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ABSTRACT

Recently, a lot of effort has been put into developing formal veri-

fication approaches by both academic and industrial research. In

practice, these techniques often give satisfying results for some

types of circuits, while they fail for others. A major challenge in

this domain is that the verification techniques suffer from unpre-

dictability in their performance. The only way to overcome this

challenge is the calculation of bounds for the space and time com-

plexities. If a verification method has polynomial space and time

complexities, scalability can be guaranteed.

In this tutorial paper, we review recent developments in formal

verification techniques and give a comprehensive overview of Poly-

nomial Formal Verification (PFV). In PFV, polynomial upper bounds

for the run-time and memory needed during the entire verification

task hold. Thus, correctness under resource constraints can be en-

sured. We discuss the importance and advantages of PFV in the

design flow. Formal methods on the bit-level and the word-level,

and their complexities when used to verify different types of cir-

cuits, like adders, multipliers, or ALUs are presented. The current

status of this new research field and directions for future work are

discussed.

CCS CONCEPTS

• Hardware→ Functional verification.

KEYWORDS

polynomial formal verification, complexity, binary decision dia-

grams, symbolic computer algebra

1 INTRODUCTION

With the invention of the transistor in 1947, the cornerstone for the

digital revolution was laid. As a fundamental building block, the

transistor triggered the development of digital circuits. The mass

production of digital circuits revolutionized the field of electronics,

finally leading to computers, embedded systems, and the internet.

Hence, the impact of digital hardware on society, as well as the

economy, was and is tremendous. Over the last decades, the enor-

mous growth in the complexity of integrated circuits continues as

expected. Digital circuits nowadays are far more complex, some-

times even consisting of billions of transistors. Back in 2000, an

Intel Pentium 4 processor had 42 million transistors, and it was

working with a 1.4 GHz frequency. Thirteen years later, Intel re-

leased its Core-i Series processors. They consist of more than 5

billion transistors (i.e. 120× Pentium 4 transistors) and work with

clock speeds of up to 4.4 GHz. Moreover, modern digital circuits

are usually designed based on sophisticated algorithms, leading to

fast but complex architectures.

As modern electronic devices are getting more and more ubiqui-

tous, the fundamental issue of functional correctness becomes more

important than ever. This is evidenced by many publicly known

examples of electronic failures with disastrous consequences. This

includes e.g., the Intel Pentium bug in 1994 [2], the New York black-

out in 2003 [41], and a design flaw in Intel’s Sandy Bridge chipset in

2011. Such costly mistakes can only be prevented by applying rigor-

ous verification to the circuits before they get to production [10, 11].

Exhaustive simulation (i.e., checking the outputs for each provided

test-vector) is not a feasible approach to ensure correctness since

it is impossible to cover the whole input space in the case of large

digital circuits. As a result, a lot of effort has been put into develop-

ing formal verification techniques by both academic and industrial

research. Essentially, formal verification aims to formally prove that

an implementation is correct with respect to its specification. For-

mal verification methods take advantage of rigorous mathematical

reasoning to prove that a design meets its specification. Nowadays,

formal verification is an essential task in each phase of the design

flow since it is the only way to ensure the 100% correctness of an

implementation.

Several bit-level and word-level formal verification algorithms

have been proposed in recent years to prove the correctness of

electronic circuits (see e.g. [17, 24–26, 35]). In practice, they might

give satisfying results for some types of circuits, but they might

also fail due to non-efficient run-time and memory usage if the size

of the circuits increases. As a result, these verification algorithms

suffer from unpredictability in their performance. The time and

space complexities of many formal methods are unknown when it

comes to verifying various types of designs. It cannot be predicted

before actually invoking the verification tool whether (a) it will

successfully terminate or (b) run for an indefinite amount of time. It

is a serious challenge in the verification phase and can dramatically

affect the time schedule for the implementation and fabrication of

a digital circuit. This obstacle can only be overcome by calculating

the verification complexity of different types of circuits. We are

particularly interested in verification techniques whose space and

time complexities are polynomially bounded.

Polynomial Formal Verification (PFV) was first introduced in [12]

for adder architectures. Shortly, researchers put a lot of effort into

proving the polynomial bounds for the existing methods and pro-

posed new PFV approaches. In general, calculating the space and
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time complexities and proving the polynomial bounds provide us

with three main advantages:

• We can predict before running a verification engine whether

it returns the results in a limited period. As a result, we can

avoid the verification methods with exponential space and

time complexities.

• We can ensure the scalability of a verificationmethodwhen it

comes to proving the correctness of a specific type of circuit.

Thus, the verification run-time and memory usage increase

polynomially with respect to the size of the circuit. It is

particularly important when there is a resource constraint

for the verification process.

• We can compare the upper-bound space and time complexi-

ties of two verification methods when they are applied to a

specific type of circuit. Consequently, we can realize which

method performs better in terms of run-time and memory

usage.

