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Collatz Conjecture (3x+1 problem) states any natural number x will return to 1 after 3∗x+1 computation (when x is odd) and x/2
computation (when x is even). In this paper, we propose a new approach for possibly proving Collatz Conjecture (CC).We propose
Reduced Collatz Conjecture (RCC)—any natural number x will return to an integer that is less than x. We prove that RCC is
equivalent to CC. For proving RCC, we propose exploring laws of Reduced Collatz Dynamics (RCD), i.e., from a starting integer
to the first integer less than the starting integer. RCC can also be stated as follows: RCD of any natural number exists. We prove
that RCD is the components of original Collatz dynamics (from a starting integer to 1); i.e., RCD is more primitive and presents
better properties. We prove that RCD presents unified structure in terms of (3∗x+1)/2 and x/2, because 3∗x+1 is always followed
by x/2. The number of forthcoming (3∗x+1)/2 computations can be determined directly by inputting x. We propose an induction
method for proving RCC. We also discover that some starting integers present RCD with short lengths no more than 7. Hence,
partial natural numbers are proved to guarantee RCC in this paper, e.g., 0 module 2; 1 module 4; 3 module 16; 11 or 23 module 32; 7,
15, or 59module 128.The future work for proving CC can follow this direction, to prove that RCD of left portion of natural numbers
exists.

1. Introduction

The Collatz Conjecture is a mathematical conjecture that is
first proposed by Lothar Collatz in 1937. It is also known as
the 3x + 1 conjecture, the Ulam conjecture, the Kakutani’s
problem, the Thwaites conjecture, or the Syracuse problem
[1–3]. “Mathematics may not be ready for such problems”,
Paul Erdos once speculated about the Collatz Conjecture [4].

The conjecture can be stated simply as follows: take any
positive integer number𝑥. If𝑥 is even, divide it by 2 to get𝑥/2.
If 𝑥 is odd, multiply it by 3 and add 1 to get 3 ∗ 𝑥 + 1. Repeat
the process again and again. The Collatz Conjecture is that
no matter what the number (i.e., 𝑥) is taken, the process will
always eventually reach 1.The longest progressions for initial
starting numbers of less than 10 billion and 100 quadrillion
are calculated by Gary T. Leavens [5] and R. E. Crandall [6],
respectively. Wei Ren et al. verified 2100000 − 1 can return to 1
after 481603 times of 3∗𝑥+1 computation, and 863323 times
of 𝑥/2 computation, which is the largest integer being verified
in the world [7]. So far no one has tried to figure out whether

all of the positive numbers eventually reach one, but we know
that most of them do so. In particular, Krasikov and Lagarias
proved that the number of integers finally reaching one in the
interval [1, 𝑥] is at least proportional to x 0.84 [8].

The paper is organized as follows: Section 2 presents our
Reduced Collatz Conjecture. A mathematical induction for
provingCollatz Conjecture is proposed in Section 3. Section 4
introduces CODE(𝑥) for representing reduced dynamics of𝑥 and explores its properties. Section 5 studies all starting
numbers whose lengths of reduced dynamics are no more
than 7. Finally, Section 6 concludes the paper.

Notations

(1) Z: the set of integers.
(2) N = {𝑎 | 𝑎 ∈ Z, 𝑎 ≥ 0}.
(3) N∗ = N \ {0} = {𝑎 | 𝑎 ∈ Z, 𝑎 ≥ 1}.
(4) [1]2 = {𝑥 | 𝑥 ≡ 1 mod 2, 𝑥 ∈ N∗}.
(5) [0]2 = {𝑥 | 𝑥 ≡ 0 mod 2, 𝑥 ∈ N∗}.
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(6) [𝑖]𝑚 = {𝑥 | 𝑥 ≡ 𝑖 mod 𝑚, 𝑥 ∈ N∗, 𝑚 ≥ 2, 𝑚 ∈
N∗, 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑖 ∈ N}.

(7) 𝐶𝑇, 𝐶𝑇(⋅): Collatz transformation. 𝐶𝑇(𝑥) = 𝑇𝑃𝑂(𝑥)
or 𝐻(𝑥) according to the parity of current inputting𝑥; 𝐶𝑇(𝑥) = 𝐼(𝑥) or 𝑂(𝑥) according to the parity of
current inputting 𝑥.

(8) 𝑇𝑃𝑂,𝑇𝑃𝑂(⋅): 𝑇𝑃𝑂(𝑥) = 3 ∗ 𝑥 + 1 when 𝑥 ∈ [1]2.
(9) 𝐻,𝐻(⋅):𝐻(𝑥) = 𝑥/2 when 𝑥 ∈ [0]2.
(10) 𝐶𝐶: Collatz Conjecture.
(11) 𝑅𝐶𝐶: Reduced Collatz Conjecture.

(12) 𝑥 ∈RTN: 𝑥 ∈ N∗ is Returnable.
(13) 𝐼,𝑂, 𝐼(⋅),𝑂(⋅): 𝐼(𝑥) = 𝐻(𝑇𝑃𝑂(𝑥)) = (3 ∗ 𝑥 + 1)/2,𝑂(𝑥) = 𝐻(𝑥) = 𝑥/2, 𝐼0(𝑥) = 𝑥, 𝐼𝑛(𝑥) = 𝐼𝑛−1(𝐼(𝑥)),𝑂0(𝑥) = 𝑥, 𝑂𝑛(𝑥) = 𝑂𝑛−1(𝑂(𝑥)), 𝑛 ∈ N∗.
(14) CODE(𝑥): reduced dynamics or code for 𝑥.
(15) 𝐶𝑂𝐷𝐸 = {𝑐 | 𝑐 = CODE(𝑥), 𝑥 ∈ N∗}.
(16) |𝑐𝑜𝑑𝑒|: the length of 𝑐𝑜𝑑𝑒; e.g., if a code consists of𝐼 or 𝑂, it will be the number of 𝐼, 𝑂 in the ordered

sequence {𝐼, 𝑂}≥1.
(17) 𝐴 ‖ 𝐵: concatenation of𝐴 ∈ {𝐼,𝑂}≥𝑎 and 𝐵 ∈ {𝐼,𝑂}≥𝑏.𝑎 ∈ N∗, 𝑏 ∈ N, or 𝑎 ∈ N, 𝑏 ∈ N∗, 𝐴 ‖ {𝐼,𝑂}0 = 𝐴,{𝐼, 𝑂}0 ‖ 𝐵 = 𝐵.
(18) ‖𝑆 = {⋅ ⋅ ⋅ }‖ returns the number of elements in a set 𝑆.
(19) max(𝑆 = {}), max(𝑎, 𝑏) returns the maximal value in

a set 𝑆, and the larger one in 𝑎, 𝑏, respectively.
(20) [𝑖1, 𝑖2, . . . , 𝑖𝑛]𝑚 = ⋃𝑛𝑗=1[𝑖𝑗]𝑚.
(21) 𝑋𝑐: current transformed number.

2. Reduced Collatz Conjecture

Definition 1 (Collatz transformation).

𝐶𝑇 (𝑥) = {{{
𝑇𝑃𝑂 (𝑥) = 3 ∗ 𝑥 + 1 (𝑥 ∈ [1]2)
𝐻 (𝑥) = 𝑥2 (𝑥 ∈ [0]2) (1)

𝑇𝑃𝑂(𝑥) can be simply denoted as 𝑇𝑃𝑂, and𝐻(𝑥) can be
simply denoted as𝐻.

We assume𝐶𝑇0(𝑥) = 𝑥. Let𝐶𝑇𝑛(𝑥) = 𝐶𝑇(𝐶𝑇𝑛−1(𝑥)), 𝑛 ∈
N∗.
Definition 2 (Collatz Conjecture (𝐶𝐶)). ∀𝑥 ∈ N∗, ∃𝐿 ∈ N∗,
such that 𝐶𝑇𝐿(𝑥) = 1.

When 𝑥 = 1, 𝐶𝐶 is held (i.e., 1 󳨀→ 4 󳨀→ 2 󳨀→ 1). Thus,∃𝐿 = 3, 𝐶𝑇3(1) = 𝐻(𝐻(𝑇𝑃𝑂(1))) = 𝐻(𝐻(4)) = 𝐻(2) = 1.𝐶𝑇3 ∈ {𝑇𝑃𝑂,𝐻}3. More specifically, here corresponding 𝐶𝑇3
for 𝑥 = 1 is an ordered sequence ⟨𝑇𝑃𝑂,𝐻,𝐻⟩. Here “ordered
sequence” implies that the parity of 𝐶𝑇𝑛−1(𝑥) determines
whether the intermediately forthcoming 𝐶𝑇 is 𝑇𝑃𝑂 or𝐻.

In the following, wemainly are concerned with 𝑥 ≥ 2, 𝑥 ∈
N∗.

We give the Reduced Collatz Conjecture as follows.

Definition 3 (Reduced Collatz Conjecture (𝑅𝐶𝐶)). ∀𝑥 ∈
N∗, 𝑥 ≥ 2, ∃𝐿 ∈ N∗, such that 𝐶𝑇𝐿(𝑥) < 𝑥 and 𝐶𝑇𝑖(𝑥) ̸<𝑥, 𝑖 = 0, 1, . . . , 𝐿 − 1.

That is, the minimal 𝐿 such that 𝐶𝑇𝐿(𝑥) < 𝑥 is of interest,
since 𝐶𝑇𝑖(𝑥) ̸< 𝑥, 𝑖 = 0, 1, . . . , 𝐿 − 1.
Proposition 4. 𝐶𝐶 ⇐⇒ 𝑅𝐶𝐶.
Proof. ∀𝑥, 𝐿 ∈ N∗, 𝑥 ≥ 2, and it is obvious that 𝐶𝑇𝐿(𝑥) ∈ N∗,
i.e., 𝐶𝑇𝐿(𝑥) ≥ 1.

(1) Suppose 𝐶𝐶 is true. That is, ∀𝑥 ∈ N∗, 𝑥 ≥ 2, ∃𝐿 ∈ N∗,𝐶𝑇𝐿(𝑥) = 1 < 𝑥. Thus, 𝑅𝐶𝐶 is true.
(2) Inversely, suppose 𝑅𝐶𝐶 is true. That is, ∀𝑥 ∈ N∗, 𝑥 ≥2, ∃𝑞0 ∈ N∗, 𝐶𝑇𝑞0(𝑥) < 𝑥.
If 𝐶𝑇𝑞0(𝑥) = 1, then 𝐶𝐶 is true.
If 𝐶𝑇𝑞0(𝑥) > 1, then let 𝑦1 = 𝐶𝑇𝑞0(𝑥). As 𝑅𝐶𝐶 is true,∃𝑞1 ∈ N∗, 𝐶𝑇𝑞1(𝑦1) < 𝑦1.
Let 𝑦0 = 𝑥. Iteratively, if 𝑦𝑖 = 𝐶𝑇𝑞𝑖−1(𝑦𝑖−1) = 1, 𝑖 ∈ N∗,

then 𝐶𝐶 is true. If 𝑦𝑖 = 𝐶𝑇𝑞𝑖−1(𝑦𝑖−1) > 1, then ∃𝑞𝑖 ∈ N∗,𝑦𝑖+1 = 𝐶𝑇𝑞𝑖 (𝑦𝑖) < 𝑦𝑖.
Thus, 𝑦𝑖+1 < 𝑦𝑖 < . . . < 𝑦1 < 𝑦0 = 𝑥. 𝑦𝑖, 𝑖 ∈ N∗ is a strictly

decreasing serial.
Besides, 𝑦𝑖+1 = 𝐶𝑇𝑞0+𝑞1+𝑞2+⋅⋅⋅+𝑞𝑖(𝑥) ≥ 1.
Therefore, after finite times of iterations, ∃𝑛 ∈ N∗, 𝑦𝑛 = 1.
That is, ∃𝑞 = 𝑞0+𝑞1+ ⋅ ⋅ ⋅+𝑞𝑛−1 = ∑𝑛−1𝑖=0 𝑞𝑖 ∈ N∗,𝐶𝑇𝑞(𝑥) =1.
Thus, 𝐶𝐶 is true.

Remark 5.

(1) 𝑥 is called starting number, and𝑥 after transformation
(e.g., 𝐶𝑇𝑖(𝑥), 𝑖 = 1, 2, . . . , 𝑞) is called transformed
number.

