
Received 7 January 2023, accepted 7 February 2023, date of publication 14 February 2023, date of current version 1 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244902

ReTrustFSM: Toward RTL Hardware
Obfuscation-A Hybrid FSM Approach
M. SAZADUR RAHMAN , RUI GUO , HADI M. KAMALI , FAHIM RAHMAN,
FARIMAH FARAHMANDI, (Member, IEEE), AND MARK TEHRANIPOOR, (Fellow, IEEE)
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

Corresponding author: M. Sazadur Rahman (mohammad.rahman@ufl.edu)

ABSTRACT Hardware obfuscating is a proactive design-for-trust technique against IC supply chain threats,
i.e., IP piracy and overproduction. Many studies have evaluated numerous techniques for obfuscation
purposes. Nevertheless, de-obfuscation attacks have demonstrated their insufficiency. This paper proposes
a register-transfer (RT) level finite-state-machine (FSM) obfuscation technique called ReTrustFSM that
allows designers to obfuscate at the earliest possible stage. ReTrustFSM combines three types of secrecy:
explicit external secrecy via an external key, implicit external secrecy based on specific clock cycles,
and internal secrecy through a concealed FSM transition function. So, the robustness of ReTrustFSM
relies on the external key, the external primary input patterns, and the cycle accuracy of applying such
external stimuli. Additionally, ReTrustFSM defines a cohesive relationship between the features of Boolean
problems and the required time for de-obfuscation, ensuring a maximum execution time for oracle-guided
de-obfuscation attacks. Various attacks are employed to test ReTrustFSM’s robustness, including structural
and machine learning attacks, functional I/O queries (BMC), and FSM attacks. We have also analyzed
the corruptibility and overhead of design-under-obfuscation. Our experimental results demonstrate the
robustness of ReTrustFSM at acceptable overhead/corruption while resisting such threat models.

INDEX TERMS Hardware obfuscation, logic locking, FSM, RTL, structural analysis, BMC.

I. INTRODUCTION
Due to the ever-increasing costs/complexity of IC manu-
facturing, the rush time-to-market, and the ability to take
advantage of cutting-edge technologies, many companies are
adopting the horizontal model, where multiple independent
entities fulfill various stages of the IC supply chain, forming a
globally distributed supply chain [1]. Albeit highly beneficial,
with outsourcing, the original equipment manufacturers take
fewer precautions to meet the market demand (OEM). With
no reciprocal trust and a lack of reliable monitoring, the con-
trol of OEMs and third-party IP vendors over the supply chain
reduces drastically, resulting in numerous hardware security
threats, including but not limited to IP piracy, IC overproduc-
tion, and counterfeiting [2], [3].

Many design-for-trust solutions (e.g., watermarking,
IC metering, IC camouflaging, and hardware obfuscation)

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

have been studied in the literature to address these threats
[4], [5], [6], [7]. Over the last two decades, hardware obfus-
cation, a.k.a. logic locking, has garnered considerable atten-
tion as a trustworthy proactive method for securing IP [8].
Logic locking enables the IP/IC designers to support post-
fabrication activation of the fabricated designs to recover the
underlying functionality. The logic locking secret governs
the resulting locked circuit functionality, i.e., the key, and is
only known to authorized/trusted entities, e.g., IP owners or
OEMs.

Since 2005 [7], numerous studies have focused on var-
ious methodologies for building sophisticated obfuscation
techniques. However, with newer de-obfuscation attacks,
the robustness of most locking solutions has been under-
mined. Functional input/output (I/O) query-based attacks
that primarily rely on satisfiability (SAT) solvers [9] are
widely applicable to different combinational logic locking
techniques [10], [11]. Structural analysis-based attacks [12],
[13], [14] on point function techniques [15], [16], [17], [18],

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 19741

https://orcid.org/0000-0002-1045-9785
https://orcid.org/0000-0002-3695-4741
https://orcid.org/0000-0002-5917-5425
https://orcid.org/0000-0001-8062-3301

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

TABLE 1. Comparison of ReTrustFSM with the existing FSM obfuscation methods.

attacks relying on machine learning [19], [20] on
routing-based techniques [21], [22], [23], and theory-based
SAT attacks [24], [25] on non-Boolean logic locking
[26], [27] are some of the evident examples showing the
concerning state of the logic locking.

Logic locking can be categorized into combinational and
sequential. Combinational locking targets the combinational
functions (logic parts) [10], [11], [15], [16], [17], [18], [21],
[22], [23], [26], [36], whereas sequential ones target the state
transitions graphs (STG) of the circuits [28], [30], [31], [32],
[33], [34], [35], [37], [38], [39], [40]. In almost all sequen-
tial logic locking techniques, instead of having a dedicated
reference (secret) as the key (i.e., explicit external secrecy),
a sequence of input patterns serves as the unlocking/activation
condition (i.e., implicit external secrecy). So, combinational
locking is also known as key-based, while sequential logic
locking is a keyless one.

Over time, many keyless locking methods have been
challenged by different techniques [29], [31], [41]. The
{structural+functional} attack focuses on the topological
flaws of these methods that allow the adversary to distinguish
the original part of the STG from the obfuscated part, lead-
ing to recovering the correct FSM [31], [38]. More recent
approaches show how these keyless locking, even while they
are utilizing implicit representation of the secret [30], [32],
[33], [34], [35], [37], can be remodeled and evaluated using
I/O query-based attacks like the BMC attack [29], [41].
Table 1 shows a comparative summary of the notable FSM
obfuscation methods, their vulnerabilities, and the attacks
they are susceptible to (discussed in Sec. II-D).

This paper proposes a novel FSM-based logic locking,
called ReTrustFSM that targets multiple forms of threats
against logic locking. ReTrustFSM is an effort of logic lock-
ing at the RTL that leverages the behavioral state transi-
tion coding for obfuscation. In ReTrustFSM, both keyless
(implicit external secrecy) and key-based (explicit exter-
nal secrecy) types of locking have been utilized with a
high correlation that boosts the robustness of the solu-
tion, against oracle-guided I/O query-based attacks and
{structural+functional} attack. Also, ReTrustFSM formu-
lates (models) the relationship between Boolean features and

the expected de-obfuscation time. By using such a model,
ReTrustFSM can be configured in a way that guarantees the
targeted time. Additionally, by revealing the leakage possibil-
ity of a recent study on FSM-based obfuscation, we evaluate
the requirements of the design-for-testability (DFT) structure
(scan chain architecture) obfuscation once the FSM-based
obfuscation is in place. Ourmain contributions are as follows:
(I) RT-Level FSM Obfuscation: In ReTrustFSM, the STG

is extracted and obfuscated at RT-level.
(II) FSM Re-Encoding Via Explicit External Secrecy:

ReTrustFSM uses a counter and LFSR-based FSM obfusca-
tion technique tightly coupled with the original FSM, where
the external secrecy (the key) determines how intermediate
FSM states (and their encoding values) become dependent on
the value/status of the counter/LFSR.
(III) FSM (In-the-Middle) Obfuscation Via Implicit Exter-

nal Secrecy: We utilize a keyless FSM obfuscation tech-
nique that conceals intermediate state transition functioning
to boost the robustness by building deep obfuscation-oriented
transitions directly dependent on the input patterns in a cycle-
accurate manner.
(IV) Evaluation of Circuit Attributes for FSMObfuscation:

We equipped ReTrustFSM with an ML-based analysis that
focuses on the core features of the obfuscated circuit. The
benefit of such a mechanism is twofold: (a) It boosts the com-
plexity of the obfuscated circuit against the existing attacks,
particularly I/O query-based attacks, and (b) ReTrustFSM
becomes capable of targeting the desired de-obfuscation time
before configuring the obfuscation parameters and building
the obfuscated circuit(s).
(V) Comprehensive Security/PPA Analysis: To show the

comprehensiveness and robustness of the proposed approach,
we conduct different analyses using a wide variety of state-
of-the-art attacks on the proposed logic locking.

The rest of the paper is organized as follows: Section II
covers backgrounds of key-based and keyless obfusca-
tion, as well as FSM obfuscation. Section III provides the
details of the proposed scheme. Detailed security analysis of
ReTrustFSM is discussed in Section IV. Section V demon-
strates the efficiency of ReTrustFSM experimentally. Finally,
Section VI concludes the paper.

19742 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

II. BACKGROUND
A. THREAT MODEL
FSM-based de-obfuscation attacks are considered success-
ful if the adversary can (1) separate the original STG
from the obfuscated part, or (2) retrieve external secrets
(explicit/implicit), allowing reconstruction of the original
STG. In de-obfuscation attacks, the threat model defines the
adversary’s capability at the time of the attack. This work
considers the following assumptions for threat modeling [9]:

1) ADVERSARY DEFINITION
Any individual involved in the IC lifecycle, from the
untrusted foundry to malicious end-users, can be an adver-
sary. In this case, the adversary may have access to the
(locked) GDSII (at an offshore foundry) and the activated
chip. In both cases, the adversary can retrieve the locked gate-
level netlist from either locked GDSII or activated chip by
reverse engineering [8].

2) ACCESS TO THE ORACLE
The adversary has access to an activated/unlocked chip.
So, I/O query-based attacks like SAT are applicable to
ReTrustFSM. The adversary can also utilize oracle-less
attacks, such as ML-based attacks.

3) ACCESS TO THE TEST INFRASTRUCTURE
The adversary can access the scan chain (not stitched to
the obfuscation part). Section III-D describes how this
access becomes selective, and limits the adversary to a
non-combinational de-obfuscation attack, like a BMC-based
attack.

4) BASIC INFORMATION ABOUT THE OBFUSCATION
TECHNIQUE
The adversary knows the obfuscationmethod and the location
of the key gates (LFSR/counter) related to explicit external
secrecy. Also, the adversary knows that part of the secrecy
comes from the PIs (implicit external secrecy).

B. EXPLICIT VS. IMPLICIT OBFUSCATION
Themajority (more than 95%) [8] of logic locking techniques
use the concept of explicit external secrecy for building their
techniques. In this concept, for a circuit {corg : I → O},
in which I = {0, 1}n × τ and O = {0, 1}m × τ are the
inputs/outputs sequence (sequence of n/m-bit inputs/outputs
for τ cycles), after obfuscating using the explicit-based
secrecy augmentation, the obfuscated circuit {cobf : I ×

K → O} requires an additional variable/input, referred to
as the key. When the secrecy is applied to the circuit using
explicit external input, it is called ‘‘key-based logic locking.’’
In such cases, for any arbitrary obfuscated circuit (cobf),
cobf : I × K → O, where K = {0, 1}k is the key space, there
exists kc ∈ K such that ∀i ∈ I ⇒ cobf (i, kc) = corg(i).
On the contrary, some studies have evaluated the utilization
of implicit external secrecy for obfuscation purposes. In this

FIGURE 1. I/O query-based De-obfuscation Attacks: (a) Combinational
De-obfuscation, (b) Sequential De-obfuscation.

concept, for a circuit {corg : I → O}, after obfuscating
using the implicit-based secrecy augmentation, the obfus-
cated circuit {cobf : I → O} is still only dependent to the
primary inputs, and there is no new variables/inputs, such as
key input. For any arbitrary obfuscated circuit, {I1, I2} is the
expected composition of input patterns, in which I1 serves as
the unlocking/activation sequence, allowing the user to reach
the normal mode(s) of the circuit. Since part of the input
sequence is used as the unlocking condition, this model is
widely used to obfuscate FSM as a keyless logic locking.

C. I/O QUERY-BASED DE-OBFUSCATION:
COMBINATIONAL VS. SEQUENTIAL
I/O query-based de-obfuscation attacks mainly focus on ana-
lyzing I/O pairs on locked/unlocked circuits to rule out the
incorrect keys. Amongst them, the SAT-based techniques are
most effective on a broader range of locking solutions, and
they require access to the test infrastructure (scan chain) along
with an unlocked/activated circuit (oracle) to target each
combinational logic (CL) that is accessible directly via the
scan chain, known as combinational de-obfuscation [9]. In a
combinational SAT-based attack, as shown in Fig. 1(a), for
each obfuscated combinational logic CLi (‘‘locked netlist’’),
the attacker converts the netlist to be understandable by
parsers (defining key gates, adding key inputs, etc.). Then,
a (distinguishing) miter (SAT) circuit (SATC) is built as
miter ≡ CL i−copy1(dip, k1) ̸= CL i−copy2(dip, k2). The SAT
call on this circuit returns a distinguishing input pattern (dip)
that produces different output(s) for two different keys, k1 and
k2. Later, through the scan chain, the dip is evaluated on CLi
of the unlocked chip (oracle, F0), and the outcome is added
as a constraint CL i−copy1(dip, k1) = CL i−copy2(dip, k2) =

FO(dip) for the next iterations, and this continues until there is
no new dip (UNSAT). Finally, with one more SAT call on all
dips, there exists one key that satisfies the condition, which
is the correct key.

VOLUME 11, 2023 19743

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

FIGURE 2. Existing FSM obfuscation solutions.