In this paper, we give a comprehensive overview of PFV and

its importance in the design flow. We first clarify the advan-

tages of a verification-centric strategy compared to a design-centric

strategy in terms of resource management and time-to-market.

Then, we review the PFV of various digital circuits. In the last few

years, researchers have obtained the complexity bounds for several

types of circuits, including various arithmetic circuits. We give an

overview of these research works. To clarify the process of complex-

ity calculation, we calculate the time complexity of verifying a carry

bypass adder using Binary Decision Diagrams (BDDs) [4] for the

first time. We demonstrate that the PFV of this adder architecture is

possible. Subsequently, we illustrate the role of design information,

including functional properties and hierarchical information, in

proving polynomial bounds. Finally, we discuss the current trends

and directions for future work in the field of PFV.

The remainder of this paper is structured as follows: Section 2

highlights the advantages of PFV during the design flow and its role

in saving resources and reducing time-to-market. Section 3 reviews

the bit-level and word-level verification techniques. An overview of

PFV methods for arithmetic circuits, including adders, approximate

adders, multipliers, and complex arithmetic circuits are presented in

Section 4. Section 5 explains the role of using additional information

including functional properties and hierarchical information in PFV.

The current trends and future directions of PFV are described in

Section 6. Finally, Section 7 concludes the paper.

2 FROM FORMAL VERIFICATION TO PFV

It is usually the case that the verification resources are limited,

which applies to available time prior to fabrication (time-to-market)

and also the computational resources in terms of computational

power and memory. If the space and time complexities of a ver-

ification method are unknown, it becomes impossible to predict

the required resources before performing the verification task it-

self. As a result, it is highly possible that we quickly run out of

resources during verification. It is a big challenge in the design

process that might influence the schedule for the implementation

and fabrication of an electronic circuit and causes huge financial

losses.
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(c) 16-bit multipliers

Figure 1: Memory usage at each step of SCA-based verifica-

tion

As an example of memory consumption, consider the verifica-

tion of two types of integer multipliers using Symbolic Computer

Algebra (SCA) (see [34, 35] for more details). The first type is a triv-

ial multiplier that uses a simple partial product generator (i.e., AND

gates) in the first stage. Then, it takes advantage of only half-adders

and full-adders to reduce partial products and generate the final

product. The second type is a non-trivial multiplier. Similarly, it

uses a simple partial product generator (i.e., AND gates) for its first

stage. However, it also uses a carry look-ahead adder architecture

in its final stage; thus, it is not fully made of half-adders and full-

adders. Figure 1 reports the memory usage in terms of number of

monomials at each step of SCA-based verification for 4 × 4, 8 × 8,

and 16 × 16 multipliers. The memory usage during the SCA-based

verification of trivial multipliers remains almost constant, and it

drops at the final steps. Thus, the trivial multipliers can be easily

verified using SCA-based verification with limited resources. How-

ever, we face serious challenges in the verification of non-trivial

multipliers. While, the memory usage is acceptable for the 4 × 4

non-trivial multiplier in Figure 1(a), it grows significantly during

the verification of an 8 × 8 multiplier (1, 000× compared to trivial

multiplier) in Figure 1(b). The situation becomes even worse for

the verification of a 16 × 16 non-trivial multiplier in Figure 1(c) as

we run out of memory.

The above-mentioned example clarifies the importance of PFV in

the design flow. The non-trivial multiplier outperforms the trivial

multiplier in terms of some design parameters, e.g., speed. However,

it cannot be verified in polynomial space and time. As a result, the

verification task consumes a lot of resources without successfully
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returning the results. It is a common challenge in a design-centric

flow, where only design parameters (e.g., speed, area, and power)

are taken into account. In order to overcome this challenge, the

gap between the design and verification phase has to be filled. So

far, the verification phase was a task that has to be carried out

when the design phase is finished and designers do not care about

the verifiability of the circuit. We can fill this gap by employing a

verification-centric strategy that considers verifiability as an im-

portant parameter during the design. Hence, we can only use the

circuits whose formal verification is possible in polynomial space

and time. Following this strategymakes the verification phase much

shorter and more predictable.

Adopting a verification-centric strategy is only possible by prov-

ing the polynomial bounds of existing verification methods and

proposing PFV approaches. We review the recent developments in

this domain in the rest of the paper.

3 BACKGROUND

In this section, we first review the bit-level verification methods

with a focus on BDDs. Then, we give an overview of word-level

methods, particularly SCA.

3.1 Verification using Bit-Level Techniques

In a bit-level verification method, a circuit is described in the

Boolean domain, i.e., the functions receive the intermediate and

input signals as individual Boolean variables and return the outputs

in the Boolean domain as well. The verification methods based

on BDDs [8, 26] and SAT [9, 24] are the most notable examples

of bit-level verification. In this section, we focus on BDD-based

verification.