(2) We call an ordered sequence 𝐶𝑇𝑞 ∈ {𝑇𝑃𝑂,𝐻}𝑞
in above proof as original dynamics (as 𝐶𝑇𝑞(𝑥) =1). Simply speaking, original dynamics of a starting
number 𝑥 is represented by (or composed of) a
serial of occurred Collatz transformations during the
procedure from the starting number (i.e., 𝑥) to 1.
For example, the dynamics of 5 (i.e., occurred trans-
formations during the procedure from 5 to 1) is 5 󳨀→16 󳨀→ 8 󳨀→ 4 󳨀→ 2 󳨀→ 1. That is, original
dynamics of 5 is ⟨𝑇𝑃𝑂,𝐻,𝐻,𝐻,𝐻⟩.

(3) In contrast, we call 𝐶𝑇𝑞0 ∈ {𝑇𝑃𝑂,𝐻}𝑞0 in the above
proof as reduced dynamics (as 𝐶𝑇𝑞0(𝑥) < 𝑥). Simply
speaking, reduced dynamics of a starting number 𝑥 is
represented by (or composed of) a serial of occurred
Collatz transformations during the procedure from
the starting number (i.e., 𝑥) to the first transformed
number that is less than the starting number (i.e., 𝑥).
For example, the reduced dynamics of 5 (i.e., occurred
transformations during the procedure from 5 to
the first transformed number less than the starting
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number, namely, 4) is 5 󳨀→ 16 󳨀→ 8 󳨀→ 4, in other
words, ⟨𝑇𝑃𝑂,𝐻,𝐻⟩.

Note that reduced dynamics is more primitive than
original dynamics, because original dynamics consists of
reduced dynamics. It can be easily observed from the proof
of Proposition 4. Nonetheless, we formally prove it in Propo-
sition 6 as follows.

Proposition 6. ∀𝑥1 ∈ N∗, 𝑥1 ≥ 2, if ∃𝐿 ∈ N∗ such that𝐶𝑇𝐿(𝑥1) = 1; then, ∃𝑙𝑖 ∈ N∗, 𝑖 = 1, 2, . . . , 𝑛, such that
𝐶𝑇(∑𝑛𝑖=1 𝑙𝑖)=𝐿(𝑥1) = 1 and 𝑥𝑖+1 = 𝐶𝑇𝑙𝑖(𝑥𝑖) < 𝑥𝑖, 𝑥𝑖 ∈ N∗.
Proof. (1) 𝐶𝑇𝐿(𝑥1) = 1 and 𝑥1 ≥ 2; thus, ∃𝑙1 ∈ N∗, 𝑙1 ≤ 𝐿
such that 𝐶𝑇𝑙1(𝑥1) < 𝑥1.

(2) Let 𝑥2 = 𝐶𝑇𝑙1(𝑥1). If 𝑥2 > 1, then ∃𝐿󸀠 = 𝐿 − 𝑙1 ∈ N∗

such that 𝐶𝑇𝐿󸀠(𝑥2) = 1. Thus, similarly to (1), ∃𝑙2 ∈ N∗, 𝑙2 ≤𝐿󸀠 such that 𝐶𝑇𝑙2(𝑥2) < 𝑥2.
(3) Iteratively, compute 𝑙𝑖 in the above way. Thus, 𝑥1,𝑥2 = 𝐶𝑇𝑙1(𝑥1), 𝑥3 = 𝐶𝑇𝑙1+𝑙2(𝑥1),..., 𝐶𝑇𝑙1+𝑙2+...(𝑥1) is a strictly

decreasing serial. Besides, 𝐶𝑇≥1(𝑥) ≥ 1, thus ∃𝑛 ∈ N∗,
𝐶𝑇𝑙1+𝑙2+...+𝑙𝑛(𝑥1) = 1. Therefore, 𝐶𝑇(∑𝑛𝑖=1 𝑙𝑖)=𝐿(𝑥1) = 1 and
𝑥𝑖+1 = 𝐶𝑇𝑙𝑖(𝑥𝑖) < 𝑥𝑖, 𝑥𝑖 ∈ N∗, 𝑖 = 1, 2, . . . , 𝑛.

Due to above proposition, we concentrate on reduced
dynamics, which is a component of original dynamics.

3. Induction

This section is not preliminary for the rest of the paper, but it
presents a formal mathematical induction related to Reduced
Collatz Conjecture.

To simplify the statement for conjecture, we define
“Returnable” as follows.

Definition 7 (Returnable). 𝑥 ∈ N∗ is Returnable (denoted as𝑥 ∈RTN), if and only if ∃𝐿 ∈ N∗ such that 𝐶𝑇𝐿(𝑥) = 1.
The Collatz Conjecture will be true, if the following

mathematical induction can be proved.

Induction (for Collatz Conjecture)

(1) 𝑥 = 1 ∈RTN (recall that 1 󳨀→ 4 󳨀→ 2 󳨀→ 1).
(2) If ∀𝑥 ≤ 𝑘 (where 𝑥, 𝑘 ∈ N∗) is Returnable, then 𝑥 =𝑘 + 1 will be Returnable. That is, if 𝑥 ∈RTN (where𝑥 ≤ 𝑘, 𝑥, 𝑘 ∈ N∗), then 𝑥 = 𝑘 + 1 ∈ RTN can be

proved.

In shorthand, the induction is as follows.

𝑥 ∈RTN 󳨐⇒ 𝑥 = 𝑘 + 1 ∈RTN, ∀𝑥 ≤ 𝑘, (2)

where 𝑥, 𝑘 ∈ N∗.
Therefore, we only need to check whether current trans-

formednumber is less than designated starting number.Once
current transformed number is less than the starting number,
the starting number will be Returnable (i.e., 𝑥 = 𝑘 + 1 ∈

x=k+1

x⩽k

CT(x)

CT(CT(x))

CT(CT(CT(x)))

Figure 1: Induction rationale. Once current transformed number
is less than the starting number, the starting number will be called
“Returnable”. That is, once 𝐶𝑇(𝐶𝑇(. . . 𝐶𝑇(𝑥))) < 𝑥, then 𝑥 ∈
RTN.

RTN) due to the induction assumption (∀𝑥 ≤ 𝑘, 𝑥 ∈
RTN).

Figure 1 illustrates the rationale in our induction.

Proposition 8. If the induction (especially, Step 2) can be
proved, Collatz Conjecture is True.

Proof. Straightforward.

Besides, it is trivial to check that 𝑘 = 1, 𝑥 = 𝑘 = 1 ∈
RTN, 𝑥 = 𝑘 + 1 = 2 ∈RTN.

If 𝑘 is odd in the induction, the induction is trivial to be
proved. We state it as a proposition as follows.

Proposition 9.

𝑥 ∈RTN 󳨐⇒ 𝑥 = 𝑘 + 1 ∈RTN, ∀𝑥 ≤ 𝑘, (3)

where 𝑥 ∈ N∗, 𝑘 ∈ [1]2.
Proof. 𝑘 ∈ [1]2, thus 𝑘 + 1 is even. That is, when 𝑥 = 𝑘 + 1,𝐶𝑇(𝑥) = (𝑘 + 1)/2 ≤ 𝑘. ∀𝑥 ≤ 𝑘, 𝑥 ∈ RTN, so 𝐶𝑇(𝑥) ∈
RTN. Thus, 𝑥 = 𝑘 + 1 ∈RTN.

Therefore, for the proof of induction we only need to
prove the case that 𝑘 is even.

If in the induction 𝑘 is even with 𝑘 = 4𝑡, 𝑡 ∈ N∗, the
induction is straightforward to be proved. We state it as a
proposition as follows.

Proposition 10.

𝑥 ∈RTN 󳨐⇒ 𝑥 = 𝑘 + 1 ∈RTN, ∀𝑥 ≤ 𝑘, (4)

where 𝑥 ∈ N∗, 𝑘 = 4𝑡, 𝑡 ∈ N∗.
Proof. 𝑘 = 4𝑡, 𝑡 ∈ N∗.Thus, 𝑘 + 1 = 4𝑡 + 1 ∈ [1]2. Next, let us
checkwhether𝑥 = 𝑘+1 ∈RTN.𝐶𝑇(𝑘+1) = (3(4𝑡+1)+1) =12𝑡 + 4 ∈ [0]2, 𝐶𝑇(𝐶𝑇(𝑥)) = (12𝑡 + 4)/2 = 6𝑡 + 2 ∈ [0]2,𝐶𝑇(𝐶𝑇(𝐶𝑇(𝑥))) = (6𝑡 + 2)/2 = 3𝑡 + 1 ≤ 4𝑡. As ∀𝑥 ≤ 𝑘 = 4𝑡
is Returnable, 𝐶𝑇(𝐶𝑇(𝐶𝑇(𝑥))) ∈ RTN. Thus, 𝑥 = 𝑘 + 1 ∈
RTN.

Therefore, we only need to prove the case that 𝑘 is even
with 𝑘 = 4𝑡 + 2, 𝑡 ∈ N in the induction due to the above
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Propositions 9 and 10. We give reduced version of induction
as follows.

Induction (Reduced Version of Induction for Collatz Conjec-
ture)

(1) 𝑥 = 1, 2, 3, 4, 5, 6 ∈RTN (Straightforward).
(2) If ∀𝑥 ≤ 𝑘 = 2𝑡 + 1 (𝑥, 𝑘, 𝑡 ∈ N∗) is Returnable, then𝑥 = 𝑘 + 1 will be Returnable. That is, if 𝑥 ∈ RTN

(𝑥 ≤ 𝑘 = 2𝑡 + 1, 𝑥, 𝑘, 𝑡 ∈ N∗), then 𝑥 = 𝑘 + 1 ∈RTN
can be proved.

(3) If ∀𝑥 ≤ 𝑘 = 4𝑡 (𝑥, 𝑘, 𝑡 ∈ N∗) is Returnable, then 𝑥 =𝑘 + 1 will be Returnable. That is, if 𝑥 ∈ RTN (𝑥 ≤𝑘 = 4𝑡, 𝑥, 𝑘, 𝑡 ∈ N∗), then 𝑥 = 𝑘 + 1 ∈ RTN can be
proved.

(4) If ∀𝑥 ≤ 𝑘 = 4𝑡 + 2 (𝑥, 𝑘, 𝑡 ∈ N∗) is Returnable, then𝑥 = 𝑘 + 1 will be Returnable. That is, if 𝑥 ∈ RTN

(𝑥 ≤ 𝑘 = 4𝑡 + 2, 𝑥, 𝑘, 𝑡 ∈ N∗), then 𝑥 = 𝑘 + 1 ∈RTN

can be proved.

As Steps (2) and (3) can be proved by Propositions 9
and 10, respectively. In shorthand, the reduced version of
induction for Collatz Conjecture that needs to be proved is
only Step (4) as follows:

𝑥 ∈RTN 󳨐⇒ 𝑥 = 𝑘 + 1 ∈RTN,
∀𝑥 ≤ 𝑘 = 4𝑡 + 2, (5)

where 𝑥, 𝑘, 𝑡 ∈ N∗.
4. CODE(x) and Its Properties

Theorem 11. 𝐻 always follows after 𝑇𝑃𝑂 in 𝐶𝑇≥1(𝑥 ∈ N∗).
Proof. In the definition of 𝐶𝑇(⋅), when 𝑥 ∈ [1]2, 𝐶𝑇(𝑥) =𝑇𝑃𝑂(𝑥) = 3∗𝑥+1, which is even obviously. Thus, next𝐶𝑇(⋅)
must be𝐻(⋅) consequently. Therefore,𝐻 always follows after𝑇𝑃𝑂.

Therefore, we introduce new notations (i.e., 𝐼 and 𝑂) for
simplicity.

(1) 𝐻 always occurs after 𝑇𝑃𝑂; thus, 𝐻(𝑇𝑃𝑂(𝑥)) can be
written together and denoted as 𝐼(𝑥). That is, 𝐼(𝑥) =𝐻(𝑇𝑃𝑂(𝑥)) = (3 ∗ 𝑥 + 1)/2.

(2) 𝑂(⋅) is used to denote 𝐻(⋅) (for better vision con-
trastively).

