
A Structural and SAT Analysis of SANSCrypt
James Geist∗, Shaojie Zhang∗, Yier Jin†, Travis Meade∗

∗Department of Computer Science, University of Central Florida
†Department of Electrical and Computer Engineering, University of Florida

jimg@knights.ucf.edu, shzhang@cs.ucf.edu, yier.jin@ece.ufl.edu, travis.meade@ucf.edu

Abstract—
As IP theft remains an important problem, and attacks against logic

locking mechanisms are becoming more sophisticated, the complexity of
proposed encryption schemes are also becoming more complex. One goal
of adding complexity is to increase the required time to perform an attack
by forcing the required SAT problems to become so unwieldy, or require
so many individual solves, that it is infeasible to break the encryption in
reasonable time. In this paper, by discussing an attack against one such
scheme, we demonstrate a combination of structural and SAT instances
can break a design.

Keywords: Netlist Reverse Engineering, Hardware Security, Netlist
Security Enhancement

I. INTRODUCTION

Many of the challenges involved in developing Integrated Circuits
(ICs) at the VLSI scale boil down to NP-hard problems [14]. Develop-
ing optimal IC layouts to reduce overhead and increase performance
has improved incrementally using heuristic solutions. These slightly
better improvements lead to more powerful computers that can search
for more efficient IC layouts. The cycle of improvements of to
hardware creates a bootstrapping model that drives up IC production.
Intellectual Property (IP) providers will continue to develop new ICs
either to improve current designs by using better transistor and/or
layout technology, meet the current demands for IC, or continue
production of novel designs for consumers.

Not every IP developer has access to their own foundry at the
needed fabrication level. For this reason it is not uncommon for IP
providers to outsource part of the fabrication process to untrusted,
third party foundries. A potential drawback to using third parties
is the potential for foundries or others involved in the production
process to determine the high level function involved in the IP
by way of Reverse Engineering [9]. With knowledge of such high
level function, meaningful and damaging Hardware Trojans can be
implanted thereby compromising any combination of confidentiality,
integrity, and/or accessibility (CIA) [6].

Researchers have aggressively investigated methods to reestablish
IC CIA. Many methods are reduced to either modifying the fab-
rication process to secure designs, (e.g. split manufacturing) or
obfuscating the designs such that high-level recovery becomes in-
tractable [12]. Both methods can be broken down into several
approaches. This paper will focus on obfuscation. Obfuscation can
involve renaming wires, modifying gates such that their functionality
is unknown to those outside of the production process, or inserting
additional logic which can corrupt the design when haphazardly
using the IC. The additional logic is typically bypassed either by
some sequential input which involves as state machine built into the
design or by applying some static key that fixes some part of the
ICs combinational behavior . Since exploring all possible methods is
unfeasible for a single paper, this paper will focus on developing and
demonstrating attacks of sequential locking schemes.

The contributions of this paper are:

• An automated workflow which unlocks a SANSCrypt design
in much less time than found by the original authors, which
demonstrates how a combination of structural and state analysis
together can reduce an unlocking problem to a more tractable
form.

• A SAT problem formulation which allows discovery of an FSM’s
state graph, without the need to unroll the design multiple times
to account for the passage of time.

• Recommendations for SANSCrypt, which generalize to other
sequential locking schemes, which make it less vulnerable to
the attack methodology we propose.

The rest of the paper is orgazized as follows. In Section 2, a
brief outline of attacks and defenses of sequential and combinational
protections schemes is presented. In Section 3, the defense model
is discussed, and motivation of the attack is presented. Section 4
presents the result of the proposed attack on the discussed defense.
Section 5 offers recommendations based on the method used in this
paper for exploitation. A brief conclusion of the research is presented
in Section 6.