We first briefly summarize some basics of BDD:

• BinaryDecisionDiagram (BDD): a directed, acyclic graph

whose nodes have two edges associated with the values of

the variables 0 and 1. A BDD contains two terminal nodes

(leaves) that are associated with the values of the function 0

or 1.

• Ordered BDD (OBDD): a BDD, where the variables occur

in the same order in each path from the root to a leaf.

• Reduced OBDD (ROBDD): an OBDD that contains a min-

imum number of nodes for a given variable order.

We refer to ROBDD as BDD in the rest of the paper since it

is the canonical representation that is used in the verification of

arithmetic circuits.

The ITE operator (If-Then-Else) [3] is used to calculate the results

of the logic operations in BDDs:

ITE(f ,д,h) = (f ∧ д) ∨ (f ∧ h), (1)

The basic binary operations can be presented using the ITE

operator:

f ∧ д = ITE(f ,д, 0), f ∨ д = ITE(f , 1,д),

f ⊕ д = ITE(f ,д,д), f = ITE(f , 0, 1). (2)

ITE can be also used recursively in order to compute the results:

IT E(f , д, h) = IT E(xi , IT E(fxi , дxi , hxi ), IT E(fxi , дxi , hxi )), (3)

Algorithm 1 If-Then-Else (ITE)

Input: f , д, h BDDs
Output: ITE BDD

1: if terminal case then

2: return result
3: else if computed-table has entry { f ,д,h} then

4: return result
5: else � General case

6: v = top variable for f , д, or h
7: t = ITE(fv=1,дv=1,hv=1)
8: e = ITE(fv=0,дv=0,hv=0)
9: r = FindOrAddUniqueTable(v, t , e)
10: InsertComputedTable({ f ,д,h}, r )
11: return R

where fxi (fx i ) is the positive (negative) cofactor of f with respect
to xi , i.e., the result of replacing xi by the value 1 (0).
The algorithm for calculating ITE operations is presented in

Algorithm 1. The result is computed recursively based on Eq. (3)

in this algorithm. When calculating the results of ITE operations

for the BDDs of f , д, h, the arguments for subsequent calls to the
ITE subroutine are the sub-diagrams of f , д and h. The algorithm
employs two major data structures: a Unique Table to guarantee

the canonicity of the BDDs (see Line 9), and a Computed Table to

store results of previous computations and avoid repetition (see

Line 10). The number of sub-diagrams in a BDD is equivalent to

the number of nodes. For each of the three arguments, the sub-

routine is called at most once. Assuming that the search in the

Unique Table is performed at a constant time, the computational

complexity of the ITE algorithm, even in the worst-case, does not

exceed O(| f | · |д | · |h |), where | f |, |д | and |h | denote the size of the
BDDs in terms of the number of nodes1.

In order to formally verify an adder, we need to have the BDD

representation of the outputs. Symbolic simulation helps us to ob-

tain the BDD for each primary output. In a simulation, an input

pattern is applied to a circuit, and the resulting output values are

observed to see whether they match the expected values. On the

other hand, symbolic simulation verifies a set of scalar tests (which

usually covers the whole input space) with a single symbolic test.

Symbolic simulation using BDDs is done by generating correspond-

ing BDDs for the input signals. Then, starting from primary inputs,

the BDD for the output of a gate (or a building block) is obtained

using the ITE algorithm. This process continues until we reach

the primary outputs. Finally, the output BDDs are evaluated to see

whether they match the BDDs of an adder.

3.2 Verification using Word-Level Techniques

In a word-level verification method, a circuit is described in the in-

teger domain, i.e., the functions receive the intermediate and input

signals as individual Boolean variables and return the outputs in

the integer domain. The verification methods based on SCA and

word-level graphs are the most notable examples of word-level

1This bound holds under the assumption of an optimal hashing in O (1). However, in
the case of a worst-case behavior of the hashing function, ITE still remains polyno-
mial (see [23]).
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Figure 2: Half-adder

verification. In this section, we first focus on SCA-based verifica-

tion and then briefly introduce the methods based onWord-Level

Decision Diagrams (WLDDs).

We now summarize some basics of SCA:

• Monomial: power product of the variables, i.e.

M = xa11 xa22 . . . x
an
n where ai ≥ 0.

• Polynomial: finite sum of monomials, i.e. P = c1M1 + · · ·+

c jMj with coefficients in field k .
• Division: Assuming p is a polynomial and F is a set of poly-

nomials, the division of p by F is denoted by p
F
−→ r , where

r is called remainder.

The goal of SCA-based verification is to formally prove that

all signal assignments consistent with the gate-level or AND In-

verter Graph (AIG) representation evaluate the Specification Poly-

nomial (SP ) to 0. The SP determines the word-level function of an
arithmetic circuit based on its inputs and outputs, e.g. for the half-

adder of Figure 2 SP = 2C +S −(A+B), where 2C +S represents the
word-level representation of the 2-bit output, and A + B represents

the addition of the 1-bit inputs.