(3) 𝐼 and 𝑂may also be called Collatz transformations.
For example, reduced dynamics of 𝑥 = 5 are ⟨𝑇𝑃𝑂,𝐻,𝐻⟩.The transformation procedures are𝑇𝑃𝑂(𝑥),𝐻(𝑇𝑃𝑂(𝑥)),

and 𝐻(𝐻(𝑇𝑃𝑂(𝑥))). It can also be simplified as 𝐼(𝑥) and𝑂(𝐼(𝑥)). Thus, reduced dynamics of 𝑥 = 5 can be written as⟨𝐼, 𝑂⟩ or “𝐼𝑂” in short.
Besides, 𝑂(𝐼(𝑥)) can be simply written as 𝐼𝑂(𝑥). That

is, 𝐼𝑂(𝑥) = 𝑂(𝐼(𝑥)), where 𝐼𝑂(⋅) is a composite function,
e.g., 𝐼𝑂(5) = 𝑂(𝐼(5)) = 𝑂((3 ∗ 5 + 1)/2) = 𝑂(8) =8/2 = 4 < 5. Formally, 𝐶𝑇1 ‖ 𝐶𝑇2 ‖ ⋅ ⋅ ⋅ ‖ 𝐶𝑇𝑛(𝑥) =𝐶𝑇𝑛(𝐶𝑇𝑛−1(. . . 𝐶𝑇2(𝐶𝑇1(𝑥)))), where 𝐶𝑇𝑖 ∈ {𝐼(⋅), 𝑂(⋅)}, 𝑖 =1, 2, . . . , 𝑛.

Definition 12. ∀𝑥 ∈ N∗, 𝑥 ≥ 2, if ∃𝐿 ∈ N∗ such that𝐶𝑇𝐿(𝑥) < 𝑥 and 𝐶𝑇𝑖(𝑥) ̸< 𝑥, 𝑖 = 0, 1, . . . , 𝐿 − 1, where𝐶𝑇(⋅) ∈ {𝐼(⋅),𝑂(⋅)}, then let 𝑐 = 𝐶𝑇𝐿 ∈ {𝐼,𝑂}𝐿 and 𝑐 is called
code (or reduced dynamics) for 𝑥, denoted asCODE(𝑥) =

𝐶𝑇𝐿 = 𝑐.
Note that𝐶𝑇𝐿 ∈ {𝐼,𝑂}𝐿 is an ordered sequence consisting

of 𝐼 and 𝑂. Besides, 𝐶𝑇𝐿 = 𝐶𝑇𝐿−1 ‖ 𝐶𝑇, 𝐿 ≥ 2, 𝐶𝑇𝐿(𝑥) =𝐶𝑇(𝐶𝑇𝐿−1(𝑥)). Recall that 𝐶𝑇0(𝑥) = 𝑥. Furthermore, this
sequence implicitly matches the parity of all intermediate
transformed numbers that are taken as input of 𝐶𝑇(⋅).

For example, CODE(𝑥 = 5) = 𝐼𝑂 implies the following
results:

(1) 𝐼𝑂(5) = (3 ∗ 5 + 1)/2/2 = 4 < 5;
(2) 𝐼(5) = (3 ∗ 5 + 1)/2 = 8 ̸< 5;
(3) “𝐼” is due to 5 ∈ [1]2;
(4) “𝑂” is due to 𝐼(5) = (3 ∗ 5 + 1)/2 = 8 ∈ [0]2.

Theorem 13. ∀𝑥 ∈ N∗, 𝑥 ≥ 2, if ∃𝐿 ∈ N∗, such that𝐶𝑇𝐿(𝑥) < 𝑥 and 𝐶𝑇𝑖(𝑥) ̸< 𝑥, 𝑖 = 0, 1, . . . , 𝐿 − 1, where𝐶𝑇(⋅) ∈ {𝐼(⋅),𝑂(⋅)}, and letting 𝑐 = 𝐶𝑇𝐿 ∈ {𝐼,𝑂}𝐿, then 𝑐
is unique.

That is,
󵄩󵄩󵄩󵄩󵄩{𝑐 | 𝑥, 𝐿 ∈ N∗, 𝑥 ≥ 2, 𝐶𝑇𝐿 (𝑥) < 𝑥, 𝐶𝑇𝑖 (𝑥) ̸< 𝑥, 𝑖
= 0, 1, . . . , 𝐿 − 1, 𝐶𝑇 (⋅) ∈ {𝐼 (⋅) , 𝑂 (⋅)} , 𝑐 = 𝐶𝑇𝐿}󵄩󵄩󵄩󵄩󵄩
= 1.

(6)

Proof (straightforward). ∀𝑥 ∈ N∗, ∃𝐿 ∈ N∗, such that
𝐶𝑇𝐿(𝑥) < 𝑥, where 𝐶𝑇 ∈ {𝐼,𝑂}; let 𝑐 = 𝐶𝑇𝐿 ∈ {𝐼,𝑂}𝐿.
Given 𝑥, either 𝐼(𝑥) or 𝑂(𝑥) is deterministic and unique.
Similarly, given 𝑥, 𝐶𝑇𝑖(𝑥), 𝑖 = 1, 2, . . . , 𝐿 is deterministic
and unique. (Recall that, the parity of 𝐶𝑇𝑖(𝑥) determines
the intermediately forthcoming transformation). Thus, 𝑐 is
unique for any given 𝑥.
Remark 14.

(1) We assume CODE(𝑥 = 1) = 𝐼𝑂, although 𝐼𝑂(1) =𝑂((3∗1+1)/2) = 𝑂(2) = 2/2 = 1 ̸< 𝑥. In other words,
the code for 𝑥 = 1 is 𝐼𝑂. ‖{𝑐 | 𝑐 = CODE(1)}‖ =‖{𝑐 | 𝑐 = 𝐼𝑂}‖ = 1. In the following, we are always
concerned with {𝑥 | 𝑥 ≥ 2, 𝑥 ∈ N∗}.

(2) If 𝐿 = |𝑐| is finite for 𝑥 (| ⋅ | returns the length of 𝑐,
or the number of 𝐼 and 𝑂 in the ordered sequence𝑐 ∈ {𝐼, 𝑂}≥1), thenCODE(𝑥) exists; ifCODE(𝑥) exists,
then 𝐿 is finite.

(3) If𝑅𝐶𝐶 is true, then ∀𝑥 ∈ N∗,CODE(𝑥) exists; if ∀𝑥 ∈
N∗, CODE(𝑥) exists, then 𝑅𝐶𝐶 is true.

(4) In CODE(𝑥), 𝑥 is called starting number. 𝐶𝑇𝑖(𝑥), 𝑖 =1, 2, . . . , 𝐿, 𝐿 = |𝑐| are called transformed numbers.𝐶𝑇𝐿(𝑥) is the first transformed number that is less
than the starting number 𝑥. That is, 𝐶𝑇𝑖(𝑥) ̸< 𝑥, 𝑖 =0, 1, . . . , 𝐿 − 1, and 𝐶𝑇𝐿(𝑥) < 𝑥. Besides, the parity of
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𝐶𝑇𝑖(𝑥) determines the selection of the intermediately
next 𝐶𝑇(⋅) ∈ {𝐼(⋅), 𝑂(⋅)} after 𝐶𝑇𝑖.

(5) Each 𝐼(⋅) includes one 𝑇𝑃𝑂(⋅) computation since𝐼(⋅) = 𝐻(𝑇𝑃𝑂(⋅)). We denote the count of 𝐼(⋅) in
CODE(𝑥) as𝑈. It equals the count of 𝑇𝑃𝑂 or 3∗𝑥+1
in the reduced dynamics of 𝑥. As 𝑇𝑃𝑂(𝑥) = 3 ∗𝑥 + 1 > 𝑥, roughly speaking, 𝑈 indeed equals the
times of “going Up (becoming larger)” in the reduced
dynamics of 𝑥.

(6) Each 𝐼(⋅) includes one 𝐻(⋅) computation, and 𝑂(⋅)
itself is one 𝐻(⋅) computation. We denote the count
of𝐻(⋅) in CODE(𝑥) as 𝐷. It equals the count of𝐻 or𝑥/2 in the reduced dynamics of𝑥. As𝐻(𝑥) = 𝑥/2 < 𝑥,
roughly speaking,𝐷 indeed equals the times of “going
Down (becoming smaller)” in the reduced dynamics
of 𝑥. Note that the count of 𝐼(⋅) and 𝑂(⋅) in CODE(𝑥)
also equals 𝐷. In other words, 𝐷 equals the length of
CODE(𝑥). That is,𝐷 = |CODE(𝑥)|.

(7) We do not assume the existence of CODE(𝑥) for∀𝑥 ∈ N∗, which is exactly what needs to be proved
in Reduced Collatz Conjecture.
We introduce notation CODE(𝑥) for the following
reasons:

(i) The presentation will be more convenient.
(ii) CODE(𝑥 ∈ [3, 99999999]) are outputted by

our computer program. We may discover some
properties in them by observation, and they will
be proved formally.

(iii) We can explore inner laws forCODE(𝑥)without
the detail of 𝑥 (independent to x).

The following propositions again confirm Propositions 9
and 10.

Proposition 15. CODE({𝑥 | 𝑥 ∈ [0]2}) = 𝑂, CODE({𝑥 | 𝑥 ∈[1]4}) = 𝐼𝑂.
Proof. (1) 𝑥 ∈ [0]2, thus𝐻 occurs. 𝑥/2 < 𝑥, thus CODE(𝑥) =𝑂.

(2) If 𝑥 = 1, CODE(1) = 𝐼𝑂 (by assumption).
If 𝑥 ≥ 2, 𝑥 = 4𝑡 + 1 ∈ [1]2, where 𝑡 ∈ N∗. Thus, 𝐼 occurs.𝐼(𝑥) = (3 ∗ 𝑥 + 1)/2 = (3 ∗ (4𝑡 + 1) + 1)/2 = (12𝑡 + 4)/2 =2 ∗ (3𝑡 + 1) ∈ [0]2. 2 ∗ (3𝑡 + 1) > 𝑥 = 4𝑡 + 1, thus further

transformation occurs. 𝑂(𝐼(𝑥)) = 2 ∗ (3𝑡 + 1)/2 = 3𝑡 + 1 <4𝑡 + 1 = 𝑥(∵ 𝑡 ∈ N∗), thus CODE(𝑥) = 𝐼𝑂.
In summary,

CODE (𝑥) = {{{
𝑂 𝑥 ∈ [0]2 ,
𝐼𝑂 𝑥 ∈ [1]4 . (7)

(In the following, CODE({𝑥 | 𝑥 ∈ [𝑖]𝑚}) is shortened as(𝑥 ∈ [𝑖]𝑚),𝑚 ≥ 2,𝑚 ∈ N∗, 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑖 ∈ N.)
If CODE(𝑥 ∈ N∗) exists, they can be looked as a whole -𝐶𝑂𝐷𝐸 = {𝑐 | 𝑐 = CODE(𝑥), 𝑥 ∈ N∗}, and 𝐶𝑂𝐷𝐸 presents

certain properties.

Proposition 16. If CODE(𝑥 ∈ [3]4) exists, then CODE(𝑥) =𝐼𝑝𝑂 ‖ {𝐼, 𝑂}≥1, 𝑝 ≥ 2.
Proof. Letting 𝑥 = 4𝑡 + 3, 𝑡 ∈ N. Obviously, 𝑥 ∈ [1]2.𝐼(𝑥) = (3𝑥 + 1)/2 = (12𝑡 + 10)/2 = 6𝑡 + 5 ∈ [1]2.𝐼2(𝑥) = 𝐼(𝐼(𝑥)) = (3(6𝑡 + 5) + 1)/2 = 9𝑡 + 8.

(1) If 𝑡 ∈ [0]2 ∪ {0}, then 9𝑡 + 8 ∈ [0]2. Thus, the next
transformation is “𝑥/2”. Thus, the first five Collatz trans-
formations are “𝐼𝐼𝑂” (i.e., “𝑇𝑃𝑂,𝐻, 𝑇𝑃𝑂,𝐻,𝐻”). Besides,𝐼𝐼𝑂(𝑥) = (9𝑡 + 8)/2 = 4.5𝑡 + 4 > 4𝑡 + 3 = 𝑥. Further
transformation thus occurs. Hence, if CODE(𝑥) exists, then
CODE(𝑥) = 𝐼2𝑂 ‖ {𝐼,𝑂}≥1.