The combinational SAT-based de-obfuscation is not appli-
cable if there is no/partial access to the scan chain. As in
this case, an adversary can only rely on primary input and
output (PI/PO) for an I/O query-based (like SAT-based) de-
obfuscation attack, the circuit state needs to be taken into
account during the de-obfuscation. To do so, FFs will be
cut off, and FFs’ I/O becomes new circuit PO/PIs. So, in
the miter , the attacker can apply the initial state directly
to the FFs and read them out after capturing. In this case,
unrolling (unfolding) cascades the design with onemore copy
to resemble clock cycle sequences. So, with SAT call, the
attacker finds the distinguishing input sequences (DIS) for
the whole design (dis with length equals with the number
of unrolling). After finding all dises with the current length,
unrolling (unfolding) happens for finding dises with the new
length. This continues until the attack reaches the threshold
bound (BC) or the following termination conditions (TC):

(i) unique completion (UC):

∀dis ∃!kc [CU copyi (dis, kc) = FO(dis)]

(ii) combinational equivalence (CE):

∀dis ∃k1,2 [CU copy1 (dis, k1) = CU copy2 (dis, k2)]

(iii) unbounded model check (UMC):

∄dis, k1,2 |τ=∞ [CU copy1 (dis, k1) ̸= CU copy2 (dis, k2)]

Due to the duplication and unrolling factors in both attacks
(see Fig. 1), the de-obfuscation is not scalable (particularly,
the sequential one (Fig. 1(b)) [42]. Thus, limiting scan chain
access is an effective approach to combat existing threats that
make the problem more complex [43]. Also, the explicit dec-
laration of external secrecy is crucial to successfully setting
up and applying a de-obfuscation attack. This is the main
incentive for FSM-based obfuscation techniques that mostly
rely on keyless (implicit secrecy) obfuscation.

D. FSM OBFUSCATION: PRIOR ART
Prior FSM obfuscation schemes mostly manipulate the
STG of the circuits’ controller(s) using implicit external
secrecy [28], [30], [31], [32], [33], [34], [35], [37], [38], [39].
The augmentation of the original STG can be done by
expanding (i) the state space, (ii) the transition space, or
(iii) a combination of both. Fig. 2 shows how these methods

work.1 HARPOON, depicted in Fig. 2(a), augments the tar-
geted FSM by adding obfuscation and authenticationmodes,
whose traversal is required before reaching out to the original
states [30]. So, for the circuit obfuscated by HARPOON,
cobf : I → O, the expected composition of input patterns must
be like I = {Ien, Iauth, Inorm}, where Ien denotes the unlocking

sequence (SObf0 → SObf2) for obfuscation mode, Iauth is the
authentication sequence (SAut0 → SAut2) for authentication
mode, and Inorm is the normal stimulus on the original FSM
(SNinit , S

N
1 , . . . , SN4). Similarly, approaches like interlocking,

dynamic state deflection, and active metering augment the
FSM by inserting new modes [31], [32], [33], [37], [38]. For
instance, interlocking, shown in Fig. 2(b), augments the orig-
inal FSM by adding the same preceding obfuscation states
(SObf0 , . . . , SObf5) like HARPOON. However, they extend the
FSM encoding as well as transition function by adding a
code-word (CWi) in a way each {transition, code-word} is
dependent on the previous {state, code-word}, and there
exists an initial code-word requirement (CW0 → SNinit) that
can be considered as the explicit external secrecy [32].

Some other studies use explicit external secrecy (key-
based) for FSM obfuscation [28], [34], [35], [39], such as
the usage of routing-based obfuscation or key-based counter
enumeration for FSM retouching [28], [39]. Li et al. proposed
JANUS(-HD), in which the encoding depends on the configu-
ration of the state FFs. As shown in Fig. 2(e), The STG is split
into two parts (red and black) whose transition and encoding
are based on a specific FF type (D-FF or T-FF). Since it is
built based on the different behavior in D-FF (data) and T-FF
(toggle), crossing from one mode to another mode (red/T-FF
↔ black/D-FF) needs an encoding update. So, based on the
current state and input patterns, the configuration needs to be
updated, and it is done by a configurable MUX (switching
between modes). Since the configuration of the FFs stored in
a tamper-proof-memory (input to the FSM circuitry), it acts
as explicit secrecy.

E. EXISTING ATTACKS ON FSM LOCKING
I/O query-based de-obfuscation attacks, i.e., the SAT/BMC,
are formulated in a way that makes them only applicable to
key-based obfuscation techniques. However, different stud-
ies evaluated a {structural+functional} attack on obfuscated

1For few cases, such as code-word of interlocking FSM [32] or FF
configuration in JANUS [34], [35], the external secrecy is defined explicitly.

19744 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

FSMs [31], [38]. This attack relies on the fact that the obfus-
cation part is decoupled from the original part (Fig. 2(a-d)).
So, if the adversary, which has access to the netlist, can
detect the FFs of FSM circuitry and then tries to re-construct
the STG, then the original part can be readily distinguished
through the following steps:

1) TOPOLOGICAL/STRUCTURAL ANALYSIS
This step is for distinguishing and decoupling FSM FFs
from other FFs (like datapath FFs). The topological analysis
consists of steps like (i) identifying FFs whose input contains
a combinational feedback path from their output (combi-
national logic for building next state logic), (2) grouping
the FFs controlled by the same set of signals, and (3) find-
ing strongly connected components (SCC) using Tarjan’s
algorithm [44], [45].

2) FUNCTIONAL ANALYSIS
After extracting a pool of potential FSM FFs, the STG is built
through functional analysis. This is done by first attempting
to find the initial state, and then identifying the reachable
states by creating a reduced binary decision diagram (BDD)
or using a SAT solver.

3) MATCHING/EXTRACTING ORIGINAL FSM
After extracting the STG, the original part of FSM is retrieved
based on some behavioral specifications. In most FSM obfus-
cation solutions, as demonstrated in Fig. II-D, distinguish-
ing between the original part and the other modes is not
very challenging, as these parts are not strongly connected
components. In this step, for complex cases that are hard to
distinguish between original and extra states, some random
stimuli can be matched with the oracle.

More recent studies on FSM obfuscation show how even
implicit external secrecy (keyless) can be modeled using I/O
query-based attacks [29], [41]. In RANE [41], the secret(s)
of HARPOON, which are SNinit , Ien, and Iauth (Fig. 2(a)),
are modeled as explicit secrecy and followed by the BMC
invocation for finding the secrets that show more scalability
versus the {structural+functional} attack. The attack con-
sists of two main parts: (1) finding the initial state, and
(2) finding the unlocking+authentication sequence. In Fun-
SAT [29], the minimum number of unrolling needed to find
the unlocking/authentication sequence (Ien and Iauth) is deter-
mined based on bounded-depth function corruptibility (FC)
analysis that allow the attack to directly jump to the depth
leading to the final satisfying assignment(s).

Similar methodology can even be deployed on newer
FSM obfuscation techniques, e.g., JANUS or JANUS-HD
[34], [35] (Fig. 3(a)), which tries to thwart the usage of any
I/O query-based attacks. In this case, as shown in Fig. 3(a,b),
the configuration of FFs (D/T select), as the secret, is stored
in a tamper-proof-memory (TPM), and depending on the
current state and the input patterns, this configuration can
be updated (based on the value of corresponding TPMcell).

FIGURE 3. I/O query-based attack on FSM obfuscation:
(a) JANUS(-HD) [34], [35], (b) JANUS(-HD) architecture [34], [35],
(c) Converting memory cell contents (TPMi

cell) to external explicit
secrecy (ki) using LUT (To build BMC attack model).

However, as shown in Fig. 3(b,c), one can formulate the
whole configuration unit (CCU) module as a small fully
configurable logic (e.g., look-up-table (LUT)), in which the
current state + PI defines which configuration should be
selected, and each configuration bit (ki) serves as one TPMcell
(TPM i

cell). So, considering the configuration of the LUT as
the secret, it becomes an obfuscation with explicit external
secrecy. Hence, the security of such a technique can be under-
mined by the invocation of SAT/BMC.2

III. PROPOSED SCHEME: ReTrustFSM
To build a robust FSM obfuscation against the attacks, a set
of crucial requirements must be met, which are as follows:
REQ1 Hybrid Approach With High Correlation Between

Explicit and Implicit Secrecy: Existing attacks show how
I/O query-based attacks can challenge implicit-based FSM
augmentation. Also, they do not meet the SCC requirement.
However, FSM complexity can be increased by implicit
secrecy. On the other side, explicit-based ones follow SCC,
but none of the existing ones are robust I/O query-based
attacks as they cannot expand the search space enough.
To have the best of both worlds, these two can be combined
for FSM obfuscation by (i) obfuscating the internal FSM
transition function via explicit secrecy and (ii) expanding the
search space by implicit secrecy.
REQ2 No Structural/Functional Traceable Information:

The obfuscated design must provide the adversary with the
least amount of information (indistinguishability needed for
logic locking [8]). The original STG of all except JANUS’s in
Fig. 2 can be recovered after {structural+functional} analysis
as the added states is not part of the SCC of the original FSM.
Therefore, FSM obfuscation must be in a way that (1) it is
challenging to distinguish FSM FFs, and (2) re-constructing
STG becomes difficult or leads to an incorrect one.
REQ3 Applicable to All FSMs: In techniques like

JANUS(-HD), the targets of obfuscation must be a point that
allows the designers to split the STG into two parts while the

2As this work assumed scan chain open, SAT can be applied directly to
CCU. Since CCU is small (for a few transitions), the LUT counterpart will
be small enough which makes the de-obfuscation time significantly shorter.

VOLUME 11, 2023 19745

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

number of cutting edges isminimal to reduce the required size
for the TPM that is part of CCU, as demonstrated in Fig. 3.
Meeting such requirements always limits the applicability of
a method. Therefore, any arbitrary FSM should be obfuscated
with no challenge.
REQ4 Boosting Robustness by Manipulating Original

Behavior of FSM: FSM determines how the datapath is con-
trolled, somanipulating its behavior canmake de-obfuscation
more complex while not affecting functionality. For exam-
ple, the output of a circuit with valid/ready signals can be
masked to 0 (no switching activity) when there is no valid
data. Understanding such signals also helps the adversary
narrow the modeling (skipping unrollings). It is possible to
prevent such reduction by increasing the frequency of output
updates (either valid is 1 or 0), based on the power budget,
and enhancing the search space for pruning by using the
handshaking/communication signals.

A. OVERVIEW OF ReTrustFSM
ReTrustFSMproposesmultiple components that apply obfus-
cation at RTL to meet REQs1−4. Fig. 4 shows how
ReTrustFSM retouches the FSM of the circuit for obfuscation
purposes. In ReTrustFSM, the original (black part) and obfus-
cated (purple part) FSMs are systematically twisted together
(tightly coupled for building SCC in which the obfuscated
FSM is in the middle of the original FSM). By doing so,
it becomes difficult (almost impossible) for the adversary to
distinguish between original and obfuscated states (no target
for the initial state to separate these two parts). So, approaches
like fun-SAT [29] and RANE [41] are not applicable as there
is no initial state as the main target.

ReTrustFSM also utilizes both key-based (explicit)
counter-based and LFSR-based obfuscation for STG traver-
sals and implicit secrecy for the traversal of the obfuscated
FSM. So, to have a correct connection between two splits
of the original FSM (through obfuscated FSM), both explicit
and implicit secrecy must be correct. Without correct traver-
sal of the obfuscated FSM, the FSM is pushed towards the
initial state, meaning that the expected (correct) functionality
is not acquired (malfunctioned). Moreover, the expected
behavior of the obfuscated FSM depends on both implicit and
explicit external secrecy. Considering the example depicted
in Fig. 4, the following shows the key components of
ReTrustFSM and how they work:

1) MIXING OBFUSCATED STATES WITH ORIGINAL STATES
As shown previously in Fig. 2(a-d), in existing FSM obfus-
cation methods, the obfuscation states are separated from the
original states and they do not create an SCC together [31],
making them vulnerable to {structural+functional} attack.
So, to deter such an attack, obfuscation states must be well-
blended with the original FSM states in such a way that the
Tarjan’s algorithm [45], or any similar one, cannot distin-
guish the obfuscation states from the original states. Hence,
in ReTrustFSM, the obfuscated region (SObf0 , S lfsr1 , Scnt2 and

their related transitions in Fig. 4), called encFSM, is com-
pletely mixed and twisted as an intermediate sub-FSM into
the original FSM. Based on the specification of encFSM,
it may split the original FSM into three sub-FSMs, as we
call them preFSM, lockedFSM, and postFSM. preFSM
is the first fixed part of the original FSM as the preceding
states of the encFSM (SNinit , S

N
1 , SN2 and their edges in Fig. 4).

postFSM is another fixed (could be dynamic as well) part
of the original FSM as the succeeding states of the encFSM
(SN4 and their edges in Fig. 4). lockedFSM is the connecting
state (and its outgoing transitions) between the encFSM and
postFSM (SN3 and their edges in Fig. 4). Additionally, all
transitions between encFSM and preFSM, lockedFSM, and
postFSM are populated (once the correctness of secrecies is
not met) to build a unified SCC. Details of these terminolo-
gies and their roles in ReTrustFSM are discussed shortly in
Section III-B.