Before verification, the gates of the circuit should be modeled as

polynomials describing the relation between inputs and outputs.

If the circuit is built from basic logic gates (e.g., NOT, AND, OR,

and XOR), four different operations might happen in the circuit.

Assuming z is the output, and a and b are the inputs of a gate, the
polynomials for the basic logic gates are as follows:

z =¬a ⇒ pд := z − 1 + a,

z =a ∧ b ⇒ pд := z − a · b,

z =a ∨ b ⇒ pд := z − a − b + a · b,

z =a ⊕ b ⇒ pд := z − a − b + 2a · b . (4)

The extracted gate polynomials are in the form Pд = x − tail(Pд)
where x is the gate’s output, and tail(Pд) is a function based on
the gate’s inputs. Similarly, the polynomials for the nodes can be

extracted in an AIG representation (see [35, 51]).

Based on the Gröbner basis theory, all signal assignments con-

sistent with the AIG evaluate the specification polynomial SP to 0,
iff the remainder of dividing SP by the gate polynomials is equal to
0 (see [29] for more details).

The step-wise division of SP by gate polynomials for the half-
adder of Figure 2 is as follows:

SP := 2C + S − (A + B),

SP
PAND

−−−−−→ SP1 = 2AB + S,

SP1
PXOR

−−−−−→ r = 0. (5)

x0

x1

x2

y1

y0

y2

0 1 2 4

2 4

Figure 3: *BMD of a 3-bit multiplication function

Since the remainder is zero, the circuit is bug-free. In arithmetic

circuits, dividing SPi by a gate polynomial Pдi = xi − tail(Pдi )
is equivalent to substituting xi with tail(Pдi ) in SPi . For example,
dividing SP1 by PXOR in Eq. (5) is equivalent to substituting S with
tail(PXOR ) = a +b − 2a ·b in SP1. In the results, we always replace
powers xaii with ai > 1 by xi , since xi can only take values from

{0, 1}. In the theory, this corresponds to adding x2i − xi to the gate
polynomials. The process of step-wise division (substitution) is

called backward rewriting.

The verification methods based on WLDDs [23] are very similar

to the SCA-based method. The only major difference is that they

represent polynomials as graphs which usually require less memory.

For example, Binary Moment Diagrams (BMDs) [15] are constructed

using the moment decomposition:

f = fx i + xi · f �xi (f �xi = fxi − fx i ), (6)

where fxi and fx i are the functions resulted from the substitution

of xi with 1 and 0, respectively. The BMD representing a function

f is constructed recursively so that its root labeled by x is linked
via its 0-edge (1-edge) to the root of the BMD representing fx i
(f �xi ). The size of a BMD can be reduced using common factors

in the constant moment (fx i ) and linear moment (f �xi ), resulting
in a new representation called Multiplicative Binary Moment Dia-

grams (*BMD). Figure 3 shows the *BMD of a 3-bit multiplication

function, i.e., X × Y = (4x2 + 2x1 + x0) × (4y2 + 2y1 + y0).

4 PFV FOR ARITHMETIC CIRCUITS

In this section, we give an overview of research works dedicated to

the PFV of arithmetic circuits.

4.1 Adders

It was known for a long time that BDD-based verification reports

very good results when it comes to adder architectures. However,

the upper-bound time complexities of this method were not investi-

gated until recently. PolyAdd [12] demonstrated that the BDD-based

verification of three adder architectures (i.e., ripple carry adder, con-

ditional sum adder, and carry look-ahead adder) has polynomial

upper-bound complexities. The author proved that the underlying

BDDs remain polynomial during the whole BDD construction pro-

cess. This was ensured by proving upper bounds on the BDD sizes

for each internal signal. While the BDD sizes for the outputs of the
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adder functions were known to be polynomially bounded, this was

the first time that a polynomial proof process was ensured for effi-

cient adder circuits of logarithmic run time. However, PolyAdd did

not provide the exact verification complexity bounds for different

adder architectures. Several research works addressed this issue by

calculating the complexity bounds.

The authors of [32] calculated the time complexity of BDD-based

verification for ann-bit conditional sum adder. They proved that the

whole verification process has a quartic (i.e., O(n4)) upper-bound
time complexity, and thus PFV is possible for this architecture. The

authors of [33] obtained the time complexity of verifying prefix

adders using BDDs. They demonstrated that a serial prefix adder has

quadratic (i.e.,O(n2)) upper bound verification time complexity. On
the other hand, the verification complexities of a Ladner-Fischer

adder and a Kogge-Stone adder have quartic bounds. The work

of [33] was extended by [18] to cover general prefix adders. The

authors proved that the worst-case time complexity never exceeds

O(n4) for the verification of an n-bit prefix adder. It is an important
result since it is also applicable to the BDD-based verification of AI-

generated prefix adders, which have better area and delay compared

to the known prefix adder architectures [39, 42, 43].