II. RELATED WORKS

A. Attacks

In [7], El Massad et al. introduce a SAT attack for camouflaged
combinational circuits. A SAT problem is set up to discover circuit
inputs (called discriminating inputs) which, for different hypotheses
of values for camouflaged gates, the circuit outputs differ. By using
an oracle circuit, invalid hypotheses can be eliminated, until only
one working hypothesis remains. In [10], the authors extend this
solution to sequential circuits. Using sequences of input values,
the method performs bounded queries on the circuit, increasing the
length of the input sequence, until the algorithm guarantees that
only one hypotheses produces correct results. To accomplish this,
the sequential circuit is duplicated the requisite number of times
(referred to as unrolling) to account for the number of clock cycles
being queried. While the work discusses obfuscation in terms of
camouflaged gates, the arguments hold for sequential encryption
using keys as well.

Shamsi et al. [13] examine the SAT problems generated in the
sequential algorithm in [10] and find multiple points of redundancy
in the formulation. By reformulating the problem with multiple
optimizations, they are able to speed up the solution significantly.
However, the need to unroll the netlist remains.

Another sequential attack discovers the FSM registers and enumer-
ates the transitions. If the locking is dependent upon transitioning to
a known state in the FSM before the circuit will function, then the
transition graph can help discover a path to the start state. RELIC [8]
and RELIC-FUN [15] both attempt to distinguish FSM control signals
from other circuit signals using structural analysis, based on the idea
that control signals implement boolean functions which are unlikely978-1-6654-4185-8/21/$31.00 ©2022 IEEE

20
22

 A
sia

n
Ha

rd
w

ar
e

O
rie

nt
ed

 S
ec

ur
ity

 a
nd

 T
ru

st
 S

ym
po

siu
m

 (A
sia

nH
O

ST
) |

 9
78

-1
-6

65
4-

61
14

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AS

IA
N

HO
ST

56
39

0.
20

22
.1

00
22

02
4

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:17:27 UTC from IEEE Xplore. Restrictions apply.

to be duplicated elsewhere in the circuit. RELIC examines purely
structural components of signals such as gate type and fan-in size;
RELIC-FUN takes cuts of each register’s fan-in cone and counts how
many times the computed boolean function occurs in that context.
REFSM [9] can, given a state word constructed from RELIC or
RELIC-FUN, recover the transition graph of the FSM by recursive
constraint-based solving of the netlist.

B. Defenses

SLED [17] embeds a PRNG in an external secure memory module
and uses the PRNG bits as a key; incorrect key values cause the
design to malfunction. In order to avoid attackers from discovering
the key algorithm by inspection of the netlist, SLED’s key detection
unit examines properties of the key transitions rather than the key
transitions themselves.

SANSCrypt [16] attempts to increase the complexity of deobfus-
cation by requiring aperiodic reauthentication with pseudo-random
keys. Both the key value and interval between authentications depend
on a PRNG. By allowing the circuit to run normally for many clock
cycles between authentications, a SAT solution would have to unroll
through those many cycles to get to the next required key. In this
paper, we will analyze SANSCrypt in detail.

III. MOTIVATION AND PROPOSED SOLUTION

A. Motivation

In the results section of [16], the authors apply a sequential SAT-
based attack as in [11] to SANSCrypt to measure the time required
to recover the initial key sequence. They then relax their threat model
to allow the attacker to know when future authentication phases will
occur. Given this knowledge, they unroll the netlist the appropriate
number of times and reapply the attack, noting that the effort is
exponential in the number of key sequences.

While this type of analysis is common when evaluating protec-
tion methods, a sequential SAT analysis is only one weapon in
the attacker’s arsenal when the threat model includes, as it does
in the SANSCrypt paper, access to the encrypted netlist. While
the proposed method attacks the SANSCrypt method with more
sophisticated techniques which combine structural and state-based
algorithms, this paper’s goal is not to expose weaknesses in SAN-
SCrypt itself. Rather, this paper demonstrates that when evaluating
designs for weakness, there can be multiple points of failure; a more
thorough analysis may find faster ways to unlock a design, sometimes
using the very complexity that was introduced to defeat such attacks.