2) MIXING KEYLESS AND KEY-BASED FSM OBFUSCATION
Since the key-based obfuscation techniques are vulnerable
to SAT/BMC attacks, and keyless obfuscation methods are
vulnerable to {structural+functional} attack [31], we intro-
duce a sophisticated hybrid approach in ReTrustFSM com-
bining both key-based (explicit external secrecy) and keyless
obfuscation (implicit external secrecy). To do that, traversal
of encFSM, that allows correctly connecting preFSM to
lockedFSM and then to postFSM, ReTrustFSM requires
both explicit external secrecy (key input) as the configu-
ration of counter and LFSR and implicit external secrecy
(primary input) as the internal transitions of the encFSM.
With these two secrets, the connection between (preFSM,
lockedFSM, and postFSM) will be established correctly
(SN2 → SN3), thereby the original FSM will be recon-
structed. As keyless and key-based obfuscation approaches
are orthogonal, they individually combat the SAT/BMC and
{structural+functional} attacks, respectively.

3) OBFUSCATION-ORIENTED STATES ENCODING
In ReTrustFSM, the encoding of lockedFSM (red parts
including SN3 and its outgoing transitions) is calculated by
the encFSM at run-time. So, it becomes dependent on the
execution of the obfuscated counter and LFSR that is located
within encFSM. Without correct traversal of the encFSM,
the succeeding states do not work correctly, leading to invalid
signaling to the datapath (malfunctioning). The inclusion
of state encoding makes ReTrustFSM resistant to removal
attacks.

B. STATE ENCODE BY EXPLICIT EXTERNAL SECRECY
In ReTrustFSM, we associate lockedFSM and its outgoing
transition functionwith internal computations of the encFSM.
Fig. 4 shows how ReTrustFSM builds this concept by inte-
grating key-based LFSR and counters. As shown, in encFSM,
the key input as the explicit secrecy (key0/1) determines how
the LFSR/counter will operate in the encFSM, and based on
their values, the encoding of lockedFSM will be calculated.

19746 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

FIGURE 4. Proposed ReTrustFSM: (a) original FSM, (b) obfuscated FSM, (c) Activation: From LFSR/counter initialization to encoding.

FIGURE 5. The proposed FSM obfuscation flow.

FIGURE 6. Selection of candidate in ReTrustFSM to avoid bypassing of
encFSM.

Fig. 4(a,b) show the original vs. obfuscated FSM after apply-
ing the proposed scheme, respectively, and Fig. 4(c) shows a
timing diagram of how activation works for correctly encod-
ing encFSM (SN3). From preFSM to encFSM (S2N → Scnt0),
the LFSR is initiated with part of explicit external secrecy
(key0). Similarly, during encFSM (S lfsr1 → Scnt2), the down
counter is initiated with another part of explicit external
secrecy (key1). Then, once the down counter reaches 1, the
current value of LFSR will be used as the encoding of the
lockedFSM state (S3N).

Fig. 5 shows the main steps of ReTrustFSM obfuscation
flow whose details are discussed below.

1) FSM EXTRACTION AT RTL
ReTrustFSM framework is equipped with PyVerilog [46],
allowing us to extract all the crucial information of the

original FSM, e.g., states space/encoding, initial state, and
state transition function.

2) CANDIDATE STATE ANALYSIS + SELECTION
In ReTrustFSM, candidate states should possess the follow-
ing properties:
Lemma 1: A candidate is the immediate next state after

encFSM and must be the only connection between preFSM
and postFSM. It means postFSM must have NO direct
in-degree transition from the preFSM. This property ensures
that the obfuscation states (encFSM) cannot be bypassed.

In ReTrustFSM, the candidate state is the immediate
next state after encFSM. Since both preFSM and postFSM
are implemented using fixed encoding, if there exists more
than one path from preFSM to postFSM, the encFSM
and lockedFSM might be bypassed while some part of
the functionality is still available in postFSM (e.g., mov-
ing from decoding to execution in a processor). Following
Lemma 1 enforces every run to first traverse encFSM (before
lockedFSM and postFSM). Also, since the candidate must
have only one in-degree transition from the preFSM, meeting
this property guarantees that the candidate state is one of
the intermediate states (the initial state will no longer be
a candidate). Fig. 6 illustrates different scenarios and how
bypassing might happen if the candidate does not possess
Lemma 1. In Fig. 6(a), as ReTrustFSM selects SN1 as the
candidate, after the insertion of the encFSM on SNinit → SN1 ,
there exists more than one (two) in-degree transitions from
preFSM to postFSM (i.e., SN1 → SN2 and SNinit → SN2). So, the
encFSM can be bypassed through the other transition which
has no obfuscated state and the adversary might still achieve
the functionality by bypassing state SN1 . Fig. 6(b-d), shows
three other scenarios where candidates (SN2 or SN3) follows
Lemma 1 and bypassing is no longer possible.

Meeting such property might look like a strict condition
that limits the choices of the candidate state for the proposed
framework. However, analysis of the benchmark circuits and
real applications shows that a significant portion of FSM
states in all circuits meet this criterion, and this is mostly
because of the sequential nature of the controller’s behavior.

VOLUME 11, 2023 19747

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

Lemma 1 can be extended in ReTrustFSM from one state
selection to multiple states selection. In this case, any state
member of postFSM can be part of lockedFSM. For instance,
based on Fig. 4, the encoding of both SN3 and SN4 can be deter-
mined by the LFSR/counter. In this case, for I/O query-based
attacks, more iterations would be required for re-constructing
both states’ encoding vs. the case only the immediate state
after encFSM is chosen.
Lemma 2: The lockedFSM with encoding should involve

such states that feed the datapath circuitry. This property
ensures that obfuscating the FSM using ReTrustFSM surely
corrupts the datapath circuitry (like the flow of data) so that
the design is dysfunctional without the correct secrets.

Based on how the FSM is operating, the controlling signals
are defined and sent to the datapath side, which determines
the functionality and behavior of the design. Hence, from
both functionality as well as corruptibility points of view,
the candidate selection would be a crucial step in the pro-
posed framework. As an example in Fig. 4(a), assuming
that SN3 performs the execution step and configures neces-
sary datapaths’ registers, it would be a better candidate as
it can affect a higher portion of computations within the
datapath.
Lemma 3: The lockedFSM with encoding should involve

such states that are located at the deepest stage of the FSM.
From the adversary’s point of view, assuming that the

adversary will apply the I/O query-based attack, e.g.,
SAT/BMC, targeting and obfuscating the latest stages of the
FSM would be a booster as it requires deeper calculation,
such as more unrolling for the combinational counterpart
creation and larger bound checking. For instance, To observe
the output of the circuit after arriving at SN3 , the adversary
requires at least 4 times unrolling (resembling 4 clock cycles).
However, for states like SN2 , it would be in the range of 1-2
cycles for the first observation. We experimentally validated
the significance of these Lemmas 1, 2, and 3 in Table 3
by performing BMC attack on the ReTrustFSM obfuscated
design of Fig. 6 for varying candidate states.

3) REMOVAL OF STATE ENCODING
Once the candidate states are selected, then their original state
encoding is removed from the design RTL. We assume that
the designer has manually defined the encoding using some
constant/parameter definition with desired encoding
format (binary, one-hot, gray, etc.). The encoding of these
states is later driven by the LFSR state which is discussed
below.

4) INSERTION OF OBFUSCATION STATES AND ALL
RELATED COMPONENTS
This step adds the obfuscated states (encFSM) based on the
selected candidate(s). In Fig. 4, SN3 has been selected as the
candidate, thereby ReTrustFSM will insert the encFSM on
transition SN2 → SN3 . The states of encFSM (the purple states)
are the following three additional states:

a: Sobf
0

This state determines whether the traversal of the encFSM
is required or not. In ReTrustFSM, to avoid perfor-
mance/throughput degradation, the traversal of the encFSM
will be accomplished only once after power-on (activation).
So, if the encFSM is already traversed once, the encoding
of the candidate state (SN3) has already been done by the
LFSR, and the state machine can go directly to the candidate
state. We implemented a one-bit flag check to see whether the
traversal of the encFSM is needed or not. At power-on, the
flag is set to zero. Once the flag is zero, the encFSM must be
passed first to configure the lockedFSM register(s). Through
the Scnt2 → Sobf0 traversal, the flag will be set to 1. Addi-
tionally, in this state, as also shown in Fig 4(c), ReTrustFSM
initializes the LFSR circuitry by using the explicit external
secrecy key0. For an incorrect value of the external secrecy,
the next states lead to an incorrect encoding for the candidate
state, which results in returning back to SNinit (becomes dys-
functional).

b: Slfsr
1

In this state, as shown in Fig 4(c), ReTrustFSM starts updat-
ing the LFSR based on its initialized value (starting of the
shift). In ReTrustFSM, to ensure that the obfuscation cir-
cuitry, e.g., LFSR, and down-counter, is strongly connected
with the original FSM, the initialization of the LFSR is con-
trolled by the next state circuitry while the provided key is
incorrect. This allows us to fully twist the logic dedicated
to the original FSM with that of the encFSM. This signifi-
cantly helps to immobilize step 1 of {structural+functional}
attack [31], [45], which is Tarjan-based topological analysis.
To implement this, we do not need to insert a MUX-based
encoding selection between correct/incorrect state value(s)
for the correct/incorrect key. Since the design team is aware
of the location of encFSM in the STG, the encoding of the
preceding state (the latest state of preFSM) is known. For
instance, as demonstrated in Fig. 4, SN2 is the immediate state
before encFSM with a known (fixed) encoding value. So, to
build this twist, we just need to add XOR operation for the
key value and the preceding state encoding, whose output
produces the correct encoding. For instance, in Fig. 4, the
value of key0 can be defined in a way that key0 ⊕ SN2 results
in producing the correct initial for the LFSR that led to the
correct SN3 encoding (after down counting). So, in this case,
the XOR-based model does not reveal any combination of
incorrect/correct keys to the attacker. Once initialized, the
LFSR starts shifting/shuffling per each clock cycle, and the
encFSM goes to the Scnt2 state.

c: Scnt
2

This state initializes the down-counter with the other part of
explicit external secrecy (key1) as the initial count value, and
the counter starts down-counting until it reaches 1, as shown
in Fig. 4(c). The counter drives the LFSR to encode the

19748 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

candidate state (SN3) after key1 clock cycles during run time.
Scnt2 state then goes to the Sobf0 state.

If the LFSR and the down-counter are initialized cor-
rectly (correct key0/1), the down-counter counts correctly,
allowing the LFSR to be in a current value for encoding
the candidate state SN3 . In the event of an incorrect external
secret (incorrect key0/1), the candidate state SN3 is encoded
with an incorrect value. Hence, they are discarded from the
original state machine and the obfuscation states move the
state machine to some incorrect states (e.g., black holes B0:3
or initial state SNinit in Fig. 4(b)). It is also noteworthy that,
once the obfuscated FSM is unlocked, only Sobf0 state stays
in the state machine during regular operation, thereby no
throughput degradation will be experienced after unlocking.
Additionally, ReTrustFSM can produce false responses at PO
once the state machine is in state Sobf0 with no valid signal.
This increases the frequency of output updates that enhance
the robustness against I/O query-based attacks (REQ4).

5) FUNCTIONAL VERIFICATION WITH INCLUSION
OF DATAPATH
Once the insertion of obfuscation states, LFSR, down-
counter, and all extra populating transitions is done,
ReTrustFSM will verify the functionality between the orig-
inal and obfuscated circuit while the secrets are provided.
In this case, the inclusion of the datapath is crucial as the
signaling between the controller and datapath needs to be
functionality verified while the encoding is updated and new
intermediate states are added. Researchers have investigated
how don’t care states in FSM can be exploited to insert
hardware Trojans and faults [47]. Therefore, ReTrustFSM
inserts default case to define any don’t care states in the
design and eliminate any existing FSM vulnerabilities [48].

C. STATE EXPANSION USING IMPLICIT SECRECY
To boost the robustness of ReTrustFSM, particularly against
I/O query-based attacks, we deploy a hybrid approach
for FSM obfuscation, by establishing a deep correlation
between the key-based (explicit external) encoding and key-
less (implicit external) obfuscation. To accomplish this, the
state transitions within encFSM (Sobf0 → S lfsr1 → Scnt2 in
Fig. 4) have been associated to the input patterns at spe-
cific clock cycles. So, for clock cycles cci,i+1,i+2, shown in
Fig. 4(c), specific patterns must be observed at PI allowing
encFSM to be traversed cycle accurately as expected.

Fig. 7 demonstrates how this implicit secrecy works in
ReTrustFSM for a 4-bit FSM, while a 4-bit LFSR and counter
are integrated. It shows that since the LFSR/counter initial-
ization happens at different clock cycles, incorrect traversal
of encFSM states results in having incorrect LFSR value for
encoding while the down-counter reaches 1. So, the candidate
state will be discarded from the FSM, making the circuit
dysfunctional (Fig. 7(a,b)). The implicit secrecy that is depen-
dent on patterns driven by the PI creates functional obscurity
and protects the encFSM with the explicit secrecy for the

FIGURE 7. Implicit external secrecy for the example of Fig. 4. Correct
{k0, k1} = {0110,1100}, and LFSR equation is x3 + 1. Incorrect input
pattern (cycle inaccurate) for (a) Sobf

0 → Slfsr
1 , (b) Slfsr

0 → Scnt
1 , and

(c) Scnt
0 → Sobf

1 .

state encoding. Using such a structure, the keyless and the
key-based components of ReTrustFSM are correlated to each
other during the unlocking and functional phase, to aid in the
cycle-accurate functioning of the design.

