
RE S EARCH ART I C L E

Effective grey-box testing with partial FSM models

Robert Sachtleben | Jan Peleska

Department of Mathematics and Computer
Science, University of Bremen, Bremen,
Germany

Correspondence
Robert Sachtleben, Department of
Mathematics and Computer Science, University
of Bremen, Bremen, Germany.
Email: rob_sac@uni-bremen.de

Funding information
Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Grant/Award
Number: 407708394

Summary
For partial, nondeterministic, finite state machines, a new conformance rela-
tion called strong reduction is presented. It complements other existing confor-
mance relations in the sense that the new relation is well suited for model-
based testing of systems whose inputs are enabled or disabled, depending on
the actual system state. Examples of such systems are graphical user interfaces
and systems with interfaces that can be enabled or disabled in a mechanical
way. We present a new test generation algorithm producing complete test
suites for strong reduction. The suites are executed according to the grey-box
testing paradigm: it is assumed that the state-dependent sets of enabled inputs
can be identified during test execution, while the implementation states remain
hidden, as in black-box testing. We show that this grey-box information is
exploited by the generation algorithm in such a way that the resulting best-case
test suite size is only linear in the state space size of the reference model. More-
over, examples show that this may lead to significant reductions of test suite
size in comparison to true black-box testing for strong reduction.

KEYWORDS
complete test suites, conformance testing, grey-box testing, model-based testing, partial finite state
machines

1 | INTRODUCTION

In this article, we present a new conformance relation for model-based testing against partial, nondeterministic FSM
models. This relation is called strong reduction and complements the well-known quasi-reduction [1–3] in a way that, to
our best knowledge, has been missing until today: recall that quasi-reduction allows implementations to realize arbi-
trary behaviours for inputs that are not specified in a state of the partial FSM reference model, after having run through
a given IO trace. Only for inputs that are specified in such a state of the reference model, implementations are required
to show a subset of the behaviours allowed according to the reference model. Therefore, this conformance relation is
best suited for testing against reference models that are incomplete due to lack of information about the expected
behaviour in certain situations, or where a separate reference model is used to cover the cases that have not been han-
dled in the first model.

In contrast to this, the strong reduction conformance relation presented here requires that, after having run through
an IO trace which must also be in the language of the reference model, the implementation always accepts exactly the
same inputs as the reference model and exhibits a subset of behaviours allowed according to the model. This kind of
model is suitable when dealing with systems where the inputs are enabled or disabled in a state-dependent way. Exam-
ples for this kind of systems are

• Graphical user interfaces: The buttons accessible for mouse clicks, the text fields accessible for keyboard input
and other typical input widgets (sliders, pull-down menus, etc.) may change, depending on the state of the

Received: 5 May 2021 Revised: 8 December 2021 Accepted: 10 December 2021

DOI: 10.1002/stvr.1806

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
© 2022 The Authors. Software Testing, Verification & Reliability published by John Wiley & Sons Ltd.

Softw Test Verif Reliab. 2022;32:e1806. wileyonlinelibrary.com/journal/stvr 1 of 27
https://doi.org/10.1002/stvr.1806

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-5514-7593
https://orcid.org/0000-0003-3667-9775
mailto:rob_sac@uni-bremen.de
https://doi.org/10.1002/stvr.1806
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/stvr
https://doi.org/10.1002/stvr.1806
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.1806&domain=pdf&date_stamp=2022-01-17

interface. If an input widget is not visible in a certain interface state, there is no chance to access it from the out-
side world.

• Mechanical interfaces: A typical credit card reader slot, for example, can only accommodate one card. After that, the
input of another card is disabled for mechanical reasons, until the current one has been ejected.

• Communication protocol interfaces: A communication end point (say, a socket for UDP/IP communication), which
has been closed by its owning process, can no longer be written to, since the end point no longer exists.

• UML-like state machines: When abstracting UML state machines [4] to ordinary FSMs, inputs to the FSM corre-
spond to rendering a guard condition of the UML machine true. For complex guards involving inputs, internal state
variables and outputs, however, it may be impossible to make a guard evaluate to true in a certain state, since this is
prevented by the current internal state values and the outputs. For example, an FSM input a might correspond to a
guard x2 < y with input x and output y, and y evaluates to 0 in the current state of the UML machine.

