
RELIC-FUN: Logic Identification through Functional
Signal Comparisons

James Geist∗, Travis Meade∗, Shaojie Zhang∗, Yier Jin†
∗Department of Computer Science, University of Central Florida

†Department of Electrical and Computer Engineering, University of Florida
jimg@knights.ucf.edu, travis.meade@ucf.edu, shzhang@cs.ucf.edu, yier.jin@ece.ufl.edu

Abstract—The ability to reverse engineer a hardware netlist in
order to detect malicious logic has become an important problem
in recent years. Much work has been done on algorithmically
identifying structure and state in circuits; the first step of which
is to separate control signals from data signals. The most current
tools rely on topological comparisons of logic in order to identify
signals which are uniquely structured in the netlist, as these signals
are likely control signals. However, topological comparisons become
less effective when a netlist has been resynthesized and optimized.
We present a new tool, RELIC-FUN, based on netlist slicing and
functional comparison of logic. Experimental results show that
depending on netlist size, optimization, and control logic density,
the proposed algorithm can be more accurate, and faster, than
existing topological algorithms in many cases.

Keywords: Netlist Reverse Engineering, Logic Identification, Hard-
ware Security

I. INTRODUCTION

Modern integrated circuits pass through many hands from
initial design to release into the supply chain, and typically
contain third party intellectual property (IP). Their specifications
are written in a high level language such as Verilog or VHDL;
these languages allow the engineer to specify the design at a high
level of abstraction similar to a software programming language.
As with software languages, many libraries are available to
perform common functions in order to prevent engineers from
having to repeatedly solve problems that arise over and over.
These libraries, called IP cores, come from many sources, and
are used despite their implementation being opaque to the circuit
designer.

An overview of the generation process follows. A compiler
translates (synthesis) design specifications into a network of
logic gates. These gate descriptions are defined in a cell library
specific to the targeted fabrication technology. The cells vary
not just in the logical function but also in terms of timing, area,
and power usage and are selected based on the optimization
settings for design. The last stage of design places these cells
into positions on the die, and interconnects them (place and
route).

Often, a design will use not just individual cells but large
pregenerated IP cores for which the engineer may not have
source code. The only access the engineer has to the third
party circuitry is the netlist after the design has been compiled
and synthesized. Netlists may also be recovered from fabricated
chips returned from the foundry. In either of these cases,
malicious code may have been inserted into the design, either

via extra logic in a third party IP core, or changes to the design
by a malicious foundry. Again access to the original source
code might be limited, and even with access to the high level
specification, as the netlist is at gate level, it cannot just be
compared to the original source code. Verification that the design
functions only as intended is difficult.

One solution to this problem is to use reverse engineering
tools on the final netlist to discover pieces of the original
design, and then simulate the circuit to ensure that unintended
states cannot be reached. In most stateful designs, a Finite
State Machine (FSM) is used to generate control signals that
synchronize the functional units in the rest of the design. An
FSM can be represented by a set of registers that change on
every clock cycle based on the state of the design’s inputs and
functional units. Reverse engineering tools allow the designer
to isolate the FSM’s in the design, and then to simulate them
looking for atypical state combinations that are the result of
malware injection and/or hardware faults. Additional tools might
be required, if the intended states are unknown.

This paper makes the following contributions:
1) A logic identification algorithm which uses functional

rather than topological matching.
2) A tool, RELIC-FUN, based on a functional matching

algorithm which is more accurate in many cases than
topological algorithms.

3) A comparison of how RELIC-FUN and an existing topo-
logical tool, RELIC, perform on both unoptimized and
optimized netlists.

The rest of the paper is organized as follows. Section II dis-
cusses the motivation for the algorithm application we present,
and section III covers related work in the field. Section IV
provides formal definitions for the theory behind the algorithm,
and section V details the algorithm itself. Section VI describes
our experimental setup, and section VII discusses comparative
results between our algorithm and the existing tool on sample
netlists. Finally, section VIII summarizes the work.

II. MOTIVATION

One of the primary uses of reverse engineering is to determine
if malicious elements (malware) have been introduced into a
design at some point in the fabrication process. A common
implementation of malware is for the corrupted design to react
to an unlikely or invalid combination of inputs. In the original
design, the hardware might report an error in such a case. The

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:21:17 UTC from IEEE Xplore.  Restrictions apply. 



malware, however, recognizes a particular invalid input combi-
nation as a signal for the hardware to enter an unanticipated but
functional state. Once in that state, the hardware may execute
any number of undesirable actions, such as leak data through a
side channel back to the attacker. Implementations of this type
are typically centered around extensions to an FSM responsible
for generating control signals.