It is evident that since the implicit external secrecy must
be applied at specific clock cycles (in the middle of the first
round of execution), the activation may look challenging.
However, similar to other sequential FSM-based obfuscation
techniques, the whole sequence of input patterns for one full
FSM round with the inclusion of encFSM traversal will be the
implicit external secrecy. For instance, for Fig. 4, any input
pattern sequence allowing us to reach SN2 , followed by the
specific implicit external secrecy needed to pass encFSM,
plus any input pattern sequence allowing us to reach SNinit
will be considered as a sequence for implicit external secrecy.
Note that for applying a full round of input to the circuit,
no additional circuitry is required, and the sequence of inputs
will be applied directly (activation license).

As mentioned in Section III-B, ReTrustFSM removes the
encoding of the candidate state and drives the candidate
state by the LFSR state. The LFSR state defines the state
transitions concerning the candidate state. However, the can-
didate state is defined by some constant/parameter
which is a secret in this case. Having any secret value
hard-coded in the RTL could make the design vulnerable to
functional analysis-based structural attack [13]. To eliminate
any structural trace from the design, stealthy opaque predi-
cate [49] based dynamic secrecy generation can be deployed.
To know more about how opaque predicate can be utilized
for generating obfuscated constants in the RTL, we direct the
readers to [49].

As mentioned previously, the traversal related to the LFSR
and the down-counter (counting and shifting) will continue
till the down-counter reaches one. This means that for
the down-counter with greater initial values (greater exact
value of external secrecy), it takes more time to calculate

VOLUME 11, 2023 19749

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

the encoding value of the candidate state. This shows one
of the unique features of ReTrustFSM, where it makes a
relation between the exact value of the explicit external
secrecy and the robustness of the approach. However, it may
result in building a backdoor for attacking this mechanism.
For instance, for correct case demonstrated in Fig. 7(c), the
explicit secrecy pair for the LFSR and the down-counter
({k0,0:3, k1,0:3}) is set to {0110, 1100}, and for the correct
traversal, the down-counter must be initialized two clock
cycles after the LFSR (LFSR at cci and down-counter at
cci+2). So, for any pair of the LFSR and the down-counter
values demonstrated in Fig. 7(c) with two clock cycles differ-
ence, it can be considered as the correct value of the external
secrecy. For instance, {0011, 1011}, which is the LFSR
value at cci+1 and down-counter at cci+3, could be another
correct value of the external secrecy, that also needs one
less clock cycle execution to reach down-counter to one.
Having such knowledge allows the adversary to fix the down-
counter to a small value, and run the I/O query-based BMC
for the other part of the secrecy that is related to LFSR, and
since it requires few traversals, the BMC will break it very
fast.3 So, for two purposes, which are (1) avoiding having
multiple correct key pairs, and (2) avoiding the possibility
of running fix and run partial BMC, we re-use one of the
external secrecies with targeted value to obfuscate part of
the design, e.g., the next state logic. It constrains the key
value to the expected (targeted) one. Using such constraining
limits the correct key to only 0110+1100, and enforces the
attacker to run the BMC to the depth as expected, and addi-
tionally, it reduces the number of possible correct keys to only
one. All the experimental results demonstrated in Section V
are captured after applying this constraint. Please note that
adding constraint for one part of the external secrecy would
be enough to completely mitigate this issue.

D. NECESSITY OF SCAN PROTECTION
Manufacturing testability provides access to internal circuit
states to achieve high test coverage. Debug engineers (from
the foundry or test facility) can inspect the concurrent state
of the sequential elements in case of manufacturing errors.
Capitalizing privilege access to internal state registers does
not reveal any secret meta-data in existing FSM obfuscation
techniques that use implicit secrecy since no explicit repre-
sentation of secrecy exists, and the sequence of input patterns
serves as unlocking/authenticating sequences. The adversary
needs to check all possible transactions to reconstruct the
obfuscated FSM if the state registers are known. As a result,
while only implicit secrecy is maintained, the test infrastruc-
ture may not provide any clues to an adversary. Assume there
is explicit secrecy in place. In that case, it may reveal secret
meta-data (e.g., the current state of the FSM, the state reg-
isters’ output/input) concerning the underlying obfuscation
method, as the propagation of intermediate variables might

3The same can happen by fixing the LFSR and running the BMC on the
secret of the counter.

reveal something about the explicit secrecy (information leak-
age). Therefore, for existing FSM obfuscation methods, they
may rely on various scan chain securingmethods [38]. As dis-
cussed in Section II-E, JANUS(-HD) [34], [35] performs
FSM obfuscation by deploying reconfigurable D-T flip-flops
where a control signal (stored in TPM) decides the role of the
flip-flop (either D-type or T-type). The role of the individual
reconfigurable state registers (D-type or T-type) is the main
secret in the case of JANUS(-HD), and it is assumed that the
attacker has full access to the chain. However, having such
privileged access to the scan chain, the attacker can initiate
a scan-based attack [50] to reveal this explicit secrecy that
determines the state register type (D-type or T-type) of the
reconfigurable FFs in JANUS(-HD). This can be done by
flushing the scan chain with a known pattern and inspecting
the location of bit flips in the scan-out response.

Since ReTrustFSM uses both key-based and keyless obfus-
cation, some registers dedicated to obfuscation may be tar-
geted as sources of information leakage. In ReTrustFSM,
security information is contained in register resources ded-
icated to state encoding, LFSR, and counters. To deter these
scan-based attacks, ReTrustFSM assumes the design is full-
scan capable and protected by state-of-the-art scan obfusca-
tion techniques [51] to shield these register contents. To keep
the scan chain as open as possible, we only obfuscate the
chains that include the targeted registers. Despite being a
closed scan chain, the DFT structure still makes different
chains fully accessible. Our experiments demonstrate that this
approach allows for a high test coverage when multiple scan
chains are inserted. It also provides a higher level of observ-
ability/controllability to the designer while not compromising
security for the obfuscated secrets.

IV. DETAILED SECURITY ANALYSIS OF ReTrustFSM
This section provides a detailed security analysis of
ReTrustFSM. Considering the I/O query-based BMC attack
as an algorithmic approach applicable to FSM obfuscation,
and based on the combinatorial complexity of the con-
straint satisfaction problem, we define the security met-
ric of ReTrustFSM and predicts the security complexity in
terms of BMC attacks using a machine-learning (ML) model
by extracting a set of features. Furthermore, we evaluate
ReTrustFSM against a {structural+functional} attack [31],
removal-based attack, functionally guided SAT attack [29],
and an Oracle-less machine-learning-based attack [52].

A. OPERATIONAL MODEL AND BMC COMPLEXITY
The SAT and BMC attacks are algorithmic attacks defined
on logic locking [9], [41]. In ReTrustFSM, since part of
the secrecy is the implicit external secrecy provided by the
primary inputs, even though the scan chain is fully accessible,
the possibility of running SAT attack (modeling primary
inputs as secret) is almost zero. Hence, this section evaluates
the possibility of a BMC attack where the adversary needs
(1) PI/PO access to the activated chip (oracle, and (2) PI/PI

19750 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

access to the gate-level netlist. The BMC helps find the best
set of I/O pairs, leading to the secrets.

As discussed in Sec. III, the key-based state encoding of
ReTrustFSM is driven by an LFSR/counter configuration.
Assuming that the LFSR is k0 bits wide, the characteristic
polynomial of a k0-bit LFSR with c0, c1, . . . , ck0−1 feedback
coefficient can be represented by the following Equ. 1.

P(l) = 1 + c0l t0 + c1l t1 + . . . + ck0−1l tk0−1 (1)

Eqn. 1 is a univariate monic polynomial that can be repre-
sented by a Frobenius companion matrix [51]. Equ. 2 and
Equ. 3 show the companion matrix that can represent the
succeeding states of the LFSR (based on the coefficients and
its initial value) and its simplified form, respectively.

l0
l1
l2
.

.

lk0−1

t+1

=

c0 c1 c2 . . ck0−1
1 0 0 . . 0
0 1 0 . . 0
.

.

0 0 0 0 1 0

.

l0
l1
l2
.

.

lk0−1

t

(2)

L t+1
= A · L t (3)

In ReTrustFSM, once the obfuscated circuit is powered on,
the explicit secrecies, i.e. initial secret seed and initial counter
value, is loaded into the LFSR and the down-counter, respec-
tively. Let us consider that the seed of the LFSR is L t and
the initial count value of the down-counter is k1. As dis-
cussed previously, in ReTrustFSM, the LFSR stops traversing
once the down-counter reaches one. At this moment, the
current value of the LFSR is utilized to encode the obfuscated
state(s), as demonstrated in Fig. 7(c) at clock cycle cci+14.
So, considering that the initial states of the LFSR and down-
counter constitute the secret key {k0, k1} of the circuit in
ReTrustFSM, as demonstrated in Fig. 7, and assuming L t

as the initial seed of LFSR and k1 as the number of clock
cycles to reach the current state encoding, the LFSR state
that performs correct encoding of the obfuscated FSM can
be represented by the Equ. 4.

L t+k1 = Ak1 · L t (4)

For BMC attack, the model checker tool must visit all
succeeding states of the LFSR and down-counter, i.e., the
ReTrustFSM obfuscated circuit must be unrolled for at least
(k1 + δ) times to extract the secret seed of the LFSR, required
for correct traversal. Here, δ is related to the other sequential
depth of the obfuscated FSM and the obfuscated states, e.g.,
the number of states that must be traversed to reach the
LFSR initialization state (S lfsr1). To enable ReTrustFSM by a
machine learning model that predicts the security robustness
against BMC attacks, we concentrate on the features that can
be extracted from the formal representation of the problems
(obfuscated circuits) based on propositional logic formula.
This security evaluation consists of three steps: (1) feature
engineering, (2) training, and (3) testing and validation.

FIGURE 8. The CNF features predictive of the computational complexity
of the SAT instance. (a) sample circuit CLi , (b) corresponding CNF
representation of CLi , (c) VCG graph of CLi CNF, (d) CG graph of CLi CNF,
and (e) VG graph of CLi CNF.

Definition 1: A propositional formula is a conjunction of
clauses. A clause is a disjunction of literals. A propositional
variable or its negation is known as a literal.

1) FEATURE ENGINEERING
Knowing (about the source, propagation, and usage) the
explicit secrecy in ReTrustFSM (k0, k1) allows the designer
to generate the propositional formula (in conjunctive normal
form (CNF)) of the SATC (as discussed in Section II-C)
based on the required/selected unrolling number.4 In a SAT
instance, the number of clauses, variables, and their ratio is
highly correlated with the instance’s empirical difficulty [53].
The authors of [54] generated a set of features that are predic-
tive of determining the computational complexity of a SAT
instance. Some of these features are derived fromwell-known
heuristics, e.g., the number of clauses, variables, and the ratio
of clauses to variables, while some others are based on more
complex combinatorial properties [53]. Fig. 8 shows a visual
representation of the dominant features. A sample circuit and
its corresponding CNF formula is shown in Fig. 8(a) and
Fig. 8(b) respectively. From Fig. 8(b), it is noticeable that
the number of clauses, variables, and their ratios is 6, 5,
and 6

5 , respectively. These features capture the size of the
SATC generated from the ReTrustFSM obfuscated circuit
(after τ -time unrolling). The three undirected graphs in Fig. 8
correspond to three different graph representations of a SAT
instance, which are defined as follows:
Lemma 4: A VCG graph G(V,E) is a bipartite graph of the

vertex set V and edge set E, where each variable and clause
(vi, cj) ∈ V . The occurrence of a variable vi in a clause cj
represents an edge, (vi → cj) ∈ E in the graph G.
Lemma 5: A CG graph G(V,E) has node for each clause,

ci ∈ V .Whenever two clauses share a negated literal, an edge,
(ci → cj) ∈ E is added to the graph G.
Lemma 6: AVG graph G(V,E) has node for each variable,

vi ∈ V . Whenever two variables occur together in at least one
clause, an edge, (vi → vj) ∈ E is added to G.
Fig. 8(c-e) corresponds to the VCG, CG, and VG graph rep-
resentations of the CNF instance from Fig. 8(b), respectively,
by following Lemma 4, 5, and 6. Each of these graphs cor-
responds to a constraint graph associated with the obfuscated

4From SAT solver point of view, for sequential circuits, unrolling will be
done as a pre-processing step to build the combinatorial counterpart.

VOLUME 11, 2023 19751

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

FIGURE 9. Linear regression based security complexity estimation model
framework based on the predictive features of the ReTrustFSM
obfuscated CNF instance.

circuit. Therefore, they delineate the complex combinatorial
structure of the SAT instance. For a detailed understanding
of all the features of a SAT instance, we direct the readers
to [54]. These features can be combined with a regression-
based machine learning model to construct the hardness
model of the ReTrustFSM obfuscated circuit.