Typical systems examples where strong reduction testing is not applicable are FSM models reflecting the true behav-
iour of software components with shared variable interfaces: every input variable to the component can always be writ-
ten to, regardless whether it will be processed properly or disregarded by the component. Thus, an FSM model for this
component is always completely specified. It may be the case, however, that certain inputs in some states lead to a self
loop with null output, indicating that the software component will disregard the input in such a state.

Another situation where strong reduction does not apply is an incomplete FSM model, partially describing the
required behaviour of a software component: here, transitions for certain inputs may be missing in certain states,
because the model is not responsible for describing the expected behaviour, or because the expected behaviour is still
unknown. This is a situation where the implementation should be checked for quasi-conformance to the partial refer-
ence model; we explain this in more detail in Sections 2 and 4.

It should be noted that strong reduction cannot simply be replaced by the well-known ‘standard’ notion of reduc-
tion which only requires inclusion of the implementation’s IO language in the language of the reference model: for a
given partial, nondeterministic FSM model, reduction allows that conforming implementations disable certain inputs
that are enabled in the reference model.

We are interested in automatically generating test suites from partial, nondeterministic FSM models that are m-
complete in the sense that every implementation which is a strong reduction of the reference model will pass such a
suite, but every implementation violating strong reduction conformance will fail at least one test case of the suite, pro-
vided that the implementation has no more than m states, while the reference model has n ≤ m states. This type of ques-
tions has been investigated for the known conformance relations language equivalence, reduction, quasi-equivalence
and quasi-reduction by many authors. In Section 6, we provide a survey of these results.

Apart from being of high interest for the theory of model-based testing, complete test suites are of particular impor-
tance in the field of testing safety-critical systems, where the test strength of a suite needs to be justified. Through addi-
tional techniques such as using input equivalence classes [5,6], complete test suites can be reduced to a manageable size,
while still preserving their completeness properties, so that they are practically applicable to embedded control systems
of medium complexity, such as airbag controllers, speed monitors in trains or subcomponents of interlocking systems
[7,8].

When investigating complete suites for testing strong reduction conformance, a grey-box testing approach is promis-
ing: from the examples listed above, we see that, while the internal state of an implementation still remains hidden as in
black-box testing, the inputs enabled in the current implementation state may be revealed. In the case of software test-
ing graphical user interfaces, for example, the enabled input events can be captured by checking the visibility status1 of
each widget. When testing implementations with mechanical interfaces, the enabled interfaces can often be identified by
visible inspection which can also be automated using image evaluation techniques. Therefore, it is an interesting
research question whether the availability of state-dependent information about enabled/disabled inputs will help to
reduce the number of test cases to be performed for achieving completeness in a significant way.

The work presented in this article complements results published by Hierons [1,9], where complete testing theories
for quasi-conformance have been presented. In particular, we consider the following results as the main contributions
of this article.

1. The strong reduction conformance relation is introduced, to the best of our knowledge, for the first time. It comple-
ments the known conformance relations language equivalence, reduction, quasi-equivalence and quasi-reduction by
providing a suitable means to specify conformance to incomplete models, where state-dependent, unspecified inputs
are considered as disabled in the respective state.

1In Java, for example, every widget derived from AWT class Component has a Boolean getter method isVisible().

2 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

2. We introduce a new m-complete test case generation algorithm for checking strong reduction conformance in a
grey-box setting: the true state of the implementation is hidden as in black-box testing, but testers can evaluate
which inputs are enabled in the current state of the implementation. The algorithm is a new variant of the known
state counting method [9,10], with a refined view on reliably distinguishable states. Moreover, the algorithm has been
inspired by the H-Method of Dorofeeva et al. [11] with respect to the optimized selection strategy for distinguishing
traces. This strategy differs from the classical W, Wp-Methods [12–14], as well as from the HSI-Method presented
by Petrenko et al. [15].