(2) If 𝑡 ∈ [1]2, then 9𝑡+ 8 ∈ [1]2. Thus, the first six Collatz
transformations are “𝐼𝐼𝐼” (i.e., “𝑇𝑃𝑂,𝐻,𝑇𝑃𝑂,𝐻,𝑇𝑃𝑂,𝐻”).
Besides, 𝐼𝐼𝐼(𝑥) = (3(9𝑡 + 8) + 1)/2 = (27𝑡 + 25)/2 = 13.5𝑡 +12.5 > 4𝑡 + 3 = 𝑥. Further transformation occurs. Hence, if
CODE(𝑥) exists, then CODE(𝑥) = 𝐼3 ‖ {𝐼, 𝑂}≥1.

If 𝐼𝐼𝐼(𝑥) ∈ [1]2, then more “𝐼” occurs. Obviously,𝐼𝐼𝐼𝐼(𝑥) > 𝑥. Further transformation occurs. Hence, if
CODE(𝑥) exists, then CODE(𝑥) = 𝐼4 ‖ {𝐼, 𝑂}≥1. If 𝐼𝐼𝐼(𝑥) ∈[0]2, then 𝐼𝐼𝐼𝑂(𝑥) = (13.5𝑡 + 12.5)/2 = 6.75𝑡 + 6.25 >4𝑡 + 3 = 𝑥. Further transformation occurs consequently.
Hence, if CODE(𝑥) exists, then CODE(𝑥) = 𝐼3‖𝑂‖{𝐼, 𝑂}≥1.

Suppose CODE(𝑥) = 𝐶𝑇𝐿 ∈ {𝐼,𝑂}𝐿. There exists at least
one “𝑂” in 𝐿 transformations; otherwise, 𝐶𝑇𝐿(𝑥) = 𝐼𝐿(𝑥) >𝐼𝐿−1(𝑥) > . . . > 𝐼(𝑥) > 𝑥, which contradicts with 𝐶𝑇𝐿(𝑥) <𝑥. Besides, 𝐼𝑝𝑂(𝑥) = 𝐼𝑝(𝑥)/2 > 𝐼𝑝−1(𝑥)/2 = 𝐼𝑝−1𝑂(𝑥) >. . . > 𝐼𝐼𝑂(𝑥) > 𝑥, 𝑝 ≥ 3; thus, after 𝐼𝑝𝑂(𝑝 ≥ 3) further
transformation occurs.

In summary, if CODE(𝑥 ∈ [3]4) exists, then CODE(𝑥) =𝐼𝑝𝑂 ‖ {𝐼, 𝑂}≥1, 𝑝 ≥ 2.
Next corollary states that CODE(𝑥) (or 𝐶𝑂𝐷𝐸) presents

unified format.

Proposition 17. CODE(𝑥) ∈ 𝐹𝑂𝑅𝑀𝐴𝑇 = 𝐼𝑝‖𝑂‖{𝐼, 𝑂}𝑞,
where 𝑝, 𝑞 ∈ N.More specifically,

𝑝 = 0,
𝑞 = 0

𝑥 ∈ [0]2 ,
𝑝 = 1,
𝑞 = 0

𝑥 ∈ [1]4 ,
𝑝 = 2,
𝑞 ≥ 1

𝑥 ∈ [3]8 ,
𝑝 ≥ 3,
𝑞 ≥ 1

𝑥 ∈ [7]8 .

(8)

Proof. We here assume 𝐼0 ‖ 𝑂 = 𝑂 and 𝑂 ‖ {𝐼,𝑂}0 = 𝑂.
According to Propositions 15 and 16, we have
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𝑝 = 0,
𝑞 = 0

𝑥 ∈ [0]2 ,
𝑝 = 1,
𝑞 = 0

𝑥 ∈ [1]4 ,
𝑝 = 2,
𝑞 ≥ 1

𝑥 = 4𝑡 + 3, 𝑡 ∈ [0]2 ∪ {0} ,
𝑝 ≥ 3,

𝑞 ≥ 1
𝑥 = 4𝑡 + 3, 𝑡 ∈ [1]2 .

(9)

It can be written as follows.
(1) 𝑝 = 0, 𝑞 = 0 as CODE(𝑥 ∈ [0]2) = 𝑂; 𝑝 = 1, 𝑞 = 0 as

CODE(𝑥 ∈ [1]4) = 𝐼𝑂.
(2) 𝑝 = 2, 𝑞 ≥ 1 when 𝑥 ∈ [3]8 as {𝑥 | 𝑥 = 4𝑡 + 3, 𝑡 ∈[0]2 ∪ {0}} = {𝑥 | 𝑥 = 4 ∗ 2𝑘 + 3, 𝑘 ∈ N} = [3]8.
(3) 𝑝 ≥ 3, 𝑞 ≥ 1 when 𝑥 ∈ [7]8, as {𝑥 | 𝑥 = 4𝑡 + 3, 𝑡 ∈[1]2} = {𝑥 | 𝑥 = 4(2𝑘 + 1) + 3, 𝑘 ∈ N} = [7]8.
Thus, (9) can be rewritten as (8).

More specifically, we have the following theorem that give
more details on 𝑝.
Theorem 18 (format theorem). CODE(𝑥) ∈ 𝐹O𝑅𝑀𝐴𝑇 =𝐼𝑝‖𝑂‖{𝐼, 𝑂}𝑞, where 𝑝, 𝑞 ∈ N. Besides,

𝑝 =
{{{{{{{{{{{{{{{

0 𝑥 ∈ [0]2 ,
1 𝑥 ∈ [1]4 ,
2 𝑥 ∈ [3]8 (𝑥 = 4𝑡 + 3, 𝑡 ∈ [0]2 ∪ {0}) ,
𝛼 + 2 𝑡 + 1 = 2𝛼 ∗ 𝐴, 𝐴 ∈ [1]2 , 𝛼 ∈ N∗, 𝑥 ∈ [7]8 (𝑥 = 4𝑡 + 3, 𝑡 ∈ [1]2) .

(10)

𝑞 = 0 when 𝑝 = 0, 1; 𝑞 ≥ 1 when 𝑝 ≥ 2.
Proof. 𝑞 is trivial due to Proposition 17, so we are mainly
concerned with 𝑝.

By Proposition 15 or (7), if 𝑥 ∈ [0]2, then CODE(𝑥) =𝑂 ∈ 𝐹𝑂𝑅𝑀𝐴𝑇 and 𝑝 = 0. If 𝑥 ∈ [1]4, then CODE(𝑥) = 𝐼𝑂 ∈𝐹𝑂𝑅𝑀𝐴𝑇 and 𝑝 = 1.
Next, we concentrate on 𝑥 ∈ [3]4.
CODE(3) = 𝐼𝐼𝑂𝑂 = 𝐼2𝑂2, which can be manually and

easily verified.
Let 𝑥 = 4𝑡 + 3, 𝑡 ∈ N∗.

(1) Case I: 𝑡 ∈ [0]2. As 𝑥 = 4𝑡 + 3 ∈ [1]2, 𝐼(⋅) is conducted
consequently. As 𝐼(𝑥) = (3𝑥 + 1)/2 = 1.5𝑥 + 1.5 > 𝑥
and 𝐼𝐼(𝑥) > 𝐼(𝑥) > 𝑥, the checking on whether current
transformed number is less than starting number may be
omitted in some straightforward cases.𝐼(𝑥) = (3𝑥+1)/2 = (3(4𝑡+3)+1)/2 = (12𝑡+10)/2 = 6𝑡+5 ∈ [1]2; thus, transformation 𝐼(⋅) is conducted consequently.𝐼(𝐼(𝑥)) = 𝐼𝐼(𝑥) = (3(6𝑡 + 5) + 1)/2 = (18𝑡 + 16)/2 =9𝑡 + 8 ∈ [0]2.Thus, 𝑂(⋅) is conducted consequently.𝑂(𝐼(𝐼(𝑥))) = 𝐼𝐼𝑂(𝑥) = (9𝑡 + 8)/2 = 4.5𝑡 + 4 > 4𝑡 + 3.
Thus, further transformation is conducted consequently.

Therefore, CODE(𝑥) = 𝐼2𝑂 ‖ {𝐼,𝑂}≥1 ∈ 𝐹𝑂𝑅𝑀𝐴𝑇.
(2) Case II: 𝑡 ∈ [1]2. As 𝑥 = 4𝑡 + 3 ∈ [1]2, 𝐼(⋅) is conducted
consequently.𝐼(𝑥) = (3𝑥 + 1)/2 = (3(4𝑡 + 3) + 1)/2 = (12𝑡 + 10)/2 =6𝑡 + 5 ∈ [1]2; thus, 𝐼(⋅) is conducted consequently.

𝐼𝐼(𝑥) = (3(6𝑡 + 5) + 1)/2 = (18𝑡 + 16)/2 = 9𝑡 + 8 ∈ [1]2.
Thus, 𝐼(⋅) is conducted consequently.𝐼𝐼𝐼(𝑥) = (3(9𝑡 + 8) + 1)/2 = (27𝑡 + 25)/2. It depends on
the partition of 𝑡 (more specifically, 𝑡 ∈ [1]4 or [3]4) whether(27𝑡 + 25)/2 is even or odd.

(It comes from following observations: (27𝑡 + 25)/2 ∈[0]2 ⇐󳨐 (27𝑡 + 25)/2 = 2𝑘, 𝑘 ∈ N∗ ⇐󳨐 27𝑡 + 25 = 4𝑘 ⇐󳨐27𝑡 ∈ [3]4 ⇐󳨐 3𝑡 ∈ [3]4 ⇐󳨐 𝑡 ∈ [1]4.)
(2.1) If 𝑡 ∈ [1]4, 𝐼𝐼𝐼(𝑥) = (27𝑡 + 25)/2 = (27 ∗ (4 ∗ 𝑘 + 1) +25)/2 = (108𝑘 + 52)/2 = 54𝑘 + 26 ∈ [0]2 (𝑘 ∈ N∗); thus, 𝑂(⋅)

will occur consequently.
(2.2) If ∈ [3]4, 𝐼𝐼𝐼(𝑥) = (27𝑡 + 25)/2 = (27 ∗ (4 ∗ 𝑘 + 3) +25)/2 = (108𝑘+106)/2 = 54𝑘+53 ∈ [1]2; thus, 𝐼(⋅)will occur

consequently.
Besides, suppose current transformed number is denoted

as𝑋𝑐.𝑋𝑐 = 𝐼𝐼𝐼𝑂(𝑥) = (27𝑡+25)/2/2 = (54𝑘+26)/2 = 27𝑘+13,
whose parity depends on the parity of 𝑘.𝑋𝑐 = 𝐼𝐼𝐼𝐼(𝑥) = (3(27𝑡 + 25)/2 + 1)/2 = (3(54𝑘 + 53) +1)/2 = (162𝑘 + 160)/2 = 81𝑘 + 80, whose parity depends on
the parity of 𝑘.

In other words, the judgement on the parity of 𝑋𝑐 is
undecidable, unless the domain (𝑡 ∈ [1]4 or 𝑡 ∈ [3]4) is
partitioned further.

For exploring more general results, we put it in another
way as follows.

Suppose there exist at most 𝑝 times of “𝐼” at code head
(i.e., 𝐼𝑝‖𝑂‖ . . .) for 𝑥 ∈ [3]4. Observing following equation
for 𝑋𝑐 = 𝐼𝑝(𝑥) after consecutive 𝑝 ≥ 2 times of “𝐼”:
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𝑋𝑐 = 𝐼𝑝 (𝑥) = (3 (. . . (3 (3𝑥 + 1) /2) + 1) /2 . . .) + 1)2 = 32 (
3
2 (. . .

3
2 (
3
2𝑥 +

1
2) +

1
2) + ⋅ ⋅ ⋅ +

1
2) +

1
2

= (32)
𝑝 𝑥 + 12 ((

3
2)
𝑝−1 + (32)

𝑝−2 + ⋅ ⋅ ⋅ + 1) = (32)
𝑝 𝑥 + 12 (

(3/2)𝑝 − 1
3/2 − 1 ) = (32)

𝑝 𝑥 + (32)
𝑝 − 1

= (32)
𝑝 (𝑥 + 1) − 1 (∵ 𝑥 = 4𝑡 + 3, 𝑡 ∈ N) = (32)

𝑝 (4𝑡 + 3 + 1) − 1 = ( 3𝑝2𝑝−2) (𝑡 + 1) − 1 ∈ N∗.