2) MODEL TRAINING
Fig. 9 provides an overview of the ML framework that we
developed for the complexity analysis of the ReTrustFSM
obfuscated circuit. The blue steps in Fig. 9 are only required
during the training phase while the green steps are for predic-
tion phase. The brown steps are essential for both training and
prediction. The details training phase of this ML framework
is as follows:
ml0 (Synthesis): The original (unlocked) and ReTrustFSM

obfuscated RTL must be synthesized in a target
library using open-source [55] or commercial (Synopsys
Design Compiler, or Cadence Genus) EDA tools.

ml1 (Dataset Creation): Once the original and obfuscated
synthesized netlist is generated, we perform a BMC
attack on the ReTrustFSM obfuscated circuit using the
state-of-the-art BMC attack tool on sequentially obfus-
cated circuits [41]. If succeeded, the attack results pro-
vide the unlocking key, size of dis (as discussed in II-C),
and time to extract the key. The time taken by the BMC
attack fills the database as target, which the ML model
later utilizes along with the feature set.

ml2 (Manual Unrolling of the De-obfuscated Circuits): The
size of the dis reported by the successful BMC attacks
represents the number of cycles the sequential circuit
must be unrolled (or the number of copies the CU of
the sequential design needs to be added in the miter
SATC as discussed in Section II-C) to perform the com-
binational SAT attack and deduce the secret key. Dur-
ing the training phase, we utilize the dis number along
with an in-house developed functional corruptibility-
guided [29] unrolling script to generate the miter SATC
of the ReTrustFSM obfuscated circuit using an open-
source model-checking tool nuXMV [56].

ml3 (Generation of Propositional Logic Formulas): The
τ -time5 unrolled circuit generated by the unrolling tool

5Per obfuscated circuit, different numbers of unrolling are required.

FIGURE 10. Accuracy of the linear regression-based BMC attack
complexity prediction model for two different cases - (a) 70 and
(b) 140 data points. Both (a) and (b) plot the predicted vs. actual BMC
attack time where the blue and red dots represent the training and
validation data set. The prediction accuracy metric of the linear
regression model increased from (a) 0.21 to (b) 0.77 when the training
size was doubled.

is in bench format. We thereby make use of the ABC
synthesis tool [55] to generate the CNF of the unrolled
version of the ReTrustFSM obfuscated circuit.

ml4 (Feature Extraction of Generated CNFs): At this step,
we plug in the CNF representation of the ReTrustFSM
obfuscated circuit to an open-source feature extraction
tool [54] which generates features that are predictive
of determining the computational complexity of the
given SAT instance. In our analysis of ReTrustFSM,
we extracted 46 features from the given CNF. These
features constitute the feature set of the database.

ml5 (Regression for Training): Once the database is ready,
we deploy a linear regression algorithm to train the
model based on the extracted CNF features and target
BMC attack time. We utilized a ridge regularizer with
α = 0.022 as error metric.

We developed a database of roughly 140 BMC attack results
(details of the experimental setup and attack results are dis-
cussed in Section V) and their associated features among
which 90% of the data points were used to train the linear
regression model and 10% (on never-seen circuits by the
model, i.e., test data set is not part of the training data set)
were kept for validation.6

3) TESTING AND VALIDATION
After training the ML model using the pre-generated dataset,
the trained model is tested and validated on the targeted
circuit(s) (To estimate the de-obfuscation time for a desired
external secrecy). Fig. 10 shows the comparison between
actual time and predicted time for both training (blue) and
validation (red) data sets for two different training data sizes.
We collected in total 140 data points and considered two
cases for training, testing, and validation. In the first case,
we considered half of the collected dataset (70 data points)
while in the second case we considered full dataset (140 data
points). For both the cases, we utilized 90% of the considered
data for training (i.e., 63 data points in case one and 126 data

6The size of training dataset can be increased over time, and by increasing
the dataset size, higher accuracy can be achieved.

19752 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

points in case two for training) the linear regression model.
We validated the trainedmodel using the residual 10% dataset
of the considered data in each case (i.e., 7 data points in case
one and 14 data points in case two). Accuracy of the BMC
attack complexity predictionmodel for two different cases are
presented in Fig. 10(a) and (b), respectively. The prediction
accuracy metric, R2-score increased from 0.21 to 0.77 when
the training data size was doubled. Hence, further expanding
the training data set will increase the prediction accuracy
beyond 0.77. It can also be observed from Fig. 10 that for
the training data, the model mostly performed underestima-
tion. However, the model was able to predict the validation
data with an average of 90% accuracy.7 It is noteworthy
that the model can be trained offline with the results gener-
ated from the prior BMC attacks and its associated features.
Enabling our proposed FSM obfuscation by this ML model
estimator allows the designers to acquire the estimated de-
obfuscation time before the accomplishment of obfuscation.
Based on the desired external secrecy (down-counter initial
value) and the minimum number of required unrolling (which
can be identified by utilizing functional corruptibility [29]),
the model (unrolled version of CNF) can be generated, and
the ML framework can predict the de-obfuscation time with
high accuracy. Therefore, the designer can estimate security
complexity of ReTrustFSM obfuscated circuit for the given
external secrecy without actually performing BMC attack.

B. FORMAL SECURITY EVALUATION
The authors of [57] and [58] provided formal definitions of
the security posed by logic locking. The indistinguishable
logic locking (IND-LL) requires that the adversary cannot
distinguish between a locked and an unlocked (original) cir-
cuit [57]. The simulation secure logic locking (SIM-LL),
entails that the adversary cannot leak any additional infor-
mation about the original circuit from the locked one than
an oracle simulator. Later, based on these definitions, the
authors of [57] and [58] formally proved that universal cir-
cuits can achieve IND-LL secure logic locking. However,
for a circuit of size n, the universal circuit requires a key
of length O(n log n) [57] which significantly blows up the
locked circuit size and suffers greatly from overhead. There-
fore, to achieve IND-LL secure logic locking in practise,
we contemplated two corollaries from [57] and [58].
Corollary 1: The IND-LL secure logic locking with

smaller key size (i.e., reasonable overhead) can be achieved
by the inclusion of a cryptographic assumption [57].
Corollary 2: Increasing the information leaked by the

locked circuit can improve the locking overhead while prov-
able security is still guaranteed [58].
Linear feedback shift registers (LFSR) are pseudo-random

number generators vastly used for light-weight cryptographic
applications. According to the Berlekamp-Massey [59],

7
≈90% accuracy for the prediction of the attack time would be more

than enough for the designer to decide about the value of external secrecies
(e.g., the difference between actual and predicted would be in the order of a
few days while the total de-obfuscation time is in order of few years).

an adversary must observe at least 2n consecutive outputs
from an LFSR to reconstruct the seed (explicit exter-
nal secrecy of ReTrustFSM). However, in the case of
ReTrustFSM, as explained in Section III-D, circuit elements
dedicated to the state encoding, LFSR, and counter are pro-
tected by the scan obfuscation method to immobilize any
chance of leakage from the LFSR. Moreover, LFSR defining
the state encoding can drive the preFSM to any possible
state (2n−1 as the best case), as shown in Fig. 7. Therefore,
ReTrustFSM with its explicit external secrecy can achieve
IND-LL security.

C. STRUCTURAL AND TOPOLOGICAL ANALYSIS
The structural and topological analysis attempts to reverse-
engineer the FSM automatically from the obfuscated flat-
tened gate-level netlist [31] as discussed in Section II-D.
The adversary requires access to the locked gate-level netlist,
and the attack is performed based on a set of structural and
topological analyses. In some cases the adversarymay require
access to the activated chip as well for validating the attack.
In the case of FSM obfuscation, structural and topological
analysis means that the attacker can find the state registers in
locked netlist. This step is a prerequisite for re-constructing
the STG. The authors of [31] utilized fundamental properties
of the state registers, e.g., register type, strongly connected
components, combinational logic feedback paths, depen-
dency, and control behavior metric to distinguish the state
registers. This approach aided them in reverse-engineering
several state-of-the-art FSM obfuscation schemes. One of the
key observation from Fig. 2 as discussed in Section II-D
is that, most of the existing FSM obfuscation methods
(e.g., HARPOON [30], dynamic state deflection [33], active
metering [5]) do not possess any transition from the original
states back to the preceding obfuscation states and create
a bipartite graph. Hence, the original states do not form
a strongly connected component with the obfuscated states
according to Tarjan’s algorithm [45]. Therefore, obfuscated
states along with their associated state registers can be parti-
tioned from the original state registers. ReTrustFSM thwarts
such structural and topological analysis-based attacks in the
following manner.

• The existing FSM obfuscation methods insert the
obfuscated states before the original STG starts and
loosely connect them to the original states. However,
ReTrustFSM inserts obfuscated states (SObf0 , S lfsr1 , and
Scnt2 in Fig. 2) deeply rooted into the original FSM at
the RTL by following Lemmas 1, 2, and 3. Therefore,
in the ReTrustFSM obfuscated circuit, obfuscated states
are tightly entangled with the original state machine.

• It can be observed from Fig. 2 that the proposed
ReTrustFSM inserts obfuscated states that possess mul-
tiple back and forth transitions with the original states.
Hence, the obfuscation states creates a strongly con-
nected component with the original states according to
Tarjan’s algorithm [45]. Therefore, ReTrustFSM does

VOLUME 11, 2023 19753

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

not leave any structural footprint in the obfuscated
design that can be exploited by the topological
analysis [31].

• The obfuscation circuitry (LFSR, and down-counter)
that performs encoding of the postFSM (SN3 and option-
ally SN4 in Fig. 2), are initialized by the states of the
encFSM (Sobf0 → S lfsr1 → Scnt2 in Fig. 2) after the traver-
sal of preFSM. Therefore, the obfuscation circuitry
in ReTrustFSM are a part of the FSM state registers
which makes the search space even larger for structural
analysis.

• As implicit secrecy is integrated as part of the oper-
ational mode of the encFSM, to mitigate the design
vulnerability against the functional analysis-based struc-
tural attack [13] (for input pattern checking), stealthy
opaque predicate [49] based dynamic secrecy generation
has been deployed in ReTrustFSM construction.

Due to the points mentioned above, structural and topo-
logical analysis-based attacks [31] are ineffective on the
ReTrustFSM obfuscated circuit. It is noteworthy that the
circuit will be dysfunctional even if the attacker can reverse
engineer the state machine and even distinguish the obfus-
cated state registers without knowledge of the correct encod-
ing of the original states at RTL. In other words, removing
the encFSM and black holes from the STG does not allow the
adversary to reconstruct the original FSM, as the encoding of
lockedFSM depends on traversal in encFSM.

D. REMOVAL ATTACK
In case of a removal attack on ReTrustFSM obfuscated
circuitry (LFSR/counter), since a dependency between the
obfuscated circuitry and the original functionality is built, the
removal of logic dedicated for the obfuscated circuitry results
in losing the correct functionality. In such cases, the transi-
tion(s) between preFSM to postFSM gets lost, and similar to
what demonstrated in Fig. 7, it returns back to the default
state, SNinit . The following is some of the reasons why removal
attack does not work on ReTrustFSM:

(i) With access to the netlist and having the basic informa-
tion of the obfuscation method, the attacker can identify the
LFSR/counter in the design and remove them. However, after
removing LFSR/counter, the register(s) dedicated for state
encoding of the lockedFSM state(s) become unconnected
(no more connection to LFSR/counter). So, this register,
which is part of the FSM circuitry, will be removed during
synthesis optimization. This will be followed by removing
more parts of the design that are directly connected to this
state register. Then with the removal of part of the actual
circuit, the removal ultimately corrupts the functionality.

(ii) The functionality of all three obfuscation FSM states
is clearly defined and based on the threat model, the adver-
sary has access to the locked gate-level netlist. However,
in oracle, a sub-set of registers, including state registers, and
LFSR/counter registers are not directly available. So, the
adversary has to apply stimuli to primary inputs and observe

primary outputs. In this case, there exists no connection
between PI/PO pairs and the specification of internal regis-
ters as they are not observable. The adversary cannot dis-
tinguish between the state registers vs. the other registers.
So, the removal of these three states needs a prerequisite
in which the adversary must apply methods like Tarjan to
see if they are able to distinguish between registers. To the
best of our knowledge, there is no mechanism that can dis-
tinguish between these registers by 100% (guaranteed) suc-
cess ratio [31], [38]. When the adversary cannot distinguish
state registers, applying input patterns for re-constructing the
whole STG, and then based on the whole STG (for detecting
and removal of three obfuscation states) becomes clueless.

E. FUNCTIONAL CORRUPTIBILITY-GUIDED ATTACK
As discussed in Section II-C, functional corruptibility-guided
SAT attack (Fun-SAT) [29] is an extended version of BMC
(SAT) attack, in which the required minimum numbers of
unrolling for de-obfuscation is estimated based on output
corruptibility. Then, based on the number of unrolling, the
satisfiability is invoked. Hence, to perform this attack, the
adversary must have PI/PO access to the (1) activated chip
(oracle), and (2) gate-level netlist. Fun-SAT attack [29] ana-
lyzes the keyless FSM obfuscation method [30] to estimate
the minimum number of unrolling such that the functional
equivalency between the unrolled circuit and the original
sequential circuit is 100%. Once Fun-SAT deciphers the min-
imum number of required unrolling, it unrolls the obfuscated
circuit and performs the regular SAT attack [9] to extract the
secret enabling key ({Ien, Iauth}).
Although Fun-SAT efficiently works on a set of FSM

obfuscation techniques that rely on implicit external secrecy,
e.g., HARPOON [30], the corruptibility analysis fails to build
the functional equivalency between the unrolled circuit and
the original sequential circuit once explicit secrecy is in place,
as without the correct external secrecy, there exists no equiv-
alency between the obfuscated and the original circuit. Since
ReTrustFSM is a hybrid approach with a strong correlation
between implicit and explicit secrecy, Fun-SAT fails to break
ReTrustFSM obfuscated circuit because the corruptibility
analysis does not provide any advantage. The attack eventu-
ally reduces to a regular SAT or BMC attack, the analysis and
results of which are presented in Section IV-A and V. Addi-
tionally, in ReTrustFSM, the obfuscated states are deeply
twisted as an intermediate region with the original FSM.
So, any pre-processing like corruptibility analysis that helps
to reveal the required number of unrolling is not applicable
on ReTrustFSM obfuscated circuits.