B. Overview of SANSCrypt

As mentioned in Section II, SANSCrypt adds complexity by
requiring an external circuit to provide a pseudo-random key at
pseudo-random intervals. Figure 1 from the original work shows
a block diagram of the scheme. In the top half, sequential and
combinational logic implement an FSM that contains both encrypted
mode states which handle authentication and functional mode states
which drive normal operation of the device. As in HARPOON [5], a
key presented across multiple post-reset clock cycles on the primary
inputs causes transitions through the encrypted mode states which
eventually cause a transition into the starting state of the functional
mode part of the FSM.

The lower half of the figure shows components unique to SAN-
SCrypt. A pseudo-random number generator (PRNG) determines
both the number of cycles between authentications and the required
key. Unlike HARPOON, SANSCrypt authentication can start in
any state in encrypted mode; when authentication starts, the state

register is loaded from the PRNG with a value guaranteed to be an
E state. After authentication a target clock cycle count is loaded
from the PRNG; after a counter reaches the target, authentication
starts again. The backjumping FSM (BJ-FSM) is responsible for
coordinating transitions between encrypted and functional mode in
both directions. While in encrypted mode, the encryption FSM (ENC-
FSM) is combined with the FSM’s outputs, causing them to be
corrupt and changing through the authentication phase.

Figure 2, also from the original work, shows the transition diagram
of the FSM. The blue arrows from functional mode indicate transi-
tions that can happen from any N state to any E state the PRNG can
generate. The red arrows indicate reentry into functional mode from
encrypted mode. From the outgoing state of encrypted mode, E4,
any N state could be the next state. In fact, we must return to the N
state that was interrupted when authentication began, so there must
be a save register that holds this state while authentication proceeds.

Searching for keys in SANSCrypt using existing SAT algorithms is
shown to be intractable as the discriminating input sequences are very
long; they must traverse the interval between authentication phases.
When discussing the performance of the algorithm, the authors only
consider using existing tools (RELIC, REFSM) without considering
a more sophisticated attack which combines those algorithms with
structural analysis.

C. Threat Model

We will assume the same threat model as in the original work. We
as the attacker are allowed access to the encrypted netlist, an oracle
which produces correct outputs for any inputs, and knowledge of how
SANSCrypt is implemented. There is no scan chain access, nor can
we probe the internal state of the oracle.

Although it is not explicitly stated, we understand that the authors’
intent is that the seed or key for the PRNG is in protected memory.
They state “... when and where the the back-jumping operation
happens is unpredictable unless the attacker is able to break the
PRNG or find its seed.” [16]. We therefore assume that while we may
recover the PRNG algorithm from the encrypted netlist, the starting
state is a secret hidden from us.

D. Structural Analysis

In the first part of the analysis, we examine the register dependency
graph Grd(Vrd, Erd), where the vertices Vrd are the registers of the
design. If the value of register S in the next clock cycle depends
on the current value of register R in the current clock cycle then
S depends on R, and the edge R→S exists in Erd. A strongly
connected component, or SCC, is a set of vertices in a graph such
that for any vertex in the SCC, there is a path in graph to any other
vertex in the SCC. An SCC in Grd, then, is a set of registers that all
depend on each other, possibly over multiple clock cycles.

In figure 1, it is easy to see that the sequential logic, the back-
jumping FSM, and the encryption FSM are all mutually dependent.
Although not shown, the counter is loaded from the PRNG by the
backjumping FSM, and its value is also tested by the backjumping
component to determine when to transition into authentication. Hence
we would expect all of these registers to comprise one SCC in the
dependency graph. The PRNG is free running, and thus does not
depend on any of the aforementioned registers; the PRNG registers
therefore form another SCC.

As the first step in analyzing a design, we use a breadth first search
(BFS) of the netlist to build Grd, and then Tarjan’s Algorithm [1] to
find the SCC sets of the dependency graph. We define dependency
between SCC’s as follows: if for SCC sets S0 and S1, there exists

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:17:27 UTC from IEEE Xplore. Restrictions apply.