(11)

Note that above computation implicitly includes two
requirements due to 𝑝 times of consecutive 𝐼(⋅) as follows.

(i) All intermediate transformed numbers during pro-
cesses (i.e., computing 𝑝 times of consecutive “𝐼”) satisfy

𝑋𝑐 = ( 3𝑖
2𝑖−2) (𝑡 + 1) − 1 ∈ [1]2 , (12)

where 2 ≤ 𝑖 ≤ 𝑝 − 1, 𝑖 ∈ N∗.
(ii) Besides,

𝑋𝑐 = ( 3𝑖
2𝑖−2) (𝑡 + 1) − 1 ∈ [0]2 , (13)

where 𝑖 = 𝑝, as only (or at most) 𝑝 consecutive 𝐼(⋅) occur.
In other words, 𝑝 can also be looked as the minimal value

to let current transformed number 𝑋𝑐 be in [0]2. Thus, we
need to explore the requirement on 𝑝 for given 𝑡 such that

( 3𝑖
2𝑖−2) (𝑡 + 1) − 1 ∈ [1]2 2 ≤ 𝑖 ≤ 𝑝 − 1,

( 3𝑖
2𝑖−2) (𝑡 + 1) − 1 ∈ [0]2 𝑖 = 𝑝.

(14)

We call this requirement (i.e., (14)) as REQ.
Represent 𝑡 + 1 as 2𝛼 ∗ 𝐴, 𝐴 ∈ [1]2, 𝛼 ∈ N∗. That is,𝑡 + 1 = 2𝛼 ∗ 𝐴. Obviously, this representation is unique. We

thus need to prove that REQ is satisfied if and only if𝑝 = 𝛼+2.
Note that we will see that here 𝑝 is indeed determined by 𝛼.

For 2 ≤ 𝑖 < 𝑝 = 𝛼 + 2, 𝑖 ∈ N∗, we have 𝛼 + 2 − 𝑖 > 0.

𝑋𝑐 = ( 3𝑖
2𝑖−2) (𝑡 + 1) − 1 = (

3𝑖
2𝑖−2) ∗ 2𝛼 ∗ 𝐴 − 1

= 3𝑖 ∗ 2𝛼−𝑖+2 ∗ 𝐴 − 1.
(15)

𝛼 + 2 − 𝑖 > 0 󳨐⇒ 2𝛼−𝑖+2 ∈ [0]2 󳨐⇒ 3𝑖 ∗ 2𝛼−𝑖+2 ∗ 𝐴 ∈[0]2 󳨐⇒ 3𝑖 ∗ 2𝛼−𝑖+2 ∗ 𝐴 − 1 ∈ [1]2.
When 𝑖 = 𝑝 = 𝛼 + 2, we have exactly

𝑋𝑐 = ( 3
𝑝

2𝑝−2) (𝑡 + 1) − 1 = (
3𝑝
2𝑝−2) ∗ 2𝛼 ∗ 𝐴 − 1

= 3𝑝 ∗ 2𝛼−𝑝+2 ∗ 𝐴 − 1 = 3𝑝 ∗ 𝐴 − 1 ∈ [0]2 .
∵𝐴, 3𝑝 ∈ [1]2

(16)

It is easy to see that 𝑝 = 𝛼 + 2 is the one and only one for
REQ, as desired.
Corollary 19 (𝑡 determine 𝑝 corollary). Given starting num-
ber 𝑥 ∈ [3]4 (i.e., 𝑥 = 4𝑡 + 3, 𝑡 ∈ N), the number of
consecutive “𝐼” (denoted as 𝑝) is determined by 𝑡 according to
(17) as follows:

𝑝 = {{{{{
2 𝑡 ∈ [0]2 ,
𝛼 + 2 𝛼 = log2

𝑡 + 1
𝐴 ∈ N∗, 𝐴 = max ({𝑎 | 𝑎 ∈ [1]2 , 𝑎 | (𝑡 + 1)}) , 𝑡 ∈ [1]2 . (17)

Corollary 20. Given starting number 𝑥 ∈ [3]4, 𝑡 = (𝑥−3)/4 ∈
N, the first 𝑝 times of Collatz transformations must be “𝐼” and𝑝 can be determined by 𝑡 by (17), and the transformed number
after 𝐼𝑝 transformations is

𝐼𝑝 (𝑥) = (32)
𝑝 (𝑥 + 1) − 1 = ( 3𝑝2𝑝−2) (𝑡 + 1) − 1

∈ N∗, 𝑝 ≥ 2.
(18)

Proof. It is straightforward due to (11), Theorem 18, and
Corollary 19.

Alternatively, only to compute the transformed number𝐼𝑝(𝑥), we can prove it by induction as follows.
(1) 𝑝 = 2.
𝐼𝑝 (𝑥) = 𝐼2 (𝑥) = (3 (3𝑥 + 1) /2 + 1)2

= 32 (
3
2𝑥 +

1
2) +

1
2 = (

3
2)
2 𝑥 + 32 ∗

1
2 +

1
2
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= (32)
2 𝑥 + (32)(

3
2 − 1) +

1
2

= (32)
2 𝑥 + (32)

2 − 32 +
1
2 = (

3
2)
2 (𝑥 + 1) − 1

= (32)
𝑝 (𝑥 + 1) − 1.

(19)

(2) Suppose 𝑝 = 𝑖; we have 𝐼𝑖(𝑥) = (3/2)𝑖(𝑥 + 1) − 1.
𝐼𝑖+1 (𝑥) = 𝐼 (𝐼𝑖 (𝑥)) = (3 ((3/2)

𝑖 (𝑥 + 1) − 1) + 1)
2

= 32 ((
3
2)
𝑖 (𝑥 + 1) − 1) + 12

= (32)
𝑖+1 (𝑥 + 1) − 32 +

1
2

= (32)
𝑖+1 (𝑥 + 1) − 1.

(20)

Remark 21. (1) Note that, due to Corollary 19, 𝑝 for 𝐼𝑝
in CODE(𝑥) can be computed by 𝑡 = (𝑥 − 3)/4 and
log2((𝑡 + 1)/𝐴) directly without conducting concrete Collatz
transformations, which can accelerate the computation of
dynamics.

(2) Besides, by (11) or Corollary 20, if 𝑡 = 0, we then have𝑝 = 2, because 𝐼𝑝(𝑥) = (3𝑝/2𝑝−2)(𝑡 + 1) − 1 = (3𝑝/2𝑝−2) −1 ∈ N∗, which matches with the result CODE(3) = 𝐼𝐼𝑂𝑂 by
manually computing.

(3) Indeed, (11) can be extended to include all cases (i.e.,
for 𝑝 = 0, 1). If 𝑝 = 0, by assuming 𝐼0(𝑥) = 𝑥, 𝐼0(𝑥) = 𝑥 =(3/2)0(𝑥 + 1) − 1 = (3/2)𝑝(𝑥 + 1) − 1; if 𝑝 = 1, 𝐼1(𝑥) = 𝐼(𝑥) =
(3∗𝑥+1)/2 = (3/2)1(𝑥+1)−1 = (3/2)𝑝(𝑥+1)−1.Therefore,𝐼𝑝(𝑥) = (3/2)𝑝(𝑥 + 1) − 1 for 𝑝 ∈ N∗.
Corollary 22. Given starting number 𝑥 ∈ [1]2, the first𝑝 times of Collatz transformations must be “𝐼” and 𝑝 can
be determined by 𝑥, and the transformed number after 𝐼𝑝
transformations is

𝐼𝑝 (𝑥) = (32)
𝑝 (𝑥 + 1) − 1, 𝑝 ≥ 1. (21)

Proof. It is straightforward due to (11), Theorem 18, and
Corollaries 19 and 20.

If 𝑥 ∈ [1]4, then 𝑝 = 1, 𝐼𝑝(𝑥) = 𝐼(𝑥) = (3𝑥 + 1)/2 =(3/2)1(𝑥 + 1) − 1 = (3/2)𝑝(𝑥 + 1) − 1.
If 𝑥 ∈ [3]4, then 𝑝 ≥ 2, 𝐼𝑝(𝑥) = (3/2)𝑝(𝑥 + 1) − 1 due to

Corollary 20.

Next corollary states that the head of code for 𝑥 = 2𝑛 −1, 𝑛 ∈ N∗ is 𝐼𝑛𝑂.
Corollary 23.

CODE (𝑥 = 2𝑛 − 1, 𝑛 ∈ N∗) ∈ 𝐼𝑛 ‖𝑂‖ {𝐼, 𝑂}≥0 . (22)

Proof. Suppose CODE(𝑥) ∈ 𝐼𝑝‖𝑂‖{𝐼, 𝑂}≥0, due to Theo-
rem 18.

(1) 𝑛 = 1, 𝑥 = 2 − 1 = 1 ∈ [1]4; thus, 𝑝 = 1 due to
Theorem 18. Thus, CODE(21 − 1) ∈ 𝐼1‖𝑂‖{𝐼, 𝑂}≥0.

Indeed, CODE(𝑥 = 1) = 𝐼𝑂 can be manually computed
(recall that 1 󳨀→ 4 󳨀→ 2 󳨀→ 1.)

(2) 𝑛 ∈ N∗, 𝑛 ≥ 2, 𝑥 = 2𝑛 − 1 ∈ [3]4.
(2.1) 𝑛 = 2, 𝑥 = 22 − 1 = 3 ∈ [3]8, or (𝑥 − 3)/4 = 0 ∈[0]2∪{0}, thus𝑝 = 2 due toTheorem 18.Thus,CODE(22−1) ∈𝐼2‖𝑂‖{𝐼, 𝑂}≥1.
Indeed, CODE(𝑥 = 3) = 𝐼𝐼𝑂𝑂 = 𝐼2𝑂𝑂 can be manually

computed (recall that 3 󳨀→ 10 󳨀→ 5 󳨀→ 16 󳨀→ 8 󳨀→ 4 󳨀→2 < 3.)
(2.2) 𝑛 > 2, 𝑡 = (𝑥 − 3)/4 = (2𝑛 − 1 − 3)/4 = 2𝑛−2 −1 ∈ [1]2. 𝑡 + 1 = 2𝑛−2.Thus, 𝐴 = 1. 𝛼 = log2(𝑡 + 1)/𝐴 =

log22𝑛−2 = 𝑛 − 2.Thus, 𝑝 = 𝛼 + 2 = 𝑛 − 2 + 2 = 𝑛. Hence,
CODE(𝑥) ∈ 𝐼𝑛‖𝑂‖{𝐼, 𝑂}≥1 owing toTheorem 18.

Summarizing (1) and (2), CODE(𝑥 = 2𝑛 − 1, 𝑛 ∈ N∗) ∈
𝐼𝑛‖𝑂‖{𝐼, 𝑂}≥0.
Example 24. (1) 𝑥 = 7. 7 󳨀→ 22 󳨀→ 11 󳨀→ 34 󳨀→ 17 󳨀→52 󳨀→ 26 󳨀→ 13 󳨀→ 40 󳨀→ 20 󳨀→ 10 󳨀→ 5. Thus,
CODE(7) = 𝐼𝐼𝐼𝑂𝐼𝑂𝑂 = 𝐼3‖𝑂‖𝐼𝑂𝑂.

(2) 𝑥 = 15. 15 󳨀→ 46 󳨀→ 23 󳨀→ 70 󳨀→ 35 󳨀→ 106 󳨀→53 󳨀→ 160 󳨀→ 80 󳨀→ 40 󳨀→ 20 󳨀→ 10.Thus, CODE(15) =𝐼𝐼𝐼𝐼𝑂𝑂𝑂 = 𝐼4‖𝑂‖𝑂𝑂.
Proposition 25. 𝐶𝑂𝐷𝐸 ∈ {𝐼,𝑂}≥0 ‖ 𝑂. (That is, 𝐶𝑂𝐷𝐸must
end with “𝑂”, or the last transformation in 𝐶𝑂𝐷𝐸 is “𝑂”.)
Proof (straightforward). It can be easily understood intu-
itively. That is, reduced dynamics should be ended by
“going Down”, not “going Up” (recall items (5) and (6) in
Remark 14).