The definition of an FSM is a set of states with transitions
between them; the FSM is in exactly one state at any given time.
On each clock cycle, the FSM moves into a new state based on
its input signals. The input signals are typically input pins or
state signals from functional units. Each state corresponds to
setting the output control signals of the FSM to certain values.
If there are n control signals, then there are 2n possible states;
however, in most FSM’s only a subset of the states are valid. If
malicious code has been inserted, then the FSM will have extra
states that the designer did not intend.

In order to detect FSM tampering, a reverse engineer must
first find the FSM in the netlist. Very little of the original
high level design may be known other than the input and
output connections. Logic identification tools are used to isolate
control signals; such control signals are often the output of
registers which are part of an FSM. Once a part of the FSM
has been found, the rest can be pieced together by the tight-knit
connections between its registers. Then a simulation program
such as REFSM [8] can be used to explore the output space of
the FSM to search for atypical transitions.

When a netlist is compiled, the compiler can choose to
perform varying levels of optimizations. Optimizations are an
attempt to improve some metrics of the final implementation,
such as lowering the number of gates in order to make the die
smaller or power consumption lower. Consider the case where
we have a multi-bit adder made up of one-bit adders. The carry
out of each component adder is connected to the carry in of the
next bit. At the low bit end, the carry in will be connected to
some other logic, such as a CPU carry flag register. Likewise the
carry out of the final bit will be connected to some other logic
(perhaps the input to the same carry flag register). The compiler
may decide that, for either of these cases, that it is more efficient
to combine part of the adder with the logic that drives the low bit
carry on or uses the high bit carry out. In general, optimization
can cause a blurring of the line between functional units by
creating gates that function as part of multiple functional units.

Tools which use topological comparison can be misled by
optimization; in the previous example, carry in is clearly data,
but because optimization has changed the carry in logic in
the low bit adder, that signal is now different topologically
from all of the other carry in’s and may be mis-identified as
a control signal. These false positives are noise in the output of
topological matching tools, making it more difficult to discern
real control signals. We introduce a new tool, RELIC-FUN,
which is designed to overcome these difficulties by performing
functional rather than topological matching.

III. RELATED WORKS

Multiple algorithms for partitioning a netlist into control and
data signals have been proposed. They can be classified into two
approaches which are complementary: isolate control signals,
or aggregate data path signals. Further, they can be classified

by whether they test the netlist functionally or topologically.
Functional algorithms attempt to match parts of the netlist
based on the computed Boolean function; topological algorithms
match based on similar gate structures.

Topological Functional
Data Path REBUS [11] WordRev [6]

REPCA [11]
Control Logic RELIC [7] RELIC-FUN (This Work)

fastRELIC [12]

TABLE I: Classification of Algorithms.

Across all algorithms, the common theme is to use the
inherent replication of structure that naturally occurs in the
implementation of any multi-bit data path to separate data
signals from control signals.

RELIC [7] performs a similarity test between all pairs of
register inputs as part of a larger feature set used for an unsu-
pervised learning task to assign likelihood scores that a signal
is a control signal. Given two register inputs, the algorithm
computes a similarity score in the range [0..1] based on how
structurally similar the inputs’ fanin cones are. RELIC compares
every candidate pair of signals in the netlist, and generate a
Pairwise Similarity Score (PSS) for each pair. Thresholding is
used to cull the list of candidate pairs down in two places: on
the original similarity score described above, and on the final
PSS generated by a normalized bipartite maximal matching of
all remaining pairs.

fastRELIC [12] was proposed as a performance enhancement
over RELIC. It is functionally very similar to RELIC; the
main difference is that it considers the inversion of signal
pairs (i.e. if comparing A and B, then A and B are also
compared) as also proposed by Meade et al. as an improvement
to RELIC itself [11]. fastRELIC improves on performance
by grouping signals based on their similarity scores as soon
as the original comparison is done. By making inferences
about score relationships while building the groups, far less
comparisons between signal pairs need to be performed. As
the comparison is a recursive search through the netlist, this
results in substantial performance gain. Unfortunately, as the
authors chose to reimplement RELIC in Python and then make
their improvements on that implementation, a direct performance
comparison between fastRELIC and RELIC-FUN (which, like
RELIC, is implemented in C++) is difficult.