The time complexity of verifying an adder architecture is ob-

tained by calculating the computational complexity of ITE opera-

tion at each step of symbolic simulation. Then, these complexities

are added up to get the complexity of the entire verification task.

In order to clarify this process, we now calculate the upper-bound

time complexity of verifying a carry bypass adder [40] using BDDs.

A carry bypass adder is an adder architecture that improves

the worst-case delay of a ripple carry adder by using minimum

extra hardware. Figure 4 shows the structure of an n-bit carry
bypass adder. Each full-adder generates three outputs, i.e., sum (Si ),
carry(Ci ), and propagate signal (Pi ):

Si = Ai ⊕ Bi ⊕ Ci−1,

Ci = (Ai ∧ Bi ) ∨ (Ai ∧Ci−1) ∨ (Bi ∧Ci−1),

Pi = Ai ⊕ Bi , (7)

whereAi and Bi are the i-th inputs. If the result of performing AND
operation between all propagate signals Pi generate 1, the output
carry equals the input carry. Otherwise, the output carry should be

computed through the full-adder chain.

In order to obtain the time complexity of symbolic simulation

for an n-bit carry bypass adder, we first calculate the complexity
of symbolic simulation for a single full-adder. The sum, carry, and

propagate outputs of a full-adder can be expressed in terms of ITE

operations as follows:

Si = Ai ⊕ Bi ⊕ Ci−1 = ITE(Ci−1,Ai 	 Bi ,Ai ⊕ Bi ),

Ai 	 Bi = ITE(Ai ,Bi ,Bi ),

Ai ⊕ Bi = ITE(Ai ,Bi ,Bi ). (8)

Ci = (Ai ∧ Bi ) ∨ (Ai ∧Ci−1) ∨ (Bi ∧Ci−1)

= ITE(Ci−1,Ai ∨ Bi ,Ai ∧ Bi ),

Ai ∨ Bi = ITE(Ai , 1,Bi ),

Ai ∧ Bi = ITE(Ai ,Bi , 0). (9)

Pi = Ai ⊕ Bi = ITE(Ai ,Bi ,Bi ). (10)

The ITE operations are computed by Algorithm 1 to get the

BDDs for the Si , Ci , and Pi signals. Assuming that f , д and h are
the inputs of an ITE operator, the computational complexity is

obtained by | f | · |д | · |h |. Note that the size of the BDD for a single

variable (|xi |), AND/OR of two variables (|xi ∧ yi | and |xi ∨ yi |),
and XOR/XNOR of two variables (|xi ⊕ yi | and |xi 	 yi |) equals 3,
4, and 5, respectively. As a result, the complexities of computing Si ,
Ci , and Pi are as follows:

Cpx(Si ) = Cpx(Ai 	 Bi ) + Cpx(Ai ⊕ Bi ) + |Ci−1 | · |Ai 	 Bi | · |Ai ⊕ Bi |

= |Ai | · |Bi | · |Bi | + |Ai | · |Bi | · |Bi | + |Ci−1 | · |Ai 	 Bi | · |Ai ⊕ Bi |

= 3 · 3 · 3 + 3 · 3 · 3 + |Ci−1 | · 5 · 5 = 25 · |Ci−1 | + 54,

Cpx(Ci ) = Cpx(Ai ∨ Bi ) + Cpx(Ai ∧ Bi ) + |Ci−1 | · |Ai ∨ Bi | · |Ai ∧ Bi |

= |Ai | · |Bi | + |Ai | · |Bi | + |Ci−1 | · |Ai ∨ Bi | · |Ai ∧ Bi |

= 3 · 3 + 3 · 3 + |Ci−1 | · 4 · 4 = 16 · |Ci−1 | + 18,

Cpx(Pi ) = |Ai | · |Bi | · |Bi | = 3 · 3 · 3 = 27,

Cpx(FAi ) = Cpx(Si ) + Cpx(Ci ) + Cpx(Pi ) = 41 · |Ci−1 | + 99, (11)

where the computational complexities depends on the size of the

incoming carry BDD to the full-adder. It has been proven in [50]

and [12] that the BDD size of the i-th carry bit (Ci ) is bounded
above by 3i + 6. Thus, the complexity of computing sum, carry, and
propagate outputs in the full-adder chain is as follows:

Cpx[FAs] =

n−1∑

i=0

(41 · |Ci−1 | + 99) =
n−1∑

i=0

(41 · (3(i − 1) + 6) + 99)

=

n−1∑

i=0

(123 · i + 222) = O(n2). (12)
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The BP signal in Figure 4 is computed by n consecutive AND
gates. Each AND operation can be expressed in the form of an ITE

operation as follows:

P[i−1,0] ∧ Pi = ITE(P[i−1,0], Pi , 0). (13)