If 𝐶𝑂𝐷𝐸 ends by “𝐼”, suppose ∃𝑥 ∈ N∗, 𝑥 ≥ 2, 𝑐(𝑥) ̸< 𝑥,
CODE(𝑥) = 𝑐 ‖ 𝐼.{𝑐 ‖ 𝐼}(𝑥) = 𝐼(𝑐(𝑥)) = (3 ∗ 𝑐(𝑥) + 1)/2 = 1.5𝑐(𝑥) + 0.5 =𝑐(𝑥) + 0.5𝑐(𝑥) + 0.5 > 𝑐(𝑥); thus, CODE(𝑥) = {𝑐 ‖ 𝐼}(𝑥) ̸< 𝑥.
Contradiction occurs.

Put it in another way, if {𝑐 ‖ 𝐼}(𝑥) < 𝑥, then 𝐼(𝑐(𝑥)) <𝑥. Together with 𝐼(𝑐(𝑥)) > 𝑐(𝑥), we have 𝑐(𝑥) < 𝑥. Thus,
reduced dynamics of 𝑥 ends after 𝑐 and CODE(𝑥) = 𝑐 ̸= 𝑐 ‖𝐼.

Next corollary gives more details onCODE(𝑥 ∈ [3]4) that
has a unified form as

𝐼𝑝0≥2 󵄩󵄩󵄩󵄩󵄩𝑂𝑞0≥1󵄩󵄩󵄩󵄩󵄩 𝐼𝑝1≥1 󵄩󵄩󵄩󵄩󵄩𝑂𝑞1≥1󵄩󵄩󵄩󵄩󵄩 . . . 󵄩󵄩󵄩󵄩󵄩𝐼𝑝𝑛≥1󵄩󵄩󵄩󵄩󵄩𝑂𝑞𝑛≥1. (23)

That is, each code consists of one or more segments, and each
segment has a unified form as 𝐼𝑝𝑂𝑞, 𝑝 ≥ 1, 𝑞 ≥ 1.
Corollary 26.

CODE (𝑥 ∈ [3]4) ∈ 𝐼𝑝0≥2𝑂𝑞0 ‖ {𝐼𝑝𝑖𝑂𝑞𝑖}≥0 , (24)

where 𝑝0, 𝑞0, 𝑖, 𝑝𝑖, 𝑞𝑖 ∈ N∗.
Proof (straightforward). 𝑥 ∈ [1]2, thus 𝐼 occurs. After 𝑝 times
of 𝐼 transformations, 𝐼𝑝(𝑥) ∈ [0]2 and thus 𝑂 follows. After𝑞 times of 𝑂 transformations, 𝐼𝑝𝑂𝑞(𝑥) ∈ [1]2, thus 𝐼 occurs.
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Indeed, 𝑞 can be determined by 𝐼𝑝(𝑥) by 𝑞 = log2(𝐼𝑝(𝑥)/𝐵),𝐵 = max({𝑏 | 𝑏 ∈ [1]2, 𝑏 | 𝐼𝑝(𝑥)}).
Iteratively, each segment has a unified form 𝐼𝑝𝑂𝑞, where𝑝, 𝑞 ∈ N∗.
The first segment is listed solely, because the distinction

between the first segment and the other segments is that 𝑝0 ≥2 but 𝑝𝑖 ≥ 1, 𝑖 ∈ N∗. (In other words, when and only when an
intermediate transformed number 𝑋𝑐 ∈ [1]4 occurs, 𝑝𝑖 = 1.
Otherwise, 𝑝𝑖 ≥ 2.)

Put it in another way, if intermediate transformed num-
bers in [1]4 during reduced dynamics are tackled explicitly,
we have the following corollary.

Corollary 27.

CODE (𝑥 ∈ [3]4) ∈ 𝐼𝑝0≥2𝑂𝑞0 ‖ {𝐼𝑂𝑞𝑖 , 𝐼𝑝𝑖≥2𝑂𝑞𝑖}≥0 . (25)

where 𝑝0, 𝑞0, 𝑖, 𝑝𝑖, 𝑞𝑖 ∈ N∗.
5. Short Codes - {(𝑥,𝑐) | 𝑐=CODE(𝑥),|𝑐| ≤ 7}
In this section, we explore 𝑥 and their codes whose length is
less than 7, called short codes. The exploration of this section
helps build empirical understanding for Sections 3 and 4 (e.g.,
induction and CODE(𝑥)). Before the exploration, a lemma is
given as preliminaries as follows.

Lemma 28. 𝑚 ∈ N∗, 𝑚 ≥ 2, 0 ≤ 𝑖 ≤ 𝑚 − 1, 𝑎, 𝑏, 𝑥 ∈ N∗.
(1) 𝑥 ∈ [𝑖]𝑚 󳨐⇒ 𝑎 ∗ 𝑥 + 𝑏 ∈ [(𝑎 ∗ 𝑖 + 𝑏) mod𝑚]𝑚;
(2)𝑚, 𝑖 ∈ [0]2, 𝑥 ∈ [𝑖]𝑚 󳨐⇒ 𝑥/2 ∈ [𝑖/2]𝑚/2;
(3) 𝑚, (𝑎 ∗ 𝑖 + 𝑏)/2 ∈ [0]2, 𝑥 ∈ [𝑖]𝑚 󳨐⇒ (𝑎 ∗ 𝑥 + 𝑏)/2 ∈[((𝑎 ∗ 𝑖 + 𝑏) mod𝑚)/2]𝑚/2.

Proof. (1) 𝑥 ∈ [𝑖]𝑚 󳨐⇒ 𝑥 = 𝑘 ∗ 𝑚 + 𝑖, 𝑘 ∈ N󳨐⇒ 𝑎 ∗ 𝑥 + 𝑏 = 𝑎 ∗ (𝑘 ∗𝑚 + 𝑖) + 𝑏 = 𝑎 ∗ 𝑘 ∗𝑚 + 𝑎 ∗ 𝑖 + 𝑏󳨐⇒ 𝑎 ∗ 𝑥 + 𝑏 ≡ 𝑎 ∗ 𝑖 + 𝑏 mod𝑚 ∵ 𝑎 ∗ 𝑘 ∈ N󳨐⇒ 𝑎 ∗ 𝑥 + 𝑏 ∈ [(𝑎 ∗ 𝑖 + 𝑏) mod𝑚]𝑚.
(2) 𝑥 ∈ [𝑖]𝑚 󳨐⇒ 𝑥 = 𝑘 ∗ 𝑚 + 𝑖, 𝑘 ∈ N󳨐⇒ 𝑥/2 = 𝑘 ∗ 𝑚/2 + 𝑖/2 ∵ 𝑚, 𝑖 ∈ [0]2󳨐⇒ 𝑥/2 ∈ [𝑖/2]𝑚/2.
(Besides, 0 ≤ 𝑖 ≤ 𝑚 − 1,𝑚, 𝑖 ∈ [0]2 󳨐⇒ 0 ≤ 𝑖 ≤ 𝑚− 2 󳨐⇒0 ≤ 𝑖/2 ≤ (𝑚 − 2)/2 = 𝑚/2 − 1.)
(3) The proof is the combination of above (1) and (2).
Specifically, 𝑥 ∈ [𝑖]𝑚 󳨐⇒ 𝑎∗𝑥+ 𝑏 ∈ [(𝑎∗ 𝑖 + 𝑏) mod𝑚]𝑚
󳨐⇒ (𝑎 ∗ 𝑥 + 𝑏)/2 ∈ [((𝑎 ∗ 𝑖 + 𝑏) mod𝑚)/2]𝑚/2∵ 𝑚, (𝑎 ∗ 𝑖 + 𝑏)/2 ∈ [0]2 󳨐⇒ ((𝑎 ∗ 𝑖 + 𝑏) mod𝑚) ∈ [0]2.

Proposition 29. CODE(𝑥) = 𝐼𝐼𝑂𝑂, if
𝑥 ∈ {𝑥 | 𝑥 ∈ [3]4 , 𝑡 = (𝑥 − 3)4 ∈ {0} ∪ [0]4}
= {𝑥 | 𝑥 = 4 ∗ 4𝑘 + 3 = 16𝑘 + 3, 𝑘 ∈ N} = [3]16 .

(26)

Proof. 𝑥 = 4𝑡 + 3 ∈ [1]2.𝐼(𝑥) = (3𝑥 + 1)/2 = (3(4𝑡 + 3) + 1)/2 = (12𝑡 + 10)/2 =6𝑡 + 5 ∈ [1]2, and 𝐼(𝑥) = 6𝑡 + 5 > 4𝑡 + 3 = 𝑥.Thus, “𝐼” occurs
consequently.

𝐼𝐼(𝑥) = 𝐼(6𝑡 + 5) = (3(6𝑡 + 5) + 1)/2 = 9𝑡 + 8 ∈ [(9 ∗ 0 +8) mod 4]4 = [0]4. Thus, “𝑂𝑂” occurs consequently.
As 𝐼𝐼𝑂𝑂(𝑥) = 𝑂𝑂(9𝑡 + 8) = (9𝑡 + 8)/2/2 = 2.25𝑡 + 2 <3𝑡 + 2 < 4𝑡 + 3 = 𝑥, the code ends hereby with “𝐼𝐼𝑂𝑂”. That

is, CODE(𝑥 ∈ [3]16) = 𝐼𝐼𝑂𝑂.
Example 30. 115 󳨀→ 346 󳨀→ 173 󳨀→ 520 󳨀→ 260 󳨀→130 󳨀→ 65 < 115. Thus, CODE(115) = 𝐼𝐼𝑂𝑂. It can be
verified that 𝑥 = 115 ∈ [3]16, 𝑡 = (115 − 3)/4 = 28 ∈ [0]4.
Proposition 31. CODE(𝑥) = 𝐼𝐼𝑂𝐼𝑂, if

𝑥 ∈ {𝑥 | 𝑥 ∈ [3]4 , 𝑡 = (𝑥 − 3)4 ∈ [2]8}
= {𝑥 | 𝑥 = 4 (8𝑘 + 2) + 3 = 32𝑘 + 11, 𝑘 ∈ N}
= [11]32 .

(27)

Proof. 𝑥 = 4𝑡 + 3 ∈ [1]2.𝐼(𝑥) = (3𝑥 + 1)/2 = (12𝑡 + 10)/2 = 6𝑡 + 5 ∈ [1]2.𝐼𝐼(𝑥) = 𝐼(6𝑡 + 5) = (3(6𝑡 + 5) + 1)/2 = 9𝑡 + 8 ∈ [(2 ∗ 9 +8) mod 8]8 = [2]8 ⊂ [0]2 due to Lemma 28 (1). “𝑂” occurs
consequently.𝐼𝐼𝑂(𝑥) = (9𝑡 + 8)/2 ∈ [2/2]8/2 = [1]4 ⊂ [1]2.Thus, next
transformation is “𝐼”. Besides, (9𝑡+ 8)/2 = 4.5𝑡+ 4 > 4𝑡+3 =𝑥. 𝐼𝐼𝑂𝐼(𝑥) = (3 ∗ (9𝑡 + 8)/2 + 1)/2. 3 ∗ (9𝑡 + 8)/2 + 1 ∈[(3∗1+1) mod 4]4 = [0]4. (3∗(9𝑡+8)/2+1)/2 ∈ [0]2.Thus,
“𝑂” occurs consequently.𝐼𝐼𝑂𝐼𝑂(𝑥) = (3 ∗ (9𝑡 + 8)/2 + 1)/2/2 = (13.5𝑡 + 13)/2/2
= (6.75𝑡 + 6.5)/2 = 3.375𝑡 + 3.25 = 4𝑡 + 3 + (0.25 − 0.625𝑡) <4𝑡 + 3 = 𝑥; the code ends with “𝐼𝐼𝑂𝐼𝑂”. That is, CODE(𝑥 ∈[11]32) = 𝐼𝐼𝑂𝐼𝑂.
Example 32. 11 󳨀→ 34 󳨀→ 17 󳨀→ 52 󳨀→ 26 󳨀→ 13 󳨀→40 󳨀→ 20 󳨀→ 10 < 11; CODE(11) = 𝐼𝐼𝑂𝐼𝑂, 𝑥 = 11 ∈[11]32, (11 − 3)/4 = 2 ∈ [2]8.
Proposition 33. CODE(𝑥) = 𝐼𝐼𝐼𝑂𝑂, if

𝑥 ∈ {𝑥 | 𝑥 ∈ [3]4 , 𝑡 = (𝑥 − 3)4 ∈ [5]8}
= {𝑥 | 𝑥 = 4 (8𝑘 + 5) + 3 = 32𝑘 + 23, 𝑘 ∈ N}
= [23]32 .