WordRev algorithm [3] partitions the netlist into equivalence
classes of k-feasible cuts such that all members of each class
compute the same Boolean function. The algorithm proceeds
by attempting to find connections between members of a class;
for example, a chain of 1-bit adders forming a multi-bit adder,
which in turn is part of a data path. Pieces of the data path are
connected via forward propagation; i.e. searching from a word’s
register outputs to nearby signals to find the next word in the
path.

RELIC-FUN shares some algorithmic heritage with Wor-
dRev [6]. Both algorithms cut and functionally compare pieces
of the netlist in similar ways. However, WordRev is interested
in finding similar parts of the netlist in order to determine if
they are part of a larger functional structure such as a multi-bit
word; RELIC-FUN is interested in finding pieces of the netlist

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:21:17 UTC from IEEE Xplore.  Restrictions apply. 



A
B

C

D Q Y

Fig. 1: A 3-feasible slice

A
B
C
D
E
F

D Q Y

Fig. 2: A circuit with multiple possible slices

which are not similar to many other pieces, as these are more
likely to be control signals.

REBUS and REPCA are two tools proposed by Meade et
al. [11]. REBUS combines the similarity score of RELIC with
the forward propagation data path discovery of WordRev to
reconstruct the data paths of a netlist. REPCA runs Principal
Component Analysis (PCA) on various topological features such
as fanin size, fanout size, and number of registers to input or
output. The top axes returned by PCA are then used to build
clusters of similar signals.

IV. DEFINITIONS

In this section, we will introduce all notations/definitions
which will be used in our algorithm. An equivalence class of
a set S is a subset E ⊆ S such that all members of E are
considered equal by some equivalence relation. A partitioning of
S places every member of S into exactly one equivalence class;
i.e. if EQ is the set of all equivalence classes in a partitioning
of S, then ∪E∈EQE = S and ∩E∈EQ = ∅.

A slice is a subset of the netlist, defined for a given signal Y
which is the slice’s output, with a set of captured input signals
A1, A2, ..., An selected from the transitive fanin of Y . The slice
computes a Boolean function Y = f(A1, A2, ..., An); the inputs
must totally determine Y . Meeting this condition requires that no
gate contained in the slice has uncaptured, non-constant inputs.
WordRev [3] refers to a slice of this form as a feasible cut of the
output Y , and calls a conforming slice of k inputs k-feasible.

Figure 1 shows a simple 3-feasible slice. If the AND gate had
one more input, the slicing algorithm would have to include it,
in order to satisfy the requirement that all inputs of included
gates must be captured. The algorithm, in this case, could also
not just omit C, as that would leave the OR gate with one input
dangling.

Figure 2 shows a more complex circuit. A 2-feasible cut of
this example is trivial; we take the two inputs of the XOR gate. A
3-feasible cut, however, is impossible. There are two 4-feasible
cuts: A,B,C, and the second input to the XOR gate, or D,E, F ,
and the first input of the XOR gate. A 5-feasible cut is again
impossible, and a 6-feasible uses all of A,B,C,D,E, F . In
general, for any given k, there can be zero or more k-feasible
cuts on a given signal.

We say that two slices are functionally equal if they both
compute the same Boolean function on the same set of inputs,
potentially permuted in different ways. Assume we have two
circuits with outputs X and Y respectively. Both circuits take

A B C X Y
0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

TABLE II: Two functionally equivalent truth tables

the same inputs A1, A2, ..., An. Further, assume that X =
f(A1, A2, ..., An) is the Boolean function computed by X’s
fanin. We consider X and Y to be functionally equivalent if, for
some permutation π of the inputs, Y = f(π(A1, A2, ..., An)).
In Table II, X and Y have three inputs each. Their outputs differ
for the order of inputs given; however, the truth tables are equal.
If we permute the inputs such that ABC is given to circuit X
and CBA is given to circuit Y , then the outputs X and Y match
for all inputs.