Combinational Logic Sequential Logic

Counter

PRNG

BJ-FSM ENC-FSM

PI

PO

Fig. 1. Schematic view of SANSCrypt. [16]

E4

E3

E1

E0

E2

N1

N0

N2

Encrypted Mode

Functional Mode

Fig. 2. State transition diagram of SANSCrypt. [16]

a register R0 ∈ S0 and a register R1 ∈ S1, and the edge R0 → R1

exists in the dependency graph, then S1 depends on S0. This defines
another graph, Grscc(Vrscc, Erscc), whose vertices are the SCC’s of
Grd and whose edges represent SCC dependency. We search this
graph for two SCC’s, SCCSANS (the large SCC containing the
original state registers and most of the SANSCrypt machinery) and
SCCPRNG (the SCC containing the PRNG). From the functional
description in [16], we can estimate a lower bound on ∥SCCSANS∥
and an upper and lower bound on ∥SCCPRNG∥. Using this method
recovers SCCSANS and the PRNG.

The next step in analysis is to find the state word registers Rstate

(labeled Sequential Logic in figure 1) from SCCSANS . In figure 2,
we note that upon reaching state E4, the circuit must transition back
to the functional state it was in before authentication was requested.
This implies the existence of another word register, of the same size
as the state word, which we will call Rsave. We also note that any
path through the encrypted mode side of the state transition graph
must visit E4 before reaching a functional state. Further, E4 may
lead to any functional state as it will result in a load of Rstate from
Rsave. Each flip-flop of Rsave will be mutually dependent with a
flip-flop of Rstate in Grd, and that no other flip-flop will depend on
the flip-flops in Rsave. For each flip-flop in SCCSANS , we count
the number of outgoing edges and collect the set of flip-flops with
only one edge. These are the flip-flops with only one dependent. We
call this set R′

save as it contains Rsave but potentially some other
flip-flops as well.

In order to determine Rsave from R′
save, we make use of another

observation: all of the registers of Rstate will depend on each other.
This is a property of FSM implementations: each state transition
depends on the value of the current state and other circuit conditions.
Let R′

state be all registers dependent on the registers of R′
save. We

partition R′
state using a disjoint set algorithm. Initially, all registers

in R′
state are in singleton sets. For each pair of registers R0, R1 ∈

R′
state, if there is an edge R0 → R1 ∈ Erd, we merge the sets

containing R0 and R1. The largest of the result sets is reliably Rstate.
Algorithm 1 implements this method.

Algorithm 1 Recovering the State Register
function RECOVER-STATE-REG

dependents←MAP () ▷ Compute dependent counts
for reg ∈ SCCSANS .vertices do

dependents[reg]← 0
end for
for edge ∈ SCCSANS .edges do

dependents[edge.from]+ = 1
end for ▷ Build potential state register set
P ′
state ← DISJOINT − SET ()

pregs← SET ()
for reg ∈ SCCSANS .vertices do

if dependents[reg] == 1 then
for edge ∈ SCCSANS .edges− from(reg) do

pregs.add(edge.to)
P ′
state.add− set(edge.to)

end for
end if

end for ▷ Build mutually dependent sets
for reg ∈ pregs do

for edge ∈ Grd.edges− from(reg) do
P ′
state.join(reg, edge.to)

end for
end for

return Largest set in P ′
state

end function

E. State Analysis

With the state registers in hand, we proceed to state analysis. For
this analysis, we will use a SAT solver as a way to query the netlist.
The SAT problem we create represents the netlist with each flip-flop
R split into two variables: the current register value Rcurr , which is
the signal the flip-flop’s Q output drives, and the next register value
(i.e. the value of the register after one clock cycle has passed) Rnext,
which is the signal that drives the flip-flop’s D input. With state
factored out, translating the remaining combinational logic into SAT
clauses is trivial. This is similar to the construction in [10], except
that we do not create a copy of the netlist for the next clock cycle.
For each query, we add to the problem a small number of clauses
constraining the primary inputs and current state register values. We
then solve the SAT problem; if it is satisifiable, we read back the
next register values from the model. Algorithm 2 shows pseudocode
for building the state transition graph using this method.

