19(2), 189–211
(2000). https://doi.org/10.1016/s0962-6298(99)00047-5

[14] Thoreson, J.D., Liittschwager, J.M.: Computers in behavioral science.
legislative districting by computer simulation. Behavioral Science 12(3),
237–247 (1967). https://doi.org/10.1002/bs.3830120309

[15] Becker, A., Solomon, J.: Redistricting Algorithms. arXiv preprint
2011.09504 cs.DS (2020)

https://doi.org/10.1002/bs.3830090303
https://doi.org/10.1561/100.00009022
https://doi.org/10.1561/100.00009022
https://doi.org/10.1089/elj.2015.0317
https://doi.org/10.1089/elj.2015.0317
https://doi.org/10.1080/15230406.2020.1737575
https://doi.org/10.1080/15230406.2020.1737575
https://doi.org/10.1162/99608f92.eb30390f
https://doi.org/10.2307/2145973
https://doi.org/10.1068/a130231
https://doi.org/10.1068/a130231
https://doi.org/10.1016/s0962-6298(99)00047-5
https://doi.org/10.1002/bs.3830120309

Springer Nature 2021 LATEX template

24 A k-medoids Approach to Exploring Districting Plans

[16] Weaver, J.B., Hess, S.W.: A procedure for nonpartisan districting: Devel-
opment of computer techniques. The Yale Law Journal 73(2), 288–308
(1963). https://doi.org/10.2307/794769

[17] Guest, O., Kanayet, F.J., Love, B.C.: Gerrymandering and computational
redistricting. Journal of Computational Social Science 2(2), 119–131
(2019). https://doi.org/10.1007/s42001-019-00053-9

[18] Cohen-Addad, V., Klein, P.N., Young, N.E.: Balanced centroidal power
diagrams for redistricting. Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems
(2018). https://doi.org/10.1145/3274895.3274979

[19] Mehrotra, A., Johnson, E.L., Nemhauser, G.L.: An optimization based
heuristic for political districting. Management Science 44(8), 1100–1114
(1998). https://doi.org/10.1287/mnsc.44.8.1100

[20] Nagel, S.S.: Simplified bipartisan computer redistricting. Stanford Law
Review 17(5), 863–899 (1965). https://doi.org/10.2307/1226994

[21] Kaiser, H.F.: An objective method for establishing legislative districts.
Midwest Journal of Political Science 10(2), 200–213 (1966). https://doi.
org/10.2307/2109148

[22] Ricca, F., Simeone, B.: Local search algorithms for political districting.
European Journal of Operational Research 189(3), 1409–1426 (2008).
https://doi.org/10.1016/j.ejor.2006.08.065

[23] Bozkaya, B., Erkut, E., Laporte, G.: A tabu search heuristic and adaptive
memory procedure for political districting. European Journal of Oper-
ational Research 144(1), 12–26 (2003). https://doi.org/10.1016/S0377-
2217(01)00380-0

[24] Liu, Y., Cho, W., Wang, S.: Pear: a massively parallel evolutionary com-
putation approach for political redistricting optimization and analysis.
Swarm and Evolutionary Computation 30, 78–92 (2016). https://doi.org/
10.1016/j.swevo.2016.04.004

[25] Fifield, B., Higgins, M., Imai, K., Tarr, A.: Automated redistricting
simulation using markov chain monte carlo. Journal of Computational
and Graphical Statistics 29(4), 715–728 (2020). https://doi.org/10.1080/
10618600.2020.1739532

[26] Metric Geometry and Gerrymandering Group: Gerrychain.
https://github.com/mggg/GerryChain (2013)

[27] Magleby, D.B., Mosesson, D.B.: A new approach for developing neutral

https://doi.org/10.2307/794769
https://doi.org/10.1007/s42001-019-00053-9
https://doi.org/10.1145/3274895.3274979
https://doi.org/10.1287/mnsc.44.8.1100
https://doi.org/10.2307/1226994
https://doi.org/10.2307/2109148
https://doi.org/10.2307/2109148
https://doi.org/10.1016/j.ejor.2006.08.065
https://doi.org/10.1016/S0377-2217(01)00380-0
https://doi.org/10.1016/S0377-2217(01)00380-0
https://doi.org/10.1016/j.swevo.2016.04.004
https://doi.org/10.1016/j.swevo.2016.04.004
https://doi.org/10.1080/10618600.2020.1739532
https://doi.org/10.1080/10618600.2020.1739532

Springer Nature 2021 LATEX template

A k-medoids Approach to Exploring Districting Plans 25

redistricting plans. Political Analysis 26(2), 147–167 (2018). https://doi.
org/10.1017/pan.2017.37

[28] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts (1990)

[29] Indiana Citizens Redistricting Commission: Mapping Competition Rules.
https://portal.indiana-mapping.org/ (2021)

[30] United States Census Bureau: 2010: DEC Redistricting Data (PL 94-171).
https://data.census.gov/cedsci/table?text=P1&g=0400000US19%24700000
&y=2010&tid=DECENNIALPL2010.P1 (08/2018) (2010)

[31] United States Census Bureau: 2010: DEC Redistricting Data (PL 94-171).
https://data.census.gov/cedsci/table?text=P1&g=0400000US12%24700000
&y=2010&tid=DECENNIALPL2010.P1 (01/2019) (2010)

[32] United States Census Bureau: TIGER/Line Shapefiles.
https://www2.census.gov/geo/tiger/TIGER2012/VTD/ (07/2018)
(2012)

[33] Jin, H.: Spatial optimization methods and system for redistricting prob-
lems. PhD thesis, University of South Carolina (2017)

[34] King, D.M., Jacobson, S.H., Sewell, E.C., Cho, W.K.T.: Geo-graphs:
An efficient model for enforcing contiguity and hole constraints in pla-
nar graph partitioning. OPERATIONS RESEARCH 60(5), 1213–1228
(2012). https://doi.org/10.1287/opre.1120.1083

[35] King, D.M., Jacobson, S.H., Sewell, E.C.: The geo-graph in practice:
creating united states congressional districts from census blocks. Compu-
tational Optimization and Applications 69(1), 25–49 (2018). https://doi.
org/10.1007/s10589-017-9936-3

https://doi.org/10.1017/pan.2017.37
https://doi.org/10.1017/pan.2017.37
https://doi.org/10.1287/opre.1120.1083
https://doi.org/10.1007/s10589-017-9936-3
https://doi.org/10.1007/s10589-017-9936-3

	Introduction
	Districting Plans
	Gerrymandering
	Other Approaches
	Our Approach

	Algorithms
	Local Search
	Coarsening and Uncoarsening
	k-medoids

	Tests and Results
	Tests
	Parameter Selection
	Results

	Comparison to Alternative Method
	Current Districting Plans

	Conclusions and Future Work