V. RELIC-FUN

A. RELIC-FUN Algorithm

Algorithm 1 Compute equivalence classes

function relic-fun(signals, target− size)
classes← []
for s ∈ signals do

sl← slice(s, target− size)
found← false
for cl ∈ classes do

t← cl.first
if ttequal(sl, t) and not found then

add(cl, sl)
found← true

end if
end for
if not found then

newset← set(sl)
add(classes, newset)

end if
end for
sort(classes, λx : x.size)

Algorithm 1 shows the RELIC-FUN algorithm for classifying
signals. The input signals is the set of interesting signals to
classify; RELIC-FUN takes this as all signals that are register
inputs. For each signal, the algorithm attempts to find a k-
feasible cut for the signal by executing a breadth-first search
(BFS) backwards from the signal into its fanin logic, construct-
ing a set I of all gate inputs not totally interior to the slice.
The search terminates once I contains k or more elements. As
we showed in Figure 2, there is no guarantee that a k-feasible
cut exists for a given signal. If there is no k-feasible cut for a
signal, RELIC-FUN will keep the next larger slice it can find.

For efficiency, RELIC-FUN stores truth tables as 64 bit
integers; each bit is the result of assignment of one set of
Boolean values to the inputs of the slice. This imposes a practical
limit of k ≤ 6 since 26 = 64. If there is no slice with a number
of inputs less than this implementation defined maximum, then
the signal will be ignored. In practice, this does not cause

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:21:17 UTC from IEEE Xplore.  Restrictions apply. 



problems, as good results can be obtained with k of 4 and a
case where slices are discarded because of this limit is extremely
unlikely with that target k.

If there are multiple slices for a given k, then RELIC-FUN
keeps only the first slice encountered. In practice this also
produces good results, as the slices are all searched with the
same BFS algorithm and thus the gates are enumerated in the
same order. However, this implementation detail introduces a de-
pendence on topology; future work will investigate examining all
possible k-feasible cuts of a signal and intelligently combining
the results if there are multiple cuts.

Each new slice is then compared to a candidate slice from the
equivalence classes built so far, using the definition of functional
equality. By definition, all members of an equivalence class are
equivalent, so only one comparison per class is needed. If the
slice matches an existing class, then it is added to that class;
otherwise, a new class is created with the new slice as its
only member. As mentioned above, the slicing algorithm may
generate slices with varying number of inputs; each equivalence
class can only contain slices with the same number of inputs.

Algorithm 2 Test functional equality

function ttequals(A, B)
if |A.inputs| 6= |B.inputs| then

return false
end if
for p ∈ permutations(|A.inputs|) do

match← true
for i ∈ combinations({0, 1}, |A.inputs|) do

if A(i) 6= B(p(i)) then
match← false

end if
end for
if match then

return true
end if

end for
return false

The functional equivalence algorithm ttequals is shown
in algorithm 2. Two slices A and B are compared by brute-
force enumeration of all possible input permutations. If A and
B have different inputs sizes, then they are not equal by default.
If the input sizes are the same, then ttequals generates all
permutations of a set of inputs of that size. For each permutation,
A and B are computed for each possible set of input values; B
is given the current permutation’s reordering of the inputs given
to A. If, for any permutation, A and B match on all possible
inputs, then A and B are functionally equivalent. This problem
has been well-studied as it occurs often in VLSI compilers
(see, for example, Mohnke and Malik [1]); however, we did not
implement any heuristics as the input sizes RELIC-FUN works
with are so small that performance is not an issue.

After the equivalence classes are built, they are sorted by size.
Classes with few members are likely to be control logic as they
compute functions dissimilar to the rest of the design. Classes
with a large number of members, on the other hand, are likely
to contain data registers, as multi-bit register structures are very

self-similar. In practice, only examining signals from singleton
classes yields good results.

B. Runtime Analysis
The function ttequals, which determines if two slices

are functionally equal, is computationally non-trivial as we do
not know the order of the inputs to each slice. Therefore the
algorithm must compare each permutation of inputs of one slice
to the other slice; for each permutation, the entire truth table
must be evaluated. If there are k inputs, this is O(k!2k). The
algorithm is tenable because it does not need to compare the
truth tables of every pair of signals; it only needs to compare
each signal against one signal from each equivalence class.
This is the key observation that allows the algorithm to run
in reasonable time. If there are n signals and c classes, the total
runtime is O(k!2kcn). k is a parameter and is typically very
small (4 to 6). On practical netlists c also tends to be small
(around 100 or less).