F. ORACLE-LESS MACHINE-LEARNING ATTACK
Oracle-less ML-based attacks on logic locking, e.g., SWEEP
attack [52], rely on re-synthesizing the locked gate-level
netlist with additional key-gates and then learning the opti-
mization algorithm of the EDA tool. So, the adversary only
require access to the locked gate-level netlist for applying the
key value followed by re-synthesis. With the knowledge of

19754 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

the re-synthesis-based optimization algorithm, the SWEEP
attack then tries to revert to the original gate-level netlist
before locking. These ML-based attacks [52], [60] focus
on tracking down certain key gates, e.g., XOR, XNOR,
orMUX [6], [10]. Therefore, locking methods that depend on
specific key gates are extremely susceptible to these oracle-
less attacks. Additionally, almost all ML-based attacks build
their knowledge based on guess and check method, in which
the guessing is always around the value for the explicit
secrecy. Hence, in cases where implicit secrecy is in place,
such attacks become ineffective.

ReTrustFSM resists all existingML-based attacks for three
reasons: (1) the obfuscation circuitry is inserted into the
original design at the RT-level, which gets blended with
the original design, unlike most of the existing obfuscation
methods that integrate with the gate-level design. (2) Estab-
lishing an ML-based attack requires explicit guess and pro-
cessing of the secret, and the training is accomplished on
the post-processing analysis after constraining the explicit
secret. However, we use implicit secrecy tightly corre-
lated with the obfuscated sub-circuitry with explicit secrecy.
(3) ReTrustFSM, which relies on the composition of implicit-
explicit secrecy, has nothing to do with any specific gate type.
Furthermore, the LFSR and counter circuitry does not rely on
any specific gate type, which is a key requirement of oracle-
less ML-based attacks [52], [60]. Hence, the oracle-less
ML-based attacks are useless against ReTrustFSM. We per-
formed an oracle-less ML attack [52] on the ReTrustFSM
obfuscated netlist discussed in Section V.

G. TIMING SIDE CHANNEL ATTACK
ReTrustFSM focuses on the control behavior of the circuits
(implemented by the FSM) and the obfuscation part (known
to the adversary). By identifying timing side channel infor-
mation, such as switching activity of POs and observable
points, the adversary can identify obfuscation part traversal
timing. Because this timing information is determined by the
counter value (explicit external secrecy), the attacker can have
a close guess. A partial external secret can be revealed by
testing adjacent values to the guessed secret. This threat can
be avoided by following REQ4. In ReTrustFSM, we follow
a simple rule in which we target the handshaking signals at
the PO. For instance, in designs with valid/ready handshaking
signals, the PO can be masked to 0 (no switching activity)
while there is no valid data. However, we void the masking
while we apply ReTrustFSM. Additionally, for signals like
valid, we generate false positive valid for incorrect key values
making it difficult to guess the duration of the obfuscation
period. Moreover, there exist techniques that, with almost
zero overhead, make the timing-side-channel attack imprac-
tical. For instance, a decoy counter can be used for a fake
count once the obfuscation part configures. So, the adversary
observes that for c1 + c2 clock cycles, the idleness is at
the highest level, implying that the counter value (explicit
external secrecy) is c1 + c2. However, c2 corresponds to the

number of clock cycles of the fake count. So, the adversary is
deceived into guessing a wrong initial counter value.

V. EXPERIMENTAL RESULTS
This section evaluates ReTrustFSM by implementing in a set
of ten different ITC’99 [61] and microprocessor benchmark
circuits. We perform BMC attack [41] by varying the secret
LFSR seed and count.We also assess ReTrustFSMagainst the
oracle-lessML-based attack [52]. To investigate the industrial
scalability of ReTrustFSM, we analyze power, performance,
and area overhead. Finally, we check the corruptibility metric
to test the quality of output confusion.

A. EXPERIMENTAL SETUP
To comprehensively evaluate the performance of
ReTrustFSM, we implemented proposed hybrid FSM
obfuscation method on benchmarks from ITC’99 [61],
µcontrollers, and SoCs. Table 2 presents the specification of
the benchmark circuits, e.g., the number of gates, input/output
ports, flip-flops, state, state transitions, key sizes, and candi-
date states. The chosen benchmarks varies in sizes, number
of states, transitions, and ports to evaluate ReTrustFSM for
different corner cases. For each benchmark, we implemented
ReTrustFSM for two different key sizes to exhaustively inves-
tigate its security and implementation overheads. We have
chosen the key sizes based on the number of flip-flops
in the original design. Table 2 also reports the number of
candidate states available in the original FSM, based on the
Lemma 1. For each benchmark, multiple states satisfied
the candidate state selection requirements, and we picked
the one that meets all three Lemmas. The effectiveness of
Lemma 1, 2, and 3 in increasing BMC attack complexity is
experimentally proved in Section V-B. All of our experiments
are performed in a 32 core 2.6 GHz CPU and 64 GBmemory.
ReTrustFSM utilized Synopsys Design Compiler, Cadence
JasperGold, nuXMV [56], ABC [55], and Python 3.8 for the
experiments.

To implement ReTrustFSM, for lockedFSM states (states
whose encoding is determined and calculated by the LFSR),
we re-used the static (existing) encoding as the target state
encoding. So, the explicit external secrecies are defined in
a way that the correct calculations lead to the exact static
(previously assigned) encoding for those specific states.
Please note that it can be easily swapped with another state,
making sure that the sequential ordering does not give any
clue to the adversary for revealing the correct encoding.
Since ReTrustFSM inserts additional (three) states for the
encFSM part, it might be possible that we need to extend
the state encoding size by at least +1. For instance, the
RISCV benchmark has already 264 different states, mean-
ing that with binary encoding, it needs an 8-bit register for
state encoding values. So, by adding at-least three additional
states (encFSM), it becomes 267 states that need a 9-bit
register for state encoding. In such cases, we extended the
whole encoding mapping into a larger bit size. Please note
that since all obfuscation procedure has been done at RTL,

VOLUME 11, 2023 19755

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

TABLE 2. Benchmark circuits specification and candidates per benchmark.

extending bit size can be applied easily through the RTL
representation.

B. BMC ATTACK RESULTS
In this subsection, we first experimentally validate the effec-
tiveness of Lemma 1, 2, and 3 in the candidate state selec-
tion to increase the BMC attack complexity, as discussed in
Section III-B. For the example demonstrated in Fig. 4(a),
three states, SN2 , SN3 , and SN4 , meet the Lemma 1. State
SN2 does not satisfy (i.e., not the best selection) Lemma 3
while SN4 satisfies (i.e., the best selection) Lemma 3 but not
Lemma 2. Therefore, state SN3 is the best choice for obfusca-
tion (deeper than SN2 and the best connection with datapath).
To validate this statement experimentally, we obfuscate the
FSM shown in Fig. 6(a) with ReTrustFSM for four different
cases where for the first three cases, we selected one state
from SN2 , SN3 , and SN4 as a candidate state. For the fourth
case, we selected all the states mentioned as candidates.
We perform a BMC attack on the ReTrustFSM obfuscated
designs for all four cases and report the attack results in
Table 3. The attack time is maximumwhen the candidate state
has the best cover for all three Lemmas (meeting Lemma 1
and the best options for Lemmas 2 and 3). Please note that,
though the number of unrolling is more when SN4 is selected
as a candidate state (since it is a deeper state), the less datapath
corruptibility of state SN4 helps BMC attack converge within
fewer iterations/time. Based on the above observation, for
selecting the best candidates (lockedFSM) for each bench-
mark, we start from the deepest state that satisfies Lemma 1
and go backward till we find the highest level of corruption
on the datapath. So, for all the results demonstrated in this
Section, we select one lockedFSM that meets Lemma 1, has
a high corruption on the datapath, and is deeper in the FSM.

Fig. 11 demonstrates the resiliency of ReTrustFSM
against oracle-guided BMC attack on all benchmarks of
Table 2.We utilized Cadence JasperGold as themodel-
checking engine for BMC attack [41]. A timeout margin of
seven (7) days is considered for all the attacks (marked by
the horizontal dotted red lines in Fig. 11). We varied the key
size based on Table 2 and selected candidate state based on
Lemma 1, 1, and 1. We varied the count value from 1 to

TABLE 3. Effect of candidate state on BMC attack complexity.

64 until a timeout was encountered. All the results in Fig. 11
were averaged over three different trials.

In the case of a BMC attack, breaking the ReTrustFSM
means that the BMC attack can generate a set of {dis}es
that reveals the explicit secrecy. But the implicit secrecy is
still unknown to the user because the value of input patterns
required for correct traversal of encFSM is not revealed in the
{dis}es that BMC finds. It is unknown to the adversary that
for a disi = {i1, i2, . . . , in}, what part of disi as {ic, ic+1, ic+2}
is for the clock cycles in which the FSM traversing Sobf0 →

S lfsr1 → Scnt2 → Sobf0 . Hence, to fully break ReTrustFSM,
the BMC attack needs to be followed by a process simi-
lar to the structural+functional attack so that the attacker
can construct the STG of the ReTrustFSM obfuscated cir-
cuit. In this case, the adversary can track {dis}es on the
extracted STG to find the part dedicated for the traversal of
encFSM as the implicit secrecy of the ReTrustFSM. As men-
tioned in IV-C, the complexity of structural+functional is
very high.

Assuming that the adversary can perform the structural
attack that is required for the clock cycles corresponding
to the implicit secrecy, Fig. 11 shows the JasperGold-based
BMC attack still can not effectively crack the ReTrustFSM.
Although for smaller circuits with small count values
(e.g., ≤32), the BMC attack broke the obfuscation,
we observed that the attack suffered from scalability issues
for larger count values in even small circuits and circuits
containing more flip-flops and states. For example, the attack
failed to break b05 locked with 16-bit seed and the count
value of 72, facing a sudden increase in the required num-
ber of unrolling. One can increase the key size by using

19756 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

FIGURE 11. BMC attack time (in log scale) for Varying Count Values.
Timeout is 7 days and all the attack results are averaged over three
different trials.

TABLE 4. Effect of output frequency on BMC attack complexity.

longer LFSR/counter circuitry, exponentially increasing the
resiliency against pruning-based (brute-force) attacks.

C. IMPACT OF OUTPUT FREQUENCY ON BMC ATTACK
To consider REQ4, we briefly touched on the circuit’s behav-
ior on the BMC attack complexity. In the case of SAT/
BMC-guided I/O query-based attacks, as explained in
Section II-C, the attack method generates a DIP from the
miter circuit (SATC in Fig. 1) and adds the learned I/O pair as
a constraint. The larger this constraint gets, the more difficult
it becomes for the satisfiability algorithm to converge. If the
output gets updated more frequently (without impacting the
original functionality), the constraint grows faster, requiring
more time/effort for de-obfuscation. This exciting feature
is experimentally validated in Table 4. Here we modified
(increased) the output frequency of three such benchmarks
that require a valid/done/ready signal-based handshaking to
notify the user regarding a legitimate output. We performed
BMC attack [41] on the ReTrustFSM obfuscated design of
original benchmarks and modified (more frequent output)
benchmark and reported the attack time, number of iterations,
and required unrolling depth in Table 4. While the number of
needed unrolling remained consistent, the number of itera-
tions and attack time increased in designs with more frequent
outputs for all benchmarks.

D. ML-BASED ATTACK RESULTS
We also performed ML-based SWEEP attack [52] on
all benchmarks of ReTrustFSM. However, the oracle-less
ML-based attack failed to extract any secret from
the ReTrustFSM obfuscated circuit. As discussed in
Section IV-G, the obfuscation circuitry is inserted into the
original design at the RT-level. The oracle-less ML attack
works on a re-synthesized netlist. The obfuscation circuitry
gets blended with the original design during the transfor-
mation, mapping, and optimization from RTL to gate-level
design. The keyless obfuscation component in ReTrustFSM
is based on a specific input sequence and is not dependent on
any particular gate type. In addition, the LFSR and counter
circuitry relies on no specific gate type essential for learning
by ML-based attacks [52], [60].