The BDDs for the propagate signals do not have any common

variables; thus, after each AND operation the size of the output

BDD is equal to the addition of input BDD sizes, i.e. P[i−1,0] and
Pi . With respect to the fact that size of P[i,0] equals 3i + 2, we can
obtain the overall complexity of the AND operations:

Cpx[AND] =

n−1∑

i=1

|P[i−1,0] | · |Pi | =
n−1∑

i=1

(3i − 1) · 3 = O(n2). (14)

Finally, the multiplexer in the final stage can be translated into

ITE operation as follows:

Sn = ITE(BP ,C−1,Cn−1). (15)

Thus, the complexity of computing Sn is calculated as follows:

Cpx[MUX] = |BP | · |C−1 | · |Cn−1 |

= (3(n − 1) + 2) · 3 · (3(n − 1) + 6) = O(n2). (16)

The overall complexity of verifying a carry bypass adder is ob-

tained by adding up the symbolic simulation complexity of the

full-adders chain, AND gates, and the multiplexer. As a result, we

can conclude that the time complexity of BDD-based verification

for an n-bit carry bypass adder is quadratically bounded, i.e.,O(n2).

4.2 Approximate Adders

In recent years, approximate circuits have attracted a lot of atten-

tion in both academia and industry. These circuits became a viable

alternative to the exact circuit in error resilient applications where

energy efficiency is crucial [38]. These applications include image

and video processing, which are predominantly implemented using

adders and multipliers. Thus, researchers come up with several

techniques to generate approximate adders or perform approxima-

tions on the existing architectures. Now, an important question

arises regarding the verification of approximate adders: While the

PFV of exact adders is possible, can we also verify approximate

adders in polynomial space and time using BDDs?

The authors of [45] proved that the verification process of sev-

eral state-of-the-art approximate adders is guaranteed to have poly-

nomial time and space complexities using BDDs. They provided

polynomial upper bounds for the BDD sizes during the verification

process, as well as for the time complexity. The proofs are presented

for several handcrafted approximate adders, which divide the adder

into sub-adders. Furthermore, they demonstrated the polynomial

verifiability of automatically generated approximate adders, where

a set of gates from conventional exact adders (e.g., ripple carry adder,

conditional sum adder, and carry look-ahead adder) is deleted or

changed.

4.3 Multipliers

Formal verification of multipliers is one of the most challenging

problems in the verification community. In the last 30 years, several

formal methods have been proposed to speed up the process or

support the verification of more architectures.

Despite the success of BDD-based techniques in the verification

of adders, they rapidly run out of memory when it comes to the

verification of multipliers. It was theoretically proven in [5] that

the size of BDD for the outputs of a multiplier grows exponentially

with respect to the multiplier size and independent of the input

variables ordering. The author of [7] came up with an approach

to change the input variables and keep the size of the output BDD

polynomial. They considered the partial products (i.e., outputs of

the partial product generator) as new inputs and constructed the

output BDD based on them. Thus, they achieved an output BDD

with a polynomial size for an n-bit multiplier. The authors of [31]
extended this approach to support the verification of optimized

multipliers. Although the size of output BDD is polynomial in these

methods, they did not calculate the size of intermediate BDDs. As

a result, the space and time complexities of the verification method

are unknown.

The word-level verification methods achieved more success in

the verification of multipliers. The authors of [6, 25] used *BMDs to

verify trivial multiplier architectures. The method starts from the

*BMD of the output and takes advantage of backward construction

to create the *BMD of the input function. Then, it checks whether

the *BMD of the input function matches the *BMD for the mul-

tiplication. The authors of [28, 29, 35–37, 44] took advantage of

SCA-based methods to attack the hard problem of verifying non-

trivial multipliers. They used the SCA (see Section 3.2) as their

core verification engine and improved it with several techniques,

including heuristics, to overcome the challenges. The experimental

evaluations showed that the proposed SCA-based methods can ver-

ify various non-trivial multipliers with millions of gates. Despite

the practical success of the aforementioned methods, none of them

ensured polynomial bounds.

The space and time complexities of a word-level verification

method were first studied in [30]. The authors analyzed *BMD-

based verification by backward construction when it is applied to

the class of Wallace-tree like multipliers. They formally proved

polynomial upper bounds on run-time and space requirements

with respect to the input word sizes. They showed that the whole

verification process is bounded by O(n2) with respect to space and
O(n4) with respect to time, where n is the number of input bits.
However, the proof in this work is only limited to trivial Wallace-

tree like multipliers, and it does not support non-trivial multipliers.

The authors of [21] targeted the PFV of non-trivial multipliers.