VI. EXPERIMENTAL SETUP

We implemented RELIC-FUN in C++ and compared it against
RELIC, which is also written in C++. We ran both programs
against 7 netlists chosen based on size and balance between
logic and data. The target netlists were compiled using Design
Compiler [15] and synthesized using the Nangate OpenCell
15nm library. The signals investigated were from the smallest
one or two equivalence classes returned by RELIC-FUN, and
above a gap in the Z-score values returned by RELIC. Each
signal was classified into one of three bins:

1) High quality if the signal could be seen to be part of an
FSM, interconnecting two parts of the design, or otherwise
implemented a standalone, high level function like reset.

2) Medium quality if the signal was clearly not data, but was
glue logic or control data (for example, a counter for UART
timing).

3) Low quality if the signal could definitively be seen to be
part of a data path.

Two versions of each netlist were evaluated. The original
version compiled by Design Compiler is representative of a
design as it is being developed and simulated. Reverse engineer-
ing these netlists is intended to discover malware embedded in
third party IP cores. The second version is the original version,
resynthesized with further optimizations using the Berkeley
ABC toolset [13]. This version is representative of a design
after manufacture. Such netlists may, in practice, be recovered
from actual hardware by a process of chemically exposing the
die inside its packaging, using optical or electron microscopy
to capture the die’s structure, and algorithmically processing
the images back into the represented gates [2]. This process
is intended to catch malicious modifications introduced during
fabrication.

All designs except for AES Trojan are from OpenCores [16].
The AES Trojan is per Trust-Hub [5], [10]. All timing runs were
executed on an Intel(R) Core(TM) i5-9600K system running at
3.70GHz with 32G of memory.

VII. EXPERIMENTAL RESULTS

A. Accuracy
Table III shows the results against the compiled test netlists;

table IV shows the results on the same netlists after having

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:21:17 UTC from IEEE Xplore.  Restrictions apply. 



RELIC RELIC-FUN
Netlist Class Gates H% M% L% # H% M% L% #
UART Logic 168 28 45 28 29 33 50 17 24
DES Pure Data 1984 0 0 100 3 0 0 0 0
RSA Data 2139 67 0 33 3 27 27 45 11
ETH Logic 2653 25 0 75 8 56 35 8 48
MC8051 Balanced 6590 63 19 19 43 47 30 23 43
AES Data 9114 0 100 0 3 14 86 0 14
AES Trojan Pure Data 11175 0 100 0 9 0 50 50 2

TABLE III: Results on Original Netlists described using % High (which are emboldened), % Medium, % Low Quality Signals; Number of
Signals Considered. Winners underlined.

RELIC RELIC-FUN
Netlist Class Gates H% M% L% # H% M% L% #
UART Logic 168 50 50 0 8 50 33 17 6
DES Pure Data 1984 0 0 0 0 0 0 0 0
RSA Data 2139 0 0 100 4 100 0 0 3
ETH Logic 2653 60 0 40 5 65 26 9 23
MC8051 Balanced 6590 57 43 0 7 100 0 0 6
AES Data 9114 11 89 0 9 11 89 0 9
AES Trojan Pure Data 11175 0 100 0 5 0 50 50 2

TABLE IV: Results on Resynthesized Netlists described using % High (which are emboldened), % Medium, % Low Quality Signals; Number
of Signals Considered. Winners underlined.

been resynthesized with ABC. We compare accuracy based on
the percentage of high quality signals each algorithm reveals.

In the original designs that have not been heavily optimized,
RELIC beats RELIC-FUN in two cases. On the resynthesized
design, however, RELIC-FUN performs better. It ties or exceeds
RELIC in every cases.

The UART core is the smallest test case with only 168
gates. It contains a transmitter and receiver which are largely
separate components. The data path is a small percentage of
the design: two shift registers, one for the receiver and one for
the transmitter. The rest of the design is logic, consisting of
counters to divide the clock to the correct rate to shift the serial
data in and out and to count the number of bits transmitted or
received. The transmitter and receiver both have an FSM. We
considered any signal that was part of one of the two FSM’s as
high quality; any signal that was part of a counter as medium
quality; and signals which were part of the shift or I/O data
registers as low quality. RELIC and RELIC-FUN performed
similarly on this design, both in the number of signals recovered
and the percentage of high quality signals. On the original
netlist, RELIC-FUN works slightly better (33% versus 28% high
quality signals recovered) and on the resynthesized netlist, both
algorithms find 50% high quality signals. RELIC-FUN performs
slightly worse on this case, finding one low quality signal, while
RELIC finds all high and medium quality signals.