E. OVERHEAD ANALYSIS
Table 5 displays the implementation overhead of ReTrustFSM
in terms of area, power, performance, and testability. For
the original design, we report the actual area (um2), power
(mW), critical path delay (ns), and test coverage (%). For the
ReTrustFSM obfuscated designs, we report the overheads for
two different key sizes. As discussed previously, ReTrustFSM
obfuscation can be deployed in any SoC scenario with min-
imal impact in terms of PPA overhead. For many cases in
Table 5, we observe minor improvement in terms of delay
due to the non-determinism of optimization algorithms. For
smaller benchmarks (from Fib to b11 where the number
of gates is ≤1000), we observed a large area and power
overhead due to the gate count incurred by LFSR and counter
circuitry. However, as ReTrustFSM does not scale with the
design size, the area, and power overhead dropped <5% for
larger benchmarks. ReTrustFSM inserts additional sequential
circuitry in the original design. Therefore, regardless of the
seed size, count value, and circuit size, ReTrustFSM has
almost no impact on test coverage compared to the original
design, as demonstrated in Table 5. Please note that the
delay overhead is the timing paths’ critical delay overhead.
Adding extra states does not necessarily affect the timing
delay negatively. However, in terms of throughput, adding
extra states (obfuscation states) may affect the performance.
This is because one extra state (Sobf0) will be always part of
the FSM even after activation. It is worth mentioning that it is
possible for the design team to select the candidate in a way
that the extra state is out of the controlling of the execution
paths. In this case, the extra state will not affect stream of data,
and the throughput will be less affected. In general, for all
circuits of Table 2, we observe no more than 1% throughput
degradation as the obfuscated states added in non-critical
(data-oriented) paths.

F. CORRUPTIBILITY ANALYSIS
In Table 6, we present the output corruption, the security
metric that indicates the final confusion created by an obfus-
cation method, along with the data-path corruption. For each

VOLUME 11, 2023 19757

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

TABLE 5. PPA (Post-layout) overhead and test coverage of the ReTrustFSM obfuscated circuit.

benchmark of Table 2, we applied 2n number of input pat-
terns (i), ten different incorrect keys (k), captured the gen-
erated output from the obfuscated circuit (cobf (i, k)), and
compared with the one generated from the original cir-
cuit (corg(i)). Table 6 reports two output corruption metrics,
error rate and HD rate defined in Equ. 5 and 6. According to
Equ. 5 and 6, error rate captures the ratio of incorrect outputs
to the number of generated outputs, and HD rate rate denotes
the number of incorrect output bits.

∀i, ∃k ̸= kc : ER =
No. of {cobf (i, k) ̸= corg(i)}

Total No. of corg(i)
(5)

HD Rate =
HD(cobf (i, k), corg(i))

∥corg(i)∥
(6)

Table 6 reports the average of both output corruption met-
rics for ten different incorrect keys. It is noticeable that for
smaller circuits (Fib to b11), the error rate is 100% which
drops to around 85% for larger ones (e.g., MIPSR2K) due
to their increased size. We also noticed a similar trend for
HD rate. Table 6 also reports the percentage of data-path cir-
cuitry corrupted by ReTrustFSM obfuscated control circuitry.
To identify this corruption metric of ReTrustFSM, we uti-
lize the analyze_datapath command in the Synopsys
Design Compiler tool to extract the data-path circuitry
from the synthesized netlist. Later we use fan-in and fan-out-
based structural analysis to identify the percentage of data
path corrupted by obfuscated FSM. From Table 6 is can be
observed that ReTrustFSM can corrupt > 95% of the data-
path circuitry, except in the case of MSP430. This high data-
path corruptibility validates the efficiency of ReTrustFSM in
corrupting functionality for incorrect keys.

G. FUNCTIONAL VERIFICATION OF ReTrustFSM
To verify that the original functionality of the design is
intact after obfuscating with ReTrustFSM, we performed
a formal equivalency checking between the original RTL
and the ReTrustFSM obfuscated RTL using Synopsys

TABLE 6. Corruptibility analysis of the ReTrustFSM (Percentage).

Formality tool which uses a static path-based method
to determine if two versions of the design are functionally
equivalent. We provided the original design RTL as the
reference design and the ReTrustFSM obfuscated RTL
as the implementation design. The correct unlocking
key (seed/count pair) value was applied as a constraint to the
verification flow using set_constant command. As the
formal equivalency checking method utilize a path-based
analysis, any additional flip-flops in the implementation
design will create extra timing paths and eventually will
mismatch with respect to the reference design. The
LFSR/counter circuitry of ReTrustFSM inserts additional
flip-flops in the implementation design. Therefore,
we utilize set_dont_verify command to exclude the
added flip-flops from analysis and perform the equiva-
lency checking for the rest of the original circuitry between
the reference and implementation design. All the
ReTrustFSM obfuscated benchmarks from Table 2 passed
verification, and their functionality matched with the corre-
sponding original design.

H. COMPARISON WITH THE PRIOR ART
In Section II-D, we discussed the state-of-the-art FSM-based
obfuscation techniques, their mechanisms, vulnerabilities,
and attacks. This subsection compares the ReTrustFSM
to the prior art in performance, implementation overhead,
security, and attack complexity. HARPOON [30] and active
metering [5] were proposed as one of the very first FSM

19758 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

TABLE 7. Comparison of ReTrustFSM with the existing FSM obfuscation
methods.

obfuscation methods that not only suffer from the high area
and power overhead [33] but also vulnerable to several attacks
[28], [29], [31]. While Interlocking [32] and state deflec-
tion [33] slightly improved the area overhead, both of
these methods are still vulnerable to {structural+functional}
attack [31] and functional corruptibility guided SAT
attack [29]. JANUS [34], [35] inscribes the obfuscation states
in the original STG. However, as discussed in Section III-D,
leaving the scan chain unprotected makes the FF configura-
tion (D/T select) vulnerable to scan-based leakage attack [50].
Additionally, as explained in Section II-E, the security of
JANUS can be compromised by the invocation of I/O query-
based attacks. On the contrary, ReTrustFSM pushes the
obfuscation states deeper into the STG, which makes the pro-
posed technique resilient against the {structural+functional}
attack [31] and Fun-SAT attack [29]. Moreover, the effi-
cacy of ReTrustFSM against SAT/BMC guided algorithmic
attacks [28] is discussed in detail in Section IV-A and exper-
imentally validated in Section V-B across a wide range of
benchmarks. Additionally, the implementation and perfor-
mance overhead of ReTrustFSM is negligible, as experimen-
tally validated in Section V-E and Table 5.

VI. CONCLUSION
In this paper, we proposed ReTrustFSM, a novel, and com-
prehensive FSM obfuscation solution at the Register-Transfer
(RT) level, which not only allows the designer to have more
control and concentration on the semantics of the design, with
expanding the nature of the threat models, it also provides
robustness against a wider range of threats. ReTrustFSM is
mainly a hybrid solution of highly correlating and integrating
both explicit (key-based) and implicit (keyless) secrecy in a
cycle-accurate fashion. Using this hybrid solution has made
ReTrustFSM fully resilient against the state-of-the-art attacks
on logic locking, particularly those targeting the FSM obfus-
cation. In ReTrustFSM, we also engaged a state encoding
that is the outcome of a specific sequence of operations at
both obfuscated and original mode. Additionally, we showed
how the security complexity of the ReTrustFSM obfuscated
circuit could be estimated based on its CNF features predic-
tive of SAT complexity. We also verified the robustness of

ReTrustFSM against structural+functional attacks on obfus-
cated FSMs, oracle-less ML-based attacks , and functional
corruptibility guided SAT-based attacks. Our experimental
results further showed the robustness of ReTrustFSM against
BMC-based sequential attack while the PPA overhead is low
and testability is not affected by the locking approach.

REFERENCES

[1] B. Shakya, M. Tehranipoor, S. Bhunia, and D. Forte, ‘‘Introduction to
hardware obfuscation: Motivation, methods and evaluation,’’ in Hard-
ware Protection ThroughObfuscation. Cham, Switzerland: Springer, 2017,
pp. 3–32.

[2] M. Tehranipoor andC.Wang, Introduction toHardware Security and Trust.
Cham, Switzerland: Springer, 2011.

[3] M. Rostami, F. Koushanfar, and R. Karri, ‘‘A primer on hardware
security: Models, methods, and metrics,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, Aug. 2014.

[4] A. B. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H.Wang, and G.Wolfe, ‘‘Constraint-based water-
marking techniques for design IP protection,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 20, no. 10, pp. 1236–1252, Oct. 2001.

[5] Y. Alkabani and F. Koushanfar, ‘‘Active hardware metering for intellectual
property protection and security,’’ in Proc. USENIX Secur. Symp., 2007,
pp. 291–306.

[6] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, ‘‘Security analysis of
integrated circuit camouflaging,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2013, pp. 709–720.

[7] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, ‘‘Securing scan design
using lock and key technique,’’ in Proc. 20th IEEE Int. Symp. Defect Fault
Tolerance VLSI Syst., 2005, pp. 51–62.

[8] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor, ‘‘Advances
in logic locking: Past, present, and prospects,’’ Cryptol. ePrint Arch.,
vol. 2022, pp. 1–10, Mar. 2022.

[9] P. Subramanyan, S. Ray, and S. Malik, ‘‘Evaluating the security of logic
encryption algorithms,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur.
Trust (HOST), May 2015, pp. 137–143.

[10] J. A. Roy, F. Koushanfar, and I. L. Markov, ‘‘EPIC: Ending piracy
of integrated circuits,’’ in Proc. Design, Autom. Test Eur., Mar. 2008,
pp. 1069–1074.

[11] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, ‘‘Security analysis of
logic obfuscation,’’ in Proc. 49th Annu. Design Autom. Conf., Jun. 2012,
pp. 83–89.

[12] M.Yasin, B.Mazumdar, O. Sinanoglu, and J. Rajendran, ‘‘Removal attacks
on logic locking and camouflaging techniques,’’ IEEE Trans. Emerg. Top-
ics Comput., vol. 8, no. 2, pp. 517–532, Apr. 2020.

[13] D. Sirone and P. Subramanyan, ‘‘Functional analysis attacks on logic
locking,’’ IEEE Trans. Inf. Forensics Security, vol. 15, pp. 2514–2527,
2020.

[14] Z. Han, M. Yasin, and J. Rajendran, ‘‘Does logic locking work with
EDA tools?’’ in 30th USENIX Secur. Symp. (USENIX Secur. 21), 2021,
pp. 1055–1072.

[15] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, ‘‘SARLock:
SAT attack resistant logic locking,’’ in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), May 2016, pp. 236–241.

[16] Y. Xie and A. Srivastava, ‘‘Mitigating SAT attack on logic lock-
ing,’’ in Proc. IACR Conf. Cryptograph. Hardw. Embedded Syst., 2016,
pp. 127–146.

[17] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, ‘‘Provably-secure logic locking: From theory to prac-
tice,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1601–1618.

[18] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
‘‘Truly stripping functionality for logic locking: A fault-based perspec-
tive,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 12, pp. 4439–4452, Dec. 2020.

[19] K. Z. Azar, H.M. Kamali, H. Homayoun, and A. Sasan, ‘‘NNgSAT: Neural
network guided SAT attack on logic locked complex structures,’’ in Proc.
39th Int. Conf. Comput.-Aided Design, Nov. 2020, pp. 1–9.

VOLUME 11, 2023 19759

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

[20] D. Sisejkovic, F. Merchant, L. M. Reimann, and R. Leupers, ‘‘Deceptive
logic locking for hardware integrity protection against machine learning
attacks,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41,
no. 6, pp. 1716–1729, Jun. 2022.

[21] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, ‘‘Full-lock:
Hard distributions of SAT instances for obfuscating circuits using fully
configurable logic and routing blocks,’’ in Proc. 56th Annu. Design Autom.
Conf., Jun. 2019, p. 89.

[22] J. Sweeney, M. J. H. Heule, and L. Pileggi, ‘‘Modeling techniques for
logic locking,’’ in Proc. 39th Int. Conf. Comput.-Aided Design, Nov. 2020,
pp. 1–9.

[23] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, ‘‘InterLock:
An intercorrelated logic and routing locking,’’ in Proc. 39th Int. Conf.
Comput.-Aided Design, Nov. 2020, pp. 1–9.

[24] K. Z. Azar, H.M. Kamali, H. Homayoun, andA. Sasan, ‘‘SMT attack: Next
generation attack on obfuscated circuits with capabilities and performance
beyond the SAT attacks,’’ IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 10, pp. 97–122, Nov. 2018.

[25] N. G. Jayasankaran, A. S. Borbon, A. Abuellil, E. Sanchez-Sinencio, J. Hu,
and J. Rajendran, ‘‘Breaking analog locking techniques via satisfiabil-
ity modulo theories,’’ in Proc. IEEE Int. Test Conf. (ITC), Nov. 2019,
pp. 1–10.

[26] Y. Xie and A. Srivastava, ‘‘Delay locking: Security enhancement of logic
locking against IC counterfeiting and overproduction,’’ in Proc. 54th Annu.
Design Autom. Conf., Jun. 2017, pp. 1–9.

[27] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, ‘‘Timing-
Camouflage: Improving circuit security against counterfeiting by uncon-
ventional timing,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 91–96.

[28] S. Roshanisefat, H. M. Kamali, K. Z. Azar, S. M. P. Dinakarrao, N. Karimi,
H. Homayoun, and A. Sasan, ‘‘DFSSD: Deep faults and shallow state dual-
ity, a provably strong obfuscation solution for circuits with restricted access
to scan chain,’’ in Proc. IEEE 38th VLSI Test Symp. (VTS), Apr. 2020,
pp. 1–6.