Using Algorithm 2, we build the transition graph Gtrans defined as
(Vtrans, Etrans), where Vtrans are the possible states and Etrans are
the possible transitions. Our first goal is to find the state in encrypted
mode which transitions to functional mode (in figure 2, this is node
E4). We will call this the pivot state Spivot. We note as above that
any path from encrypted mode (E-space, the set of all E states) to
functional mode (N -space, the set of all N states) must pass through

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:17:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 FSM State Exploration
function BUILD-STATE-GRAPH(n : netlist, st : state word,
rs : reset state)

for r ∈ n.flipflops do
next[r]← r.D
curr[r]← r.Q
n.remove(r)

end for ▷ n is now stateless
sat←SAT-INSTANCE(n)
q ←QUEUE()
seen←SET()
q.push(rs)
while q is not empty do ▷ BFS to find transitions

cr ← q.pop()
if cr /∈ seen then

seen.add(cr)
con←SAT-CONSTRAINTS()
con.add(curr[st] = cr)
while sat.solve(con) succeeds do

nx← sat.model(next[st])
q.push(nx)
con.add(next[st] ̸= nx)
Save cr → nx as a transition

end while
end if

end while
end function

Spivot. As constructed, the combined transition graph of the entire
FSM is one SCC. Any E-space node may reach any N -space node
by passing through Spivot, and any N -space node may reach any
E-space node by virtue of a state load from the PRNG when the
authentication phase starts.

Figure 3 shows this situation. E is the set of all E states, N is the
set of all N states, and U is the set universe; i.e. all possible 2∥Rstate∥

bit patterns. The solid green arrows represent intended transitions;
from the pivot state to N -space, and from N -space back to E-space.
The dashed red arrows show unintended transitions: from the pivot
state back to E-space, and to any other state in the set universe. These
unintended transitions will not happen in the actual design; however,
they are found by our SAT transition finder as transitions are only
constrained by the state of the circuit in the previous clock cycle. The
constraints that present the red transitions from being taken happen
several cycles earlier, when Rsave is loaded from Rstate. We note
this as a potential performance bottleneck: our transition graph solver
must deal with the worst case of an FSM that contains all possible
states, as least until we have identified and removed the pivot state.
Fortunately many real-world FSM’s have a small number of state
word bits.

For most states, removing the state will shrink the SCC by that
one state, as the E-space states will be densely connected for key
variation and all N -space states have transitions from the pivot node
and back to arbitrary E-space nodes. However, if the pivot node is
removed, then all of the red transitions in Figure 2 are also removed.
N -space is then no longer accessible from E-space, and the transition
graph will have two SCC’s. We can exploit this fact by removing each
state and examining the resulting SCC’s in the transition graph.

With the pivot node identified, extracting the key required from
any E-space node is trivial. As we have the transition graph, we can
use either breadth search first (BFS) or depth first search (DFS) to

U-E-N

E P N

Fig. 3. State space of SANSCrypt encrypted FSM. [16]

find the path from any node in E-space to Spivot, and we can use
the SAT problem we have already created to find input values that
will cause each needed transition.

F. Finding the Auth Load Signal

If, when authentication starts, the state register is loaded from the
PRNG, there must be some signal that enables that load. We can
use the SAT solver to find this signal. We assume that this signal
can be found in the combinational logic connecting the registers in
SCCSANS . For each such potential signal P , we use the solver as in
Algorithm 2 to find all the reachable states from the functional mode
start state. We do this twice, once asserting P and once asserting the
complement, ¬P . If in one case only N -space states are reachable,
and in the other case E-space states are reachable, then we take P
as the load signal. Keeping P in the state where only N -space states
are reachable disables authentication from transitioning into E-space.

G. Defeating the Encryption

We present two ways of using the progress so far to unlock the
design. First, we assume we cannot recover the PRNG sequence.
Then, we discuss the case where we can recover the PRNG and
provide a better solution in that case.