They introduced a hybrid method consisting of BDD- and SCA-

based verification to ensure the correctness of non-trivial multipli-

ers in polynomial space and time. The proposed method replaces

the final stage adder of the non-trivial multiplier with a ripple carry

adder. As a result, the multiplier is converted into a trivial multiplier

whose second and third stages are only made of half-adders and

full-adders. Then, the original final stage adder and the trivial mul-

tiplier are verified using BDDs and SCA, respectively. The authors

proved that the space and time complexities of the proposed hybrid

method are bounded by O(n2) and O(n4). Therefore, the PFV of a

non-trivial multiplier becomes possible. The proposed method re-

quires two pre-conditions to ensure the polynomial bounds: 1) The

boundaries between multiplier stages and the components in each

stage are available, and 2) the multiplier is not optimized; thus, the

boundaries are preserved.
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4.4 Complex Arithmetic Circuits

In addition to adders and multipliers, there are complex arithmetic

circuits containing several operations. The PFV of these circuits is

usually more challenging since they consist of several arithmetic

units. As an example, an Arithmetic Logic Unit (ALU) performs logic

(e.g., AND, OR, and XOR) and arithmetic (e.g., addition, subtraction,

and multiplication) operations. As another example, a multiply-

add circuit (Z = A × B +C) carries out multiplication and addition
operations; thus, it requires a multiplier and an adder in its structure.

The PFV of a complex arithmetic circuit was first investigated

in [22]. The authors proposed a BDD-based verification method

to ensure the correctness of a simple ALU in polynomial time.

The ALU was designed to perform simple logic operations as well

as addition and subtraction. The authors first demonstrated that

applying BDD-based verification to the whole ALU results in a

memory blow-up. To overcome this challenge, they took advantage

of a divide and conquer method. The proposed method first applies

an opcode to activate a certain ALU function, e.g., addition. Then,

it extracts the hardware related to the function. Subsequently, it

performs a symbolic simulation for each function and ensures its

correctness. The authors proved that for an n-bit ALU, the time
complexity of verifying each function does not exceed O(n2). As a
result, the PFV of the entire ALU is possible.

The authors of [1] proved the polynomial bounds for the space

and time complexities of a general arithmetic circuit that computes

a polynomial, e.g., Z = A3 + A × B +C . They analyzed the space
and time complexities using two word-level methods (i.e., SCA-

and BMD-based verification) and demonstrated that an arithmetic

circuit can be verified in linear space and quadratic timewith respect

to the size of the circuit function. For instance, the size of the

circuit function that computes Z = A3 + A × B + C is n3, since
the biggest monomial degree is related to A3 and the size of all
inputs equals n. Thus, the space and time complexities of verifying
the arithmetic circuit are bounded by O(n3) and O((n3)2) = O(n6),
respectively. Please note that the polynomial bounds are only valid

for the trivial arithmetic circuits in which the second and third

stages of multipliers, as well as adders, are only made of half-adders

and full-adders.

5 USING ADDITIONAL INFORMATION FOR
PFV

In this section, we illustrate the importance of additional infor-

mation in PFV. This information is usually provided prior to the

verification and it plays an important role in guiding us through

the verification process. In general, additional information is cat-

egorized into two groups: functional properties and hierarchical

information. We give insight into these two groups in the following.

5.1 Functional Properties

It is in general impossible to prove the polynomial bounds for

the verification of a digital circuit with an arbitrary function and

structure. However, if the circuit has some specific functional and

structural properties, its PFV can be ensured. Moreover, these prop-

erties can be also considered by designers in a circuit or parts of it

in order to implement polynomially verifiable designs.
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Figure 5: BDD circuit

The author of [13] proved that the PFV of tree-like circuits,

i.e., circuits without fanouts, is possible using BDDs if the circuit

does not contain any XOR gates. It was proven before in [14] that

the output BDDs of a tree-like circuit have polynomial size; how-

ever, the size of intermediate BDDs and the time complexity of

the construction process were never investigated. The proof was

made by analyzing the controlling value (non-controlling value) of

each gate and how it can end the recursion in the ITE algorithm

(see Algorithm 1). The author also came up with a general theory

for PFV: If the BDD size of each internal signal of a circuit has a

size polynomial in n, then the complete symbolic simulation of the
circuit can be carried out in polynomial space and time. In addition

to tree-like circuits, the work of [13] investigated the PFV of BDD

circuits, i.e., circuits which are resulted from a BDD by substituting

each internal BDD with a MUX (see Figure 5). The author proved

that for BDD circuits with MUX using the standard representation

the complete symbolic simulation of the circuit can be carried out

in polynomial space and time.

The authors of [16] investigated the PFV of totally symmetric

functions using BDDs. A Boolean function is called totally sym-

metric if its output does not depend on the order of the n input
variables. Observing the BDD of a symmetric function, it can be

concluded that the sub-graph of every node in the BDD again de-

notes a totally symmetric function [49]. The authors calculated

polynomial bounds for each step of the entire formal verification of

low depths circuits synthesized by the Ishiura technique [27] to en-

sure that the verification can be always carried out efficiently. The

calculations show that the size of output BDD is always bounded

by O(n2) while considering the intermediate BDD sizes and the

construction process, the space and time complexities are bounded

by O(n6) and O(n8), respectively.