[29] Y. Hu, Y. Zhang, K. Yang, D. Chen, P. A. Beerel, and P. Nuzzo, ‘‘Fun-
SAT: Functional corruptibility-guided SAT-based attack on sequential
logic encryption,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust
(HOST), Dec. 2021, pp. 1–11.

[30] R. S. Chakraborty and S. Bhunia, ‘‘HARPOON: An obfuscation-based
SoC design methodology for hardware protection,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 28, no. 10, pp. 1493–1502,
Oct. 2009.

[31] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier,
and C. Paar, ‘‘On the difficulty of FSM-based hardware obfuscation,’’
IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 15, pp. 293–330,
Aug. 2018.

[32] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall, ‘‘Inter-
locking obfuscation for anti-tamper hardware,’’ in Proc. 8th Annu. Cyber
Secur. Inf. Intell. Res. Workshop, Jan. 2013, pp. 1–8.

[33] J. Dofe and Q. Yu, ‘‘Novel dynamic state-deflection method for gate-level
design obfuscation,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 2, pp. 273–285, Feb. 2018.

[34] L. Li, S. Ni, and A. Orailoglu, ‘‘JANUS: Boosting logic obfuscation scope
through reconfigurable FSM synthesis,’’ in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), Dec. 2021, pp. 1–11.

[35] L. Li and A. Orailoglu, ‘‘JANUS-HD: Exploiting FSM sequentiality and
synthesis flexibility in logic obfuscation to thwart SAT attack while offer-
ing strong corruption,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2022, pp. 1–6.

[36] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, ‘‘LUT-
lock: A novel LUT-based logic obfuscation for FPGA-bitstream andASIC-
hardware protection,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2018, pp. 405–410.

[37] F. Koushanfar, ‘‘Active hardware metering by finite state machine obfusca-
tion,’’ in Hardware Protection Through Obfuscation, 2017, pp. 161–187.

[38] T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, ‘‘Revisit sequential logic
obfuscation: Attacks and defenses,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2017, pp. 1–4.

[39] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, ‘‘SCRAMBLE:
The state, connectivity and routing augmentation model for building logic
encryption,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2020, pp. 153–159.

[40] M. S. Rahman, R. Guo, H. M. Kamali, F. Rahman, F. Farahmandi,
M. Abdel-Moneum, and M. Tehranipoor, ‘‘O’clock: Lock the clock via
clock-gating for SoC IP protection,’’ in Proc. 59th ACM/IEEE Design
Autom. Conf., Jul. 2022, pp. 775–780.

[41] S. Roshanisefat, H. M. Kamali, H. Homayoun, and A. Sasan, ‘‘RANE:
An open-source formal de-obfuscation attack for reverse engineering of
logic encrypted circuits,’’ in Proc. Great Lakes Symp. VLSI, Jun. 2021,
pp. 221–228.

[42] K. Z. Azar, H. M. Kamali, F. Farahmandi, and M. Tehranipoor, ‘‘Warm
up before circuit de-obfuscation? An exploration through bounded-model-
checkers,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST),
Jun. 2022, pp. 1–4.

[43] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, ‘‘From
cryptography to logic locking: A survey on the architecture evolution of
secure scan chains,’’ IEEE Access, vol. 9, pp. 73133–73151, 2021.

[44] Y. Shi, C. W. Ting, B.-H. Gwee, and Y. Ren, ‘‘A highly efficient method
for extracting FSMs from flattened gate-level netlist,’’ in Proc. IEEE Int.
Symp. Circuits Syst., May 2010, pp. 2610–2613.

[45] R. Tarjan, ‘‘Depth-first search and linear graph algorithms,’’ SIAM J. Com-
put., vol. 1, no. 2, pp. 146–160, Jun. 1972.

[46] S. Takamaeda-Yamazaki, ‘‘Pyverilog: A Python-based hardware design
processing toolkit for verilog HDL,’’ in Proc. Int. Symp. Appl. Reconfig-
urable Comput., 2015, pp. 451–460.

[47] C. Dunbar and G. Qu, ‘‘Designing trusted embedded systems from finite
state machines,’’ ACM Trans. Embedded Comput. Syst., vol. 13, no. 5s,
pp. 1–20, Dec. 2014.

[48] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
‘‘AVFSM: A framework for identifying and mitigating vulnerabilities
in FSMs,’’ in Proc. 53rd Annu. Design Autom. Conf., Jun. 2016,
pp. 1–6.

[49] M. Hoffmann and C. Paar, ‘‘Stealthy opaque predicates in hard-
ware - obfuscating constant expressions at negligible overhead,’’ 2019,
arXiv:1910.00949.

[50] J. D. Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, ‘‘Are advanced
DfT structures sufficient for preventing scan-attacks?’’ in Proc. IEEE 30th
VLSI Test Symp. (VTS), Apr. 2012, pp. 246–251.

[51] S. M. Rahman, A. Nahiyan, F. Rahman, S. Fazzari, K. Plaks,
F. Farahmandi, D. Forte, and M. Tehranipoor, ‘‘Security assessment of
dynamically obfuscated scan chain against oracle-guided attacks,’’ ACM
Trans. Design Autom. Electron. Syst., vol. 26, no. 4, pp. 1–27, 2021.

[52] A. Alaql, D. Forte, and S. Bhunia, ‘‘Sweep to the secret: A constant
propagation attack on logic locking,’’ in Proc. Asian Hardw. Oriented
Secur. Trust Symp. (AsianHOST), Dec. 2019, pp. 1–6.

[53] C. Coarfa, D. Demopoulos, A. Aguirre, D. Subramanian, and M. Vardi,
‘‘Random 3-SAT: The plot thickens,’’ in Proc. Conf. Princ. Pract. Con-
straint Program., 2000, pp. 143–159.

[54] E. Nudelman, K. Leyton-Brown, H. Hoos, A. Devkar, and Y. Shoham,
‘‘Understanding random SAT: Beyond the clauses-to-variables ratio,’’ in
Proc. Int. Conf. Princ. Pract. Constraint Program., 2004, pp. 438–452.

[55] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. [Online]. Available: http://
www.eecs.berkeley.edu/~alanmi/abc/

[56] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, ‘‘The NUXMV symbolic
model checker,’’ in Proc. Int. Conf. Comput. Aided Verification, 2014,
pp. 334–342.

[57] P. Beerel, M. Georgiou, B. Hamlin, A. Malozemoff, and P. Nuzzo,
‘‘Towards a formal treatment of logic locking,’’ IACR Trans. CHES, vol. 2,
pp. 92–114, Jan. 2022.

[58] E. Masserova, D. Garg, K. Mai, L. Pileggi, V. Goyal, and B. Parno, ‘‘Logic
locking-connecting theory and practice,’’ Cryptol. ePrint Arch., vol. 2022,
pp. 1–10, Jan. 2022.

[59] N. B. Atti, G. M. Diaz–Toca, and H. Lombardi, ‘‘The Berlekamp–Massey
algorithm revisited,’’ Applicable Algebra Eng., Commun. Comput., vol. 17,
no. 1, pp. 75–82, Apr. 2006.

[60] P. Chakraborty, J. Cruz, and S. Bhunia, ‘‘SAIL: Machine learning
guided structural analysis attack on hardware obfuscation,’’ in Proc.
Asian Hardw. Oriented Secur. Trust Symp. (AsianHOST), Dec. 2018,
pp. 56–61.

[61] F. Corno, M. S. Reorda, and G. Squillero, ‘‘RT-level ITC’99 benchmarks
and first ATPG results,’’ IEEE Design Test Comput., vol. 17, no. 3,
pp. 44–53, Jul./Sep. 2000.

19760 VOLUME 11, 2023

M. S. Rahman et al.: ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

M. SAZADUR RAHMAN received the B.Sc.
degree in electrical and electronic engineering
from the Bangladesh University of Engineering
and Technology and the M.Sc. and Ph.D. degrees
from University of Florida, under the supervision
of Prof. Mark Tehranipoor. He was a design engi-
neer in different fabless semiconductor companies
for four years in industrial scale 28nm and 14nm
custom ICs. He has published one book and several
peer-reviewed publications in premier ACM/IEEE

journals and conferences, including the Design Automation Conference
(DAC), Design Automation and Test in Europe (DATE), IEEE Interna-
tional Test Conference (ITC), IEEE Hardware Oriented Security and Trust
(HOST), Elsevier Integration, and ACMTransactions on Design Automation
of Electronic Systems (TODAES). He has multiple internship experiences
at Intel Corporation, where he performed FIPS 140-3 security certification
and developed an automated threat model review tool for different adversary
models. His research interests include IP protection and authentication, logic
locking, security estimation, and CAD for security.

RUI GUO received the M.S. degree in electri-
cal and computer engineering from the Univer-
sity of Florida, Gainesville, FL, USA, in 2021,
where he is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, under supervision of Prof. Farimah
Farahmandi. His current research interests include
hardware security and trust, logic locking, and
VLSI CAD.

HADI M. KAMALI received the B.S. degree from
K. N. T. University, in 2011, the M.S. degree from
the Sharif University of Technology, in 2013, and
the Ph.D. degree from George Mason University,
in 2021, all from the Department of Electrical and
Computer Engineering. He is a Research Assis-
tant Professor with the Department of Electrical
and Computer Engineering, University of Florida.
His research interests include hardware security,
with a particular focus on exploiting IP protection

techniques, design-for-trust for VLSI circuits, and CAD frameworks for
security (design-for-security), in which he has numerous publications in
top journals and conferences, including IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,
IACR Transactions on Cryptographic Hardware and Embedded Systems
(CHES), and Design Automation Conference (DAC), with awards including
nominations/recipients of the Best Paper Award in ISVLSI’20, ICCAD’20,
ICCAD’21, IEEE DCAS 2020, and HOST 2022.

FAHIM RAHMAN received the B.S. degree
in electrical and electronic engineering from
the Bangladesh University of Engineering and
Technology, Bangladesh, the M.S. degree in elec-
trical and computer engineering from the Uni-
versity of Connecticut, USA, in 2015, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Florida, Gainesville,
FL, USA, in 2018. He is currently a Research
Assistant Professor with the Department of Elec-

trical and Computer Engineering, University of Florida. His research is
sponsored by SRC, AFOSR, AFRL, DARPA, Cisco, TI, and NIST. His
current research interests include hardware and cybersecurity and trust,
including electronic supply-chain security, CAD for security and automatic
assessment, and hardware-assisted cybersecurity. He is a member of ACM.

FARIMAH FARAHMANDI (Member, IEEE)
received the B.S. and M.S. degrees from the
Department of Electrical and Computer Engineer-
ing, University of Tehran, Iran, in 2010 and 2013,
respectively, and the Ph.D. degree from theDepart-
ment of Computer and Information Science and
Engineering, University of Florida, in 2018. She
is an Assistant Professor with the Department of
Electrical and Computer Engineering, University
of Florida. Her research has been sponsored by

SRC, AFRL, DARPA, and Cisco. Her research interests include design
automation of System-on-Chips and energy-efficient systems, formal verifi-
cation, hardware security validation, and post-silicon validation and debug.
Her research has resulted in two books, seven book chapters, and several pub-
lications in premier ACM/IEEE journals and conferences, including IEEE
TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON COMPUTER-AIDEDDESIGN

OF INTEGRATEDCIRCUITS AND SYSTEMS, Design Automation Conference (DAC),
and Design Automation and Test in Europe (DATE). She is a member of
ACM. Her research has been recognized by several awards, including IEEE
System Validation and Debug Technology Committee Student Research
Award, the Gartner Group Info-Tech Scholarship, a nomination for the
Best Paper Award in ASPDAC 2017, and the DAC Richard Newton Young
Student Fellowship. She is currently serving as the Founding Director for the
Florida Institute for Cybersecurity Research (FICS). She has served for many
technical program committees as well as organizing committees of premier
ACM and IEEE conferences.

MARK TEHRANIPOOR (Fellow, IEEE) is cur-
rently the Intel Charles E. Young Preeminence
Endowed Chair Professor of cybersecurity with
the University of Florida, where he is currently
serving as the Chair for the Department of Elec-
trical and Computer Engineering (ECE). His cur-
rent research interests include hardware security
and trust, supply chain security, the IoT security,
VLSI design, and test and reliability. He is a fellow
of ACM, a Golden Core Member of IEEE CS,

and a member of ACM SIGDA. He was a recipient of a dozen of the
Best Paper Awards and nominations, as well as the 2008 IEEE Computer
Society (CS) Meritorious Service Award, the 2012 IEEE CS Outstanding
Contribution, the 2009 NSF CAREER Award, and the 2014 AFOSR MURI
Award. He received the 2020 University of Florida Innovation of the year
as well as the Teacher/Scholar of the Year Awards. He co-founded the IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST)
and IEEE International Conference on Physical Assurance and Inspection
of Electronics (PAINE). He serves on the program committee of more than a
dozen leading conferences andworkshops. He has also served as the Program
and General Chair for a number of IEEE and ACM sponsored conferences
and workshops (HOST, ITC, DFT, D3T, DBT, NATW, and more). He served
as anAssociate Editor for IEEETRANSACTIONSONCOMPUTERS, JETTA, JOLPE,
TODAES, IEEE Design & Test Magazine, and IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS. He is currently serving as a
founding Editor-in-Cheif for Journal on Hardware and Systems Security
(HaSS).

VOLUME 11, 2023 19761