If we cannot recover the PRNG sequence, then we have no
way of predicting the authentication intervals. However, because we
understand the structure of the FSM, we can unlock the design by
modification. We know that at reset, the proper key sequence on the
inputs will cause the FSM to transition to Spivot, and then to the
start state of the functional mode. We can determine that start state
by looking for the reset value of Rsave, which will be loaded into
the state word during the transition out of Spivot. We have previously
found authload, the signal which loads the state word with an E
state to force authentication. If we cut authload from the design and
resynthesize it, then the FSM will never go into authentication, and
we are free to use it as we please.

If we can recover the PRNG sequence, then we do not have to
resynthsize; we can use the off-the-shelf hardware by replicating the
external key circuit. Given the netlist we described above, we can
simulate the design’s intended outputs for any sequence of inputs, as
if the encryption did not exist. We are allowed access to an oracle:
the hardware, properly working with the intended key generation
attached, with the caveat that we cannot read any internal state. If
we run the simulated netlist in lock step with the oracle, the two
will eventually disagree; the disagreement occurs when the simulated
circuit is still executing in functional mode, while the oracle has
entered authentication. We now have two important data points:

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:17:27 UTC from IEEE Xplore. Restrictions apply.

∆auth, the number of clock cycles until the first authentication past
the initial startup authentication, and t0, the clock cycle at which
functional operation began. Note that since the authentication counter
is loaded at t0, we now know that the value of the PRNG at t0 is
∆auth.

If the PRNG is implemented as an LFSR, as proposed in the
original work, then these data points are sufficient to break the
encryption. We have shown how to determine the PRNG registers.
From that and the encrypted design, the specification for the LFSR
can be obtained. We assume per the original work that the seed is
protected. However, we can derive the original polynomial that the
LFSR is based on by examining the encrypted netlist. It is a property
of LFSR’s that, by implementing an LFSR with mirrored taps from
the original LFSR, the mirrored LFSR will produce the same output
as the original LFSR but in reverse order. [3] If r(x) is the random
number generator, then we have r−1(x) from this construction. We
know at cycle t0, the PRNG value is ∆auth. The PRNG value at
reset, the seed value, is therefore r−t0(∆auth).

H. Runtime

Building the register dependency graph using BFS and finding
the associated SCC’s using Tarjan’s algorithm both take O(∥Vrd∥+
∥Erd∥) time. Searching for the SCCSANS and the PRNG is a
check over each SCC and each of its dependencies, so the bound
is O(∥Vrscc∥ + ∥Erscc∥). Merging two sets with the disjoint set
algorithm takes O(n) where n is the number if items in the set
universe. When finding Rstate from R′

state, we check each state and
potentially merge all states into one set, for a bound of O(∥R′

state∥2).
Building the state graph is the most expensive part of the algorithm.

As we are traversing the graph via a breadth first search (BFS), the
bound is O(∥Vtrans∥ + ∥Etrans∥) which is linear in the number
of states and transitions. However, the primitive operation executed
on each step is a SAT solve, which is known to have a worst-case
exponential bound in the length of the formula to be satisfied, which
in turn is proportional to the netlist size. Two things help us here:
much research into SAT solver heuristics which only take the upper
bound in pathological cases, and the fact that we do not need to
unroll the netlist multiple times in the same SAT instance to capture
the concept of state changes over time. At worst, we will add N
clauses of W variables on each problem, where N is the number of
transitions out of the state we are examining, and W is the number
of variables (bits) in the state word.

Finding the pivot state requires running Tarjan’s SCC algorithm
once per state in the transition graph. This is O(∥Vtrans∥2 +
∥Etrans∥·∥Vtrans∥). If the transition graph is dense and has approx-
imately a directed edge from each state, to each state, then ∥Etrans∥
approaches ∥Vtrans∥2 and the complexity is O(∥Vtrans∥3).

Finding the auth load signal takes O(∥sigs∥) SAT solver runs,
where sigs is the set of all signals in the netlist.

IV. EXPERIMENTAL RESULTS

We implemented the algorithms described in section III in C++
using MiniSat [4]. All experiments were run on a 3.3GHz Intel i7-
5820K system with 64G of memory.