(28)

Proof. 𝑥 = 4𝑡 + 3 ∈ [1]2, 𝑡 ∈ [5]8.𝐼(𝑥) = (3𝑥+1)/2 = (12𝑡+10)/2 = 6𝑡+5 ∈ [1]2, thus next
transformation is “𝐼”.𝐼𝐼(𝑥) = 𝐼(6𝑡 + 5) = (3(6𝑡 + 5) + 1)/2 = 9𝑡 + 8 ∈ [(9 ∗ 5 +8) mod 8]8 = [5]8 ⊂ [1]2, thus next transformation is “𝐼”.𝐼𝐼𝐼(𝑥) = 𝐼(9𝑡 + 8) = (3(9𝑡 + 8) + 1)/2. 3(9𝑡 + 8) + 1 ∈([(3∗5+1) mod 8]8 = [0]8. (3(9𝑡+8)+1)/2 ∈ [0]4, thus next
transformations are double “𝑂”.

Check whether current transformed number is less than
the starting number as follows:𝐼𝐼𝐼𝑂(𝑥) = (27𝑡 + 25)/2/2 = (13.5𝑡 + 12.5)/2 = 6.75𝑡 +6.25𝑡 > 4𝑡 + 3 = 𝑥.
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𝐼𝐼𝐼𝑂𝑂(𝑥) = (6.75𝑡 + 6.25)/2 = 3.375𝑡 + 3.125 = 4𝑡 + 3 +(0.125 − 0.625𝑡) < 4𝑡 + 3, as 𝑡 ≥ 1.
Example 34. 55 󳨀→ 166 󳨀→ 83 󳨀→ 250 󳨀→ 125 󳨀→376 󳨀→ 188 󳨀→ 94 󳨀→ 47 < 55; CODE(55) = 𝐼𝐼𝐼𝑂𝑂,𝑥 = 55 ∈ [23]32, (55 − 3)/4 = 13 ∈ [5]8.
Proposition 35. CODE(𝑥) = 𝐼𝐼𝐼𝑂𝐼𝑂𝑂, if𝑥 ∈ {𝑥 | 𝑥 ∈ [3]4, 𝑡 = (𝑥 − 3)/4 ∈ [1]32} = {𝑥 | 𝑥 =4(32𝑘 + 1) + 3 = 128𝑘 + 7, 𝑘 ∈ N} = [7]128.
Proof. 𝑥 = 4𝑡 + 3 ∈ [1]2, 𝑡 ∈ [1]32.𝐼(𝑥) = (3𝑥 + 1)/2 = (12𝑡 + 10)/2 = 6𝑡 + 5 ∈ [1]2.𝐼𝐼(𝑥) = (3(6𝑡+5)+1)/2 = 9𝑡+8 ∈ [9∗1+8]32 = [17]32 ⊂[1]2.𝐼𝐼𝐼(𝑥) = (3(9𝑡+8)+1)/2 ∈ ([((3∗17+1) mod 32)/2]32/2 =[10]16 ⊂ [0]2.𝐼𝐼𝐼𝑂(𝑥) ∈ [10/2]16/2 = [5]8 ⊂ [1]2.𝐼𝐼𝐼𝑂𝐼(𝑥) = 𝐼(𝐼𝐼𝐼𝑂(𝑥)) ∈ [((3∗5+1) mod 8)/2]8/2 = [0]4.
Thus, double “𝑂” follow immediately. In summary, above
occurred dynamics to current transformed number is thus𝐼𝐼𝐼𝑂𝐼𝑂𝑂.

Next, we check whether it is the final code (or reduced
dynamics is terminated at this transformed number) by
checking whether current transformed number is less than
the staring number (i.e., 𝑥).𝐼𝐼𝐼(𝑥) = (3(9𝑡 + 8) + 1)/2 = (27𝑡 + 25)/2 = 13.5𝑡 + 12.5.𝐼𝐼𝐼𝑂(𝑥) = 𝑂(𝐼3(𝑥)) = (13.5𝑡 + 12.5)/2 = 6.75𝑡 + 6.25 >4𝑡 + 3 = 𝑥.𝐼𝐼𝐼𝑂𝐼(𝑥) = 𝐼(𝐼𝐼𝐼𝑂(𝑥)) = (3(6.75𝑡 + 6.25) + 1)/2 =(20.25𝑡 + 18.75+1)/2 = (20.25𝑡 + 19.75)/2 = 10.125𝑡 + 9.875.
𝐼𝐼𝐼𝑂𝐼𝑂(𝑥) = 𝑂(𝐼𝐼𝐼𝑂𝐼(𝑥)) = (10.125𝑡 + 9.875)/2 =5.0625𝑡 + 4.9375 > 4𝑡 + 3 = 𝑥.𝐼𝐼𝐼𝑂𝐼𝑂𝑂(𝑥) = 𝑂(𝐼𝐼𝐼𝑂𝐼𝑂(𝑥)))) = (5.0625𝑡 + 4.9375)/2 =2.53125𝑡 + 2.46875 < 3𝑡 + 3 < 4𝑡 + 3 = 𝑥.
Therefore, CODE(𝑥 ∈ [7]128) = 𝐼𝐼𝐼𝑂𝐼𝑂𝑂, which can be

also written as 𝐼3𝑂𝐼𝑂2.
Remark 36. Indeed, (11) can be used for computing current
transformed number (denoted as 𝑋𝑐) after 𝐼3(𝑥) to simplify
above process in the proof. After 𝐼3(𝑥),
𝑋𝑐 ⇐󳨐 (3/2)3(𝑥+1)−1 = 1.53𝑥+1.53−1 = 3.375𝑥+2.375,𝑋𝑐 ⇐󳨐 𝑂(𝑋𝑐) = 0.5(3.375𝑥 + 2.375) = 1.6875𝑥 + 1.1875,𝑋𝑐 ⇐󳨐 𝐼(𝑋𝑐) = 1.5(1.6875𝑥+1.1875)+ 0.5 = 2.53125𝑥+2.28125,
𝑋𝑐 ⇐󳨐 𝑂(𝑋𝑐) = 0.5(2.53125𝑥 + 2.28125) = 1.265625𝑥 +1.140625,𝑋𝑐 ⇐󳨐 𝑂(𝑋𝑐) = 0.5(1.265625𝑥 + 1.140625) =0.6328125𝑥+0.5703125 = 𝑥+(0.5703125−0.3671875𝑥) < 𝑥,

as 𝑥 ≥ 2 due to 𝑥 ∈ [3]4.
Example 37. 135 󳨀→ 406 󳨀→ 203 󳨀→ 610 󳨀→ 305 󳨀→916 󳨀→ 458 󳨀→ 229 󳨀→ 688 󳨀→ 344 󳨀→ 172 󳨀→ 86 <135; CODE(135) = 𝐼𝐼𝐼𝑂𝐼𝑂𝑂, 𝑥 = 135 ∈ [7]128, (𝑥 − 3)/4 =(135 − 3)/4 = 33 ∈ [1]32.

The following two propositions originally stem from our
observations on codes outputted by our computer programs.

Proposition 38. CODE(𝑥) = 𝐼𝐼𝑂𝐼𝐼𝑂𝑂, if
𝑥 ∈ {𝑥 | 𝑥 ∈ [3]4 , 𝑡 = (𝑥 − 3)4 ∈ [14]32}
= {𝑥 | 𝑥 = 4 (32𝑘 + 14) + 3 = 128𝑘 + 59, 𝑘 ∈ N}
= [59]128 .

(29)

Proof. 𝑥 = 4𝑡 + 3 ∈ [1]2, 𝑡 ∈ [14]32.𝐼(𝑥) = (3𝑥 + 1)/2 = (12𝑡 + 10)/2 = 6𝑡 + 5 ∈ [1]2, thus “𝐼”
will follow consequently.
𝐼2(𝑥) = (3(6𝑡+5)+1)/2 = 9𝑡+8 ∈ [(9∗14+8) mod 32]32 =[6]32 ⊂ [0]2, thus “𝑂” will follow.𝑂(𝐼2(𝑥)) ∈ [6/2]32/2 = [3]16 ⊂ [1]2, thus “𝐼” will follow.
𝐼(𝑂(𝐼2(𝑥))) ∈ ([(3 ∗ 3 + 1)/2]16/2 = [5]8 ⊂ [1]2, thus “𝐼”

will follow.
𝐼2(𝑂(𝐼2(𝑥))) ∈ [((3 ∗ 5 + 1) mod 8)/2]8/2 = [0]4, thus

double “𝑂” will follow.
Next, current transformed number will be comparedwith

starting number 𝑥.
𝐼2(𝑥) = 9𝑡 + 8.𝑂(𝐼2(𝑥)) = (9𝑡 + 8)/2 = 4.5𝑡 + 4 > 4𝑡 + 3 = 𝑥.
𝐼(𝑂(𝐼2(𝑥))) = (3(4.5𝑡 + 4) + 1)/2 = (13.5𝑡 + 13)/2 =6.75𝑡 + 6.5.
𝐼2(𝑂(𝐼2(𝑥))) = (3(6.75𝑡+6.5)+1)/2 = (20.25𝑡+20.5)/2 =10.125𝑡 + 10.25.
𝑂(𝐼2(𝑂(𝐼2(𝑥)))) = (10.125𝑡+10.25)/2 = 5.0625𝑡+5.125 >4𝑡 + 3 = 𝑥.
𝑂2(𝐼2(𝑂(𝐼2(𝑥)))) = (5.0625𝑡 + 5.125)/2 = 2.53125𝑡 +2.5625 < 3𝑡 + 3 < 4𝑡 + 3 = 𝑥.
Therefore, the reduced dynamics ends with “𝐼𝐼𝑂𝐼𝐼𝑂𝑂”.

That is, CODE(𝑥 ∈ [59]128) = 𝐼𝐼𝑂𝐼𝐼𝑂𝑂 = 𝐼2𝑂𝐼2𝑂2.
Proposition 39. CODE(𝑥) = 𝐼𝐼𝐼𝐼𝑂𝑂𝑂, if

𝑥 ∈ {𝑥 | 𝑥 ∈ [3]4 , 𝑡 = (𝑥 − 3)4 ∈ [3]32}
= {𝑥 | 𝑥 = 4 (32𝑘 + 3) + 3 = 128𝑘 + 15, 𝑘 ∈ N}
= [15]128

(30)

Proof. 𝑥 = 4𝑡 + 3 ∈ [1]2, 𝑡 ∈ [3]32.𝐼(𝑥) = (3𝑥 + 1)/2 = (12𝑡 + 10)/2 = 6𝑡 + 5 ∈ [1]2.𝐼2(𝑥) = (3(6𝑡+5)+1)/2 = 9𝑡+8 ∈ [(9∗3+8) mod 32]32 =[3]32 ⊂ [1]2.𝐼3(𝑥) ∈ [(3 ∗ 3 + 1)/2]32/2 = [5]16 ⊂ [1]2.𝐼4(𝑥) ∈ [((3 ∗ 5 + 1) mod 16)/2]16/2 = [0]8, thus triple
“𝑂” will follow.𝐼2(𝑥) = 9𝑡 + 8.𝐼3(𝑥) = (3(9𝑡 + 8) + 1)/2 = (27𝑡 + 25)/2 = 13.5𝑡 + 12.5.𝐼4(𝑥) = (3(13.5𝑡+12.5)+1)/2 = (40.5𝑡+38.5)/2 = 20.25𝑡+19.25.𝑂(𝐼4(𝑥))) = (20.25𝑡 + 19.25)/2 = 10.125𝑡 + 9.625.𝑂2(𝐼4(𝑥))) = (10.125𝑡 + 9.625)/2 = 5.0625𝑡 + 4.8125 >4𝑡 + 3 = 𝑥.𝑂3(𝐼4(𝑥))) = 2.53125𝑡 + 2.40625 < 3𝑡 + 3 < 4𝑡 + 3 = 𝑥.