5.2 Hierarchical Information

In many cases, it is impossible to ensure the polynomial bounds

for a pure gate-level circuit without any hierarchical information.

Complex digital circuits usually consist of several sub-components

that cannot be verified with one individual formal method in poly-

nomial space and time. Unfortunately, the boundaries of these

sub-components are lost during the synthesis to the gate-level

netlist. However, we can overcome the verification challenge by

preserving design hierarchy information, including boundaries of

sub-components. Thus, PFV becomes possible through the step-

wise verification of sub-components and the use of different formal

techniques.
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Figure 6: Modified multiplier to preserve hierarchical infor-

mation

The work of [20] demonstrated how preserving the design hier-

archy information and using them during the verification can help

to ensure the correctness of complex arithmetic circuits consisting

of multipliers and adders. The authors first studied the challenges

of verifying a complex arithmetic circuit when no design hierarchy

information is available. They showed by experimental evaluations

that a memory blow-up happens even for small benchmarks. Then,

they proposed a hybrid technique based on SCA and BDDs to verify

complex arithmetic circuits in polynomial space and time when the

design hierarchy information, including the boundaries between

stages and components, is at hand. The upper-bound space and

time complexities were calculated for a case study, i.e.,A×B+C×D
arithmetic circuit. The theoretical calculations were confirmed in

practice by several experimental evaluations.

The authors of [19] proposed a method to preserve the important

hierarchical information by design modification. They modify a

complex design in a way that the outputs of components are set as

the new outputs of the circuit. These outputs are called Verification

Outputs (VO) as they are only used during the verification. Fur-

thermore, a multiplexer is added to the inputs of each component.

The first input of the multiplexer is connected to the inputs of the

component and the second input is connected to new inputs. These

new inputs are called Verification Inputs (VI) as they are only used

during the verification process. When the circuit enters the veri-

fication mode, VIs and VOs of each component become available.

As a result, each component can be verified in polynomial space

and time using the suitable verification engine. The authors applied

their design modification method to an integer multiplier to make

each stage visible during the verification (see Figure 6). Thus, they

achieved polynomial complexity bounds using BDDs and SCA to

verify the stages.

6 FUTURE OF PFV

Even though PFV has had significant progress recently still many

problems and unexplored areas exist. In this section, a list of possible

avenues for the future of PFV is presented. The list is not complete

in the sense that all challenges are covered, but many important

ones are mentioned. This gives a better understanding of current

problems in PFV and shows directions for future research.

Non-Trivial Multipliers: Researchers have shown by experi-

mental evaluations that basic word-level methods (i.e., SCA and

WLDDs) run quickly out of memory when it comes to the veri-

fication of non-trivial multipliers [34, 35]. However, they never

investigated the space and time complexities in theory. Thus, it

is necessary to prove the exponential lower-bound complexities

of word-level methods for non-trivial multipliers. The proof gives

us more insight into the stages or components in a non-trivial

multiplier that cause exponential behavior.

Dividers andOtherArithmeticCircuits: In addition to adders

and multipliers, the verification of dividers has attracted significant

attention, recently. The researchers have taken advantage of SCA to

ensure the correctness of restoring and non-restoring dividers [46–

48]. Despite this progress, the space and time complexities of these

methods are still unknown. Proving the polynomial upper bounds

for the existing methods or coming up with PFV approaches for

dividers is an important direction for the future of arithmetic cir-

cuits PFV. Moreover, the PFV of other integer arithmetic circuits,

e.g., square root as well as floating point arithmetic circuits is an

untouched area of research.

Functional Properties: In addition to tree-like circuits, BDD

circuits, and totally symmetric functions, we are interested in inves-

tigating other possible functions and structures whose verification

is possible in polynomial space and time. As a result, designers have

more options when designing polynomially verifiable circuits.

Design Instructions for PFV: One of the main goals of PFV is

to make the verification-centric strategy possible. Thus, designers

only design polynomially verifiable circuits. This can happen by

introducing some design rules that guarantee PFV. We have to

investigate the structures of various circuits, e.g., arithmetic circuits,

and their relation with the verification complexity. Then, we can

come up with the design instructions that ensure PFV.

7 CONCLUSION

In this paper, we gave a comprehensive overview of PFV and its

importance in the design flow. We highlighted the challenges of a

design-centric strategy and how they can be overcome by adopting

a verification-centric strategy. We illustrated that a verification-

centric strategy becomes only possible by proving the polynomial

bounds for the verification of various architectures. Then, we pre-

sented the recent developments in the PFV of arithmetic circuits,

including adders, approximate adders, multipliers, and complex

arithmetic circuits. Subsequently, we reviewed the research works

that take advantage of additional design information, including

functional properties and hierarchical information, to prove the

polynomial space and time complexities. We concluded this paper

with a brief mention of possible future directions.
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