In the original work, the authors use s1238 from the ISCAS ’89
suite as a performance test in the case where the threat model is
relaxed to allow the attacker to know when to apply the correct key
sequences. This circuit is characterized as combinational logic with
randomly inserted registers [2]. The authors used existing tools and
an attack based on unrolling the circuit multiple times [11] in order to
recover the initial key. While we wanted to show results on a circuit

TABLE I
TEST CIRCUIT CHARACTERISTICS

Primary Primary Recovery
Netlist Inputs Outputs Registers Gates Time (s)
s1238 14 14 18 508 < 0.1
SANS-ALU 10 12 59 355 < 0.1
PDP-8 21 42 482 6329 14.5

of similar scale, we felt that the randomness of s1238 combined with
SANSCrypt implementation might demonstrate unfair advantage to
our algorithm, as the SANSCrypt elements have more structure. We
therefore implemented a sequential design, SANS-ALU, of similar
scale: a circuit which includes 3 4-bit registers and a simple FSM-
driven ALU. The FSM was then augmented with the SANSCrypt
protection and compiled with Synopsys Design Compiler. Table
I compares the metrics of the two circuits. We also included a
larger design augmented with SANSCrypt: a PDP-8 minicomputer
implemented in Verilog.

In [16], the authors claim recovery of the initial key sequence
using brute force REFSM in 4 seconds. With our implementation,
we recover the important parts of the design as well as the initial
key sequence in 0.1 seconds on small designs and 14.5 seconds on a
larger design. As argued above, since both we and the original work
used an LFSR as the PRNG for the implementations, and we are
given knowledge of when the key must be applied, we do not need
to unroll the circuit in order to determine future key sequences. We
can simply work backwards from the time interval to determine the
LFSR seed value, which will give us the starting state in E-space for
every unlock sequence.

V. RECOMMENDATIONS

A. PRNG

Being able to synchronize to the PRNG in our attack is only
possible due to the ability to efficiently construct an inverse for the
PRNG function without knowledge of the initial seed. The original
work mentions AES as a higher cost alternative (and does mention
that the LFSR is less secure, though that claim is not discussed
further). While using AES does nothing to impede the structural
analysis, it will make reconstructing the PRNG stream much harder;
the attacker will no longer be able to predict the reauthentication
interval or entry E-state. Our recommendation is to always use a
PRNG that is cryptographically secure.

B. FSM

The foundation of our attack on the FSM is that there is a single
state which leads (via a reload of the state word from the previously
saved state) from E-space to N -space. This led to an algorithm
to partition the the states, from which it is trivial to remove the
sequential locking. Inserting multiple transition states would make
this part of the recovery much more difficult. Removing any one state
from the transition graph will no longer cause a partition. If there are
k pivot states, then we must examine ∥Vtrans∥!

k!(∥Vtrans∥−k)!
combinations

of states to remove, computing SCC’s for each. With large enough
k, this increases the bounds for the pivot state recovery step to
O(∥Vtrans∥4).

C. Temporal Instability

In parts of our analysis, we made use of the fact that the primary
outputs become corrupt during the authentication phase, and that
this may be a detectable condition. This assumption only holds if

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:17:27 UTC from IEEE Xplore. Restrictions apply.

changes in the outputs are relevant on every cycle. If the outputs
use asynchronous handshaking – for example, a memory controller,
where the peer circuit must wait for the controller to indicate that a
read or write operation has completed – then this assumption does
not hold. SANSCrypt may be much more secure in such applications.

VI. CONCLUSION

In conclusion, we have shown an algorithm that can deconstruct
a circuit protected with SANSCrypt and either remove the locking
mechanism or, in some cases, provide the correct key sequence for
any reauthentication request. While the algorithm is of limited use in
and of itself, the methodology of finding the important parts of the
locking mechanism via structural analysis and using that information
to do more constrained state analysis is more generally applicable.
Designers of protection should consider attack models more nuanced
than an unrolled SAT attack on the entire design.

ACKNOWLEDGEMENTS

This work is partially supported by the National Science Founda-
tion (NSF-1812071).