Therefore, CODE(𝑥 ∈ [15]128) = 𝐼𝐼𝐼𝐼𝑂𝑂𝑂 = 𝐼4𝑂3.
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In summary, aforementioned codes that have short
lengths are listed in (31) as follows:

CODE (𝑥)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝐼𝐼𝑂𝑂 𝑥 ∈ [3]16 , ( (𝑥 − 3)4 = 𝑡 ∈ [0]4 ∪ {0}) ,
𝐼𝐼𝑂𝐼𝑂 𝑥 ∈ [11]32 , ( (𝑥 − 3)4 = 𝑡 ∈ [2]8) ,
𝐼𝐼𝐼𝑂𝑂 𝑥 ∈ [23]32 , ( (𝑥 − 3)4 = 𝑡 ∈ [5]8) ,
𝐼𝐼𝐼𝑂𝐼𝑂𝑂 𝑥 ∈ [7]128 , ( (𝑥 − 3)4 = 𝑡 ∈ [1]32) ,
𝐼𝐼𝐼𝐼𝑂𝑂𝑂 𝑥 ∈ [15]128 , ( (𝑥 − 3)4 = 𝑡 ∈ [3]32) ,
𝐼𝐼𝑂𝐼𝐼𝑂𝑂 𝑥 ∈ [59]128 , ( (𝑥 − 3)4 = 𝑡 ∈ [14]32) .

(31)

Note that here short length means |CODE(𝑥)| is short,
where | ⋅ | is the length of CODE(𝑥)measured by the count of
“𝐼” and “𝑂” in CODE(𝑥). For example, CODE(𝑥 ∈ [3]16) =|𝐼𝐼𝑂𝑂| = 4, CODE(𝑥 ∈ [11]32) = |𝐼𝐼𝑂𝐼𝑂| = 5.

In summary, (7) and (31) are presented together in (32)
(𝐿 = |CODE(𝑥)|). It justifies that 𝐶𝑂𝐷𝐸 is unique (recall
Theorem 13), as all intersection sets for 𝑥 in (32) are empty.
The Format Theorem (Theorem 18) is confirmed as well.

CODE (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑂 𝐿 = 1, 𝑥 ∈ [0]2 ,
𝐼𝑂 𝐿 = 2, 𝑥 ∈ [1]4 ,
𝐼𝐼𝑂𝑂 𝐿 = 4, 𝑥 ∈ [3]16 ,
𝐼𝐼𝑂𝐼𝑂 𝐿 = 5, 𝑥 ∈ [11]32 ,
𝐼𝐼𝐼𝑂𝑂 𝐿 = 5, 𝑥 ∈ [23]32 ,
𝐼𝐼𝐼𝑂𝐼𝑂𝑂 𝐿 = 7, 𝑥 ∈ [7]128 ,
𝐼𝐼𝐼𝐼𝑂𝑂 𝐿 = 7, 𝑥 ∈ [15]128 ,
𝐼𝐼𝑂𝐼𝐼𝑂𝑂 𝐿 = 7, 𝑥 ∈ [59]128 .

(32)

We discover that (32) enumerates all possible codes for{𝑥 | 𝐿 = |CODE(𝑥)| ≤ 7}.
Proposition 40. {𝑥 | 𝐿 = |CODE(𝑥)| ≤ 7} = {𝑥 | 𝑥 ∈[0]2∪[1]4∪[3]16 ∪ [11]32 ∪[23]32∪[7]128 ∪[15]128 ∪[59]128}.
Proof. If |CODE(𝑥)| = 3, then CODE(𝑥) = 𝐼𝐼𝑂 because
Format Theorem (Theorem 18) and 𝐶𝑂𝐷𝐸 end by “𝑂”
(Proposition 25). However, 𝐼𝐼𝑂(𝑥) = (3(3𝑥+ 1)/2 + 1)/2/2 =(3(1.5𝑥 + 1.5) + 1)/4 = 4.5/4𝑥 + 5.5/4 = 1.125𝑥 + 1.375 > 𝑥.
Thus, |CODE(𝑥)| ̸= 3.

If |CODE(𝑥)| = 4, then CODE(𝑥) = 𝐼𝐼‖{𝐼,𝑂}‖𝑂 because
Format Theorem and 𝐶𝑂𝐷𝐸 end by “𝑂” (Proposition 25).
Thus, CODE(𝑥) = 𝐼𝐼𝐼𝑂 or CODE(𝑥) = 𝐼𝐼𝑂𝑂. As 𝐼𝐼𝐼𝑂(𝑥) =6.75𝑡 + 6.25 > 4𝑡 + 3 = 𝑥 (recall Proposition 35), CODE(𝑥) =𝐼𝐼𝐼𝑂 is impossible. Hence, there exists only one type of code
for |CODE(𝑥)| = 4 (i.e., CODE(𝑥) = 𝐼𝐼𝑂𝑂).

Similarly, we can prove that there exists exactly two types
of codes for |CODE(𝑥)| = 5, since CODE(𝑥) = 𝐼𝐼‖{𝐼,𝑂}2‖𝑂.{𝐼, 𝑂}2 = {𝐼𝑂, 𝐼𝐼, 𝑂𝑂,𝑂𝐼}, but ∀𝑥 ∈ [3]4, 𝐼𝐼𝐼𝐼𝑂(𝑥) > 𝑥

and 𝐼𝐼𝑂𝑂(𝑥) < 𝑥. Thus, only “𝑂𝐼” and “𝐼𝑂” are possible.
Similarly, we can prove that there exists three types of codes
for |CODE(𝑥)| = 7.

Besides, |CODE(𝑥)| = 6 is impossible, as ∀𝑥 ∈[3]4, 𝐼𝐼𝐼𝑂𝐼𝑂(𝑥) > 𝑥, 𝐼𝐼𝐼𝐼𝑂𝑂(𝑥) > 𝑥, 𝐼𝐼𝑂𝐼𝐼𝑂(𝑥) > 𝑥,𝐼𝐼𝑂𝐼𝑂(𝑥) < 𝑥, and 𝐼𝐼𝐼𝑂𝑂(𝑥) < 𝑥 (and by Format Theorem
and Proposition 25).

In the following, we use [𝑖1, 𝑖2, . . . , 𝑖𝑛]𝑚 to denote⋃𝑛𝑗=1[𝑖𝑗]𝑚.
Corollary 41. Let 𝑆 = [1]2 ∪ [0]4 ∪ [2]16 ∪ [10, 22]32 ∪[6, 14, 58]128. ∀𝑥 ≤ 𝑘, 𝑘 ∈ 𝑆, 𝑥 ∈ RTN 󳨐⇒ 𝑥 = 𝑘 + 1 ∈
RTN.
Proof. Let 𝑆 = [0]2 ∪ [1]4 ∪ [3]16 ∪ [11, 23]32 ∪ [7, 15, 59]128.𝑘 ∈ 𝑆 󳨐⇒ 𝑘 + 1 ∈ 𝑆 󳨐⇒ 𝑥 ∈ 𝑆 ∵ 𝑥 = 𝑘 + 1
󳨐⇒ ∃CODE(𝑥) 󳨐⇒ ∃𝐿 ∈ N∗, 𝐶𝑇𝐿(𝑥) < 𝑥 ∵ CODE(𝑥) =𝐶𝑇𝐿󳨐⇒ 𝐶𝑇𝐿(𝑥) < 𝑘 + 1 ∵ 𝑥 = 𝑘 + 1󳨐⇒ 𝐶𝑇𝐿(𝑥) ≤ 𝑘󳨐⇒ 𝐶𝑇𝐿(𝑥) ∈RTN ∵ ∀𝑥 ≤ 𝑘, 𝑥 ∈RTN

󳨐⇒ ∃𝐿󸀠 ∈ N∗, 𝐶𝑇𝐿󸀠(𝐶𝑇𝐿(𝑥)) = 1
󳨐⇒ ∃𝐿󸀠󸀠 = 𝐿󸀠 + 𝐿 ∈ N∗, 𝐶𝑇𝐿󸀠󸀠(𝑥) = 1󳨐⇒ 𝑥 ∈RTN.

Indeed, 𝑘 ∈ [1]2 ∪ [0]4 have already been discussed
in Propositions 9 and 10. Recall that 𝑘 ∈ [2]4 is the
major concern in reduced version of induction for Collatz
Conjecture; that is, ∀𝑥 ≤ 𝑘 = 4𝑡 + 2, 𝑥 ∈ RTN 󳨐⇒ 𝑥 =𝑘+ 1 ∈RTN, where 𝑥, 𝑘, 𝑡 ∈ N∗. We can prove that portion
of 𝑘 = 4𝑡 + 2 in induction is Returnable as follows.

Corollary 42. Let 𝑆 = [2]16 ∪ [10, 22]32 ∪ [6, 14, 58]128.∀𝑥 ≤ 𝑘, 𝑘 ∈ 𝑆 ⊂ [2]4, 𝑥 ∈RTN 󳨐⇒ 𝑥 = 𝑘+1 ∈RTN.

In other words, we can prove that portion of 𝑡 is Return-
able as follows:

Corollary 43. Let 𝑇 = [2, 5]8 ∪ [1, 3, 14]32.∀𝑥 ≤ 𝑘, 𝑘 = 4𝑡 + 2, 𝑡 ∈ 𝑇, 𝑥 ∈ RTN 󳨐⇒ 𝑥 = 𝑘 + 1 ∈
RTN.

Thus, we have already proved that portion of induction
cases is Returnable. For the proof of Collatz Conjecture, we
need to prove that all cases are Returnable. That is, all cases
for 𝑘 = 4𝑡 + 2 are Returnable to make 𝑆 = [2]4, or all cases for𝑡 are Returnable to make 𝑇 = N∗.

Note that, indeed, without relying on the induction in
Section 3, we only need to prove ∀𝑥 ∈ N∗, 𝑥 ∈ RTN.
As 𝐶𝐶 is equivalent to 𝑅𝐶𝐶 (recall Proposition 4), we thus
solely need to prove 𝑅𝐶𝐶 is true. In other words, ∀𝑥 ∈
N∗, ∃CODE(𝑥) (recall Remark 14 (3)).

6. Conclusion

In this paper, we propose a new direction for proving Collatz
Conjecture, by provingReducedCollatz Conjecture. Reduced
Collatz Conjecture is equivalent to Collatz Conjecture but



12 Journal of Mathematics

easier to explore for inherent properties. It is because all
dynamics going to transformed number 1 will consist of
multiple reduced dynamics, in which transformed number is
less than the corresponding starting number instead of 1.

We also present an induction method for Collatz Conjec-
ture for better understanding of Reduced Collatz Conjecture
and reduced version of the induction that is easier to tackle.

We denoted reduced dynamics asCODE(𝑥) (called code)
and explore some fundamental properties of it, especially the
structure of reduced dynamics (i.e., unified format concate-
nated by regular segments).

The starting numbers and their codes whose lengths are
no more than 7 (i.e., {(𝑥, 𝑐) | 𝑐 = CODE(𝑥), |𝑐| ≤ 7}) are
also given and proved; thus, portion of 𝑥 ∈ [3]4 has already
guaranteed Reduced Collatz Conjecture. That is, 𝑥 ∈ [3]16 ∪[11, 23]32 ∪ [7, 15, 59]128 󳨐⇒ ∃CODE(𝑥)). (Recall that codes
for 𝑥 ∈ [1]4 and 𝑥 ∈ [0]2 are trivial - CODE(𝑥 ∈ [1]4) = 𝐼𝑂
and CODE(𝑥 ∈ [0]2) = 𝑂.)

The future work for the proof of Collatz Conjecture can
follow this direction, to just prove thatCODE(𝑥) exists for the
left portion of 𝑥 ∈ [3]4. Indeed, we also discovered the bound
between the counts of 𝐼 and the counts of𝑂 for any valid code
is related to log23, the period 𝑇 in terms of CODE(𝑥 + 𝑇) =
CODE(𝑥) is related to the length of CODE(𝑥), and how to
compute residue class of 𝑥 directly when CODE(𝑥) is given,
which will be presented in our other papers.
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