The DES core we included is a special case as it is purely
pipelined and has no control logic. This design was included to
test for false positives. RELIC-FUN properly finds no control
signals at all – there are no small equivalence classes in
the results. Original RELIC finds some false positives in the
original version, but not in the resynthesized version. On the
resynthesized version, both algorithms properly find no control
signals.

The RSA core, like the DES core, is data heavy; however,
while the DES algorithm only includes operations such as
signal permutation and XOR which can be implemented in
combinational logic [14], RSA requires multiplication [9]. Thus
the RSA core contains a multiplication functional unit and

associated control signals. On the original design, RELIC-FUN
finds a lower percentage of high quality signals; however, after
resynthesis, RELIC loses track of any high quality signals (find-
ing false positives in the multiplier data path), while RELIC-
FUN only finds high quality signals.

The ETH core is an Ethernet controller. This core is logic
heavy, for the same reasons as the UART; however, as Ethernet
is a more complex protocol with framing and addressing, it is
much larger. RELIC-FUN fares better than RELIC on both the
original and resynthsized design in this case, finding a large
number of control and FSM signals. RELIC appears to have
problems distinguishing between control signals and data paths
which are not totally consistent across bits; in this case, it tags
a number of signals containing the cyclic redundancy check
(CRC) of payload data as control.

The MC8051 is a popular, open source, 8 bit microcon-
troller [4]. The fact that it is open source lends it to manual clas-
sification of signals. The core has a large amount of both control
logic and data (registers, ALU, etc.) and thus we considered it
a balanced design. It also contains a varying number of serial
interface and timer/counter units; the implementation we studied
has one of each. The design optimizes well upon resynthesis,
and RELIC-FUN shows clear advantage on that version of the
netlist.

We studied two AES implmentations: an AES with a round
counter, and an AES core with an inserted hardware Trojan.
The AES core is data heavy and the Trojan’ed version is a
streaming implementation which has no control logic (the goal
in this design is to isolate the Trojan.) We classify AES as data
heavy and AES Trojan as pure data. Both algorithms tie for both
cases of these cores, except for the the unoptimized AES, where
RELIC-FUN wins. Both algorithms discovered signals from the
Trojan on both the original and optimized netlists.

Overall in the resynthsized test cases, RELIC-FUN either
wins or ties. On the DES core, there is no control logic to be
found, so a tie of zero signals is to be expected. On AES, there
are only two high quality signals: one to load new data, and one
to signal that the encryption is complete. In AES Trojan, as in

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:21:17 UTC from IEEE Xplore.  Restrictions apply. 



DES, the implementation has no control signals. This leaves 4
netlists with a non-trivial number of control signals to discover:
UART, RSA, ETH, and MC8051. REFLIC-FUN outperforms
RELIC in all of these except UART, where the two algorithms
tie.

B. Experimental Runtime

 0

 0.5

 1

 1.5

 2

 2.5

UART
DES

RSA
ETH

M
C8051

AES
AES Trojan

R
u
n
ti

m
e
 (

se
co

n
d
s)

Netlist

RELIC (O)
RELIC-FUN(O)

RELIC(R)
RELIC-FUN(R)

Fig. 3: Runtimes on Original (O) and Resynthsized (R) Netlists

Figure 3 compares the runtimes of RELIC versus RELIC-
FUN on each test netlist. Each timing is the average of ten runs
of the command. On many of the original netlists, RELIC-FUN
is faster than RELIC; a notable exception is MC8051, where it
is almost an order of magnitude slower. RELIC’s performance
is mostly dominated by the overall size of the netlist. RELIC-
FUN’s, as shown in the analysis above, is a combination of the
netlist size and the number of classes discovered. The MC8051
is large in both ways: RELIC-FUN found 116 equivalence
classes, and it has 6500 gates. The two AES cases have more
gates, but are very symmetric and thus only have a small number
of classes (20 for the AES, 9 for the AES Trojan).