REFERENCES

[1] R. Tarjan, “Depth first search and linear graph algorithms,”
SIAM JOURNAL ON COMPUTING, vol. 1, no. 2, 1972.

[2] F. Brglez, D. Bryan, and K. Kozminski, “Combinational pro-
files of sequential benchmark circuits,” in IEEE International
Symposium on Circuits and Systems,, 1989, 1929–1934 vol.3.
DOI: 10.1109/ISCAS.1989.100747.

[3] P. Udaya, “Euclid’s algorithm and lfsr synthesis,” in 2000
IEEE International Symposium on Information Theory (Cat.
No.00CH37060), 2000, pp. 420–. DOI: 10 .1109/ ISIT.2000 .
866718.

[4] N. Sörensson and N. Een, “Minisat v1.13-a sat solver with
conflict-clause minimization,” International Conference on
Theory and Applications of Satisfiability Testing, Jan. 2005.

[5] R. S. Chakraborty and S. Bhunia, “Harpoon: An obfuscation-
based soc design methodology for hardware protection,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. DOI: 10.
1109/TCAD.2009.2028166.

[6] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware
trojan: Threats and emerging solutions,” in 2009 IEEE Interna-
tional High Level Design Validation and Test Workshop, 2009,
pp. 166–171. DOI: 10.1109/HLDVT.2009.5340158.

[7] M. El Massad, S. Garg, and M. Tripunitara, “Integrated circuit
(ic) decamouflaging: Reverse engineering camouflaged ics
within minutes,” Jan. 2015. DOI: 10.14722/ndss.2015.23218.

[8] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang, “Gate-level
netlist reverse engineering for hardware security: Control logic
register identification,” in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), IEEE, 2016.

[9] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering
for high-level functionality reconstruction,” in 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC),
IEEE, 2016.

[10] M. E. Massad, S. Garg, and M. Tripunitara, “Reverse engineer-
ing camouflaged sequential circuits without scan access,” in
2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2017, pp. 33–40. DOI: 10 . 1109 / ICCAD .
2017.8203757.

[11] T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, “Revisit
sequential logic obfuscation: Attacks and defenses,” in 2017
IEEE International Symposium on Circuits and Systems (IS-
CAS), 2017, pp. 1–4. DOI: 10.1109/ISCAS.2017.8050606.

[12] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajen-
dran, and O. Sinanoglu, “Provably-secure logic locking: From
theory to practice,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017,
pp. 1601–1618.

[13] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Kc2: Key-condition
crunching for fast sequential circuit deobfuscation,” in 2019
Design, Automation Test in Europe Conference Exhibition
(DATE), 2019, pp. 534–539. DOI: 10 . 23919 / DATE . 2019 .
8715053.

[14] X. Chen, G. Liu, N. Xiong, Y. Su, and G. Chen, “A survey of
swarm intelligence techniques in vlsi routing problems,” IEEE
Access, vol. 8, pp. 26 266–26 292, 2020.

[15] J. Geist, T. Meade, S. Zhang, and Y. Jin, “Relic-fun: Logic
identification through functional signal comparisons,” in 57th
ACM/IEEE Design Automation Conference (DAC), 2020,
pp. 1–6.

[16] Y. Hu, K. Yang, S. Nazarian, and P. Nuzzo, “Sanscrypt:
A sporadic-authentication-based sequential logic encryption
scheme,” 2020 IFIP/IEEE 28th International Conference on
Very Large Scale Integration (VLSI-SOC), pp. 129–134, 2020.

[17] Y. Kasarabada, V. Muralidharan, and R. Vemuri, “Sled:
Sequential logic encryption using dynamic keys,” in 2020
IEEE 63rd International Midwest Symposium on Circuits and
Systems (MWSCAS), 2020, pp. 844–847. DOI: 10 . 1109 /
MWSCAS48704.2020.9184664.

Authorized licensed use limited to: University of Central Florida. Downloaded on March 24,2023 at 13:17:27 UTC from IEEE Xplore. Restrictions apply.