C. Discussion
We compared RELIC-FUN in depth with one other popular

tool, RELIC, and considered two main scenarios. The first, the
unoptimized netlist, is useful when a design is being compiled
during development. In this case, reverse engineering is likely
looking for malware injected via third party IP core. RELIC has
advantages here, as the topology has not yet been corrupted. The
second case, the optimized netlist, is more likely to occur when
the netlist has been recovered directly from hardware. In this
case, RELIC-FUN outperforms RELIC and is the more likely
candidate for analysis. On the resynthsized netlists, the only case
where RELIC-FUN becomes slower is ETH. In all other cases
the relationship between the two tools is the same as for the
original netlists.

On large designs which generate many equivalence classes,
RELIC-FUN can be slower than RELIC. In the netlists we
tested, this can be seen in the unoptimized Ethernet design.
There may be cases where RELIC is a better choice if the
runtime of RELIC-FUN is too large. The performance of
RELIC-FUN, however, is much more comparable to RELIC on
optimized designs, were RELIC is more accurate as well. Future
work is planned to improve the performance of RELIC-FUN in
all cases.

VIII. CONCLUSION

In this paper we have proposed a functional algorithm for
logic identification that can outperform topological algorithms in
optimized circuits. RELIC-FUN ties or exceeds the percentage
of high quality signals recovered compared to RELIC on the
optimized versions of all netlists we studied, and in many cases
had lower runtime than RELIC. There are many improvements
to RELIC-FUN (such as heuristics on functional equality to im-
prove performance, and examining all possible slices of a signal
to improve accuracy) that we believe can make RELIC-FUN
even more competitive compared to other logic identification
algorithms.

ACKNOWLEDGEMENTS

This work is partially supported by the National Science
Foundation (NSF-1812071) and DARPA.

REFERENCES

[1] J. Mohnke and S. Malik, “Permutation and phase independent boolean
comparison,” in 1993 European Conference on Design Automation with
the European Event in ASIC Design, IEEE, 1993, pp 86–92.

[2] R. Torrance and R. James, “The state-of-the-art in semiconductor re-
verse engineering,” in 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), IEEE, 2011.

[3] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in 2013 IEEE international symposium on
hardware-oriented security and trust (HOST), IEEE, 2013, pp 67–74.

[4] Mc8051 ip core synthesizeable vhdl microcontroller ip-core user guide,
version 1.2, Oregano Systems, 2013. [Online]. Available: https://www.
oreganosystems.at/application/files/9815/3313/6275/mc8051 ug.pdf.

[5] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmark development,” in IEEE Int. Conference
on Computer Design (ICCD), IEEE, 2013.

[6] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in 2013 Design, Automation Test in Europe Conference
Exhibition (DATE), IEEE, 2013.

[7] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang, “Gate-level netlist
reverse engineering for hardware security: Control logic register identifi-
cation,” in 2016 IEEE International Symposium on Circuits and Systems
(ISCAS), IEEE, 2016.

[8] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), IEEE, 2016.

[9] K. Moriarty, E. Corporation, B. Kaliski, Verisign, J. Johnsson, S. AB,
A. Rusch, and RSA, “Pkcs 1: Rsa cryptography specifications version
2.2,” Moriarty, K., Tech. Rep. 8017, Nov. 2016, pp 1–78. [Online].
Available: https://tools.ietf.org/html/rfc8017.

[10] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security (HaSS), Apr. 2017.

[11] T. Meade, K. Shamsi, T. Le, J. Di, S. Z. Zhang, and Y. Jin, “The
old frontier of reverse engineering: Netlist partitioning,” Journal of
Hardware and Systems Security, vol. 2, no. 3, pp 201–213, 2018.

[12] M. Brunner, J. Baehr, and G. Sigl, “Improving on state register iden-
tification in sequential hardware reverse engineering,” in 2019 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), Washington, D.C., USA, May 2019, pp. 151–160. DOI: 10 .
1109/HST.2019.8740844.

[13] Abc: A system for sequential synthesis and verification, Berkeley Logic
Synthesis and Verification Group. [Online]. Available: https://people.
eecs.berkeley.edu/∼alanmi/abc/.

[14] Data encryption standard (des). [Online]. Available: https://csrc.nist.
gov / CSRC / media / Publications / fips / 46 / 3 / archive / 1999 - 10 - 25 /
documents/fips46-3.pdf.

[15] Design compiler. [Online]. Available: https://www.synopsys.com/.
[16] Opencores.org. [Online]. Available: https://opencores.org/.

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:21:17 UTC from IEEE Xplore.  Restrictions apply. 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