3. The decrease of test suite size that can be achieved by exploiting grey-box information is shown by means of com-
plexity calculations and through concrete examples. Furthermore, we explain why grey-box testing is particularly
advantageous when testing for strong reduction, whereas it could not be applied in a strictly analogous way for
quasi-reduction testing.

The algorithm for generating complete suites for testing strong reduction conformance has been implemented in the
open source library libfsmtest, as described in Appendix A.

1.1 | Overview

Section 2 summarizes the basic notation and well-known facts about finite state machines, as far as needed for the
results presented in this article. Next, Section 3 introduces an example, which serves to motivate that one more confor-
mance relation is needed in addition to the known ones. Moreover, this example is used to calculate a test suite of non-
trivial size, using the new test generation strategy presented here. This test suite is too large to be shown verbatim in this
paper; it is available for download under https://www.mbt-benchmarks.org. Section 4 formally defines the strong reduc-
tion conformance relation presented in this article and compares it to the existing conformance relations language
equivalence, reduction and quasi-reduction.

Section 5 specifies test cases, pass relation, completeness, test oracles and assumptions for the purpose of grey-box
testing against the strong reduction conformance relation. In the remainder of this section, we present and discuss the
generation of test suites. Thus, Sections 5.5 and 5.6 introduce extended notions of deterministically reachable states and
reliable distinguishability, respectively, and provide corresponding algorithms. Then, Section 5.7 presents the main
algorithm for generating complete strong reduction conformance test suites. To illustrate the ‘mechanics’ of the test
generation algorithm, Appendix A shows a test suite derived from a small reference FSM. The appendix also explains
how to use the C++ library libfsmtest for automatically creating complete suites for testing strong reduction con-
formance. Section 5.8 discusses bounds for corner cases of the test suite size and shows how the grey-box evaluation of
enabled and disabled inputs can result in significant test suite reductions. Appendix B presents the detailed proofs of the
test suite size bounds. Section 5.9 explains why complete test generation algorithms for reduction, quasi-reduction and
strong reduction differ significantly. Section 5.10 discusses the subtle differences in r-distinguishability to be observed
when comparing algorithms for quasi-reduction and strong reduction and shows by means of examples how these dif-
ferences affect test suite size.

In Section 6, we discuss related work. Finally, Section 7 concludes and discusses future work.

2 | NOTATION AND BACKGROUND

In this section, we introduce notation, definitions and basic facts about finite state machines, as used in this article and
related publications [1–3].

In model-based testing (MBT), a system under test (SUT) is verified by means of a systematic application of inputs
to the SUT, where for each applied input the observed response is compared to the behaviours allowed by the reference
model. Depending on the underlying MBT test case generation strategy, inputs ‘of interest’ are also identified using
some kind of model analysis. Here, we assume that the SUT can be reset to its initial state at any time, for example, by
switching it off and then on again. For convenience, we write sequences of input–output (IO) pairs (x1, y1). … .(xn, yn)
as x1 … xn/y1 … yn and use x=y to denote sequences with input portion x and output portion y. Furthermore, we also
use α, β, π and τ to denote IO sequences, while ϵ denotes the empty sequence. Concatenation of sequences α and β is
denoted by α.β. For any sequence α, let Pref ðαÞ¼ fα1 j 9α2 : α¼ α1:α2g denote the set of prefixes of α. We say that α1 is
a proper prefix of α if it is a prefix of α and also shorter than α. Function Pref can be lifted to sets of sequences such that
Pref ðAÞ¼S

α � APref ðαÞ. Finally, for sets of sequences A and B, we use A.B to denote the extension of every sequence
in A with every sequence in B and define A:; to result in A.

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 3 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.mbt-benchmarks.org

A finite state machine (FSM) M ¼ðS,s,ΣI ,ΣO,hMÞ is a 5-tuple consisting of a finite set S of states, an initial state
s�S, finite sets ΣI and ΣO constituting the input and output alphabet, respectively, and a transition relation
hM⊆S�ΣI�ΣO�S. The interpretation of the fact (s1, x, y, s2)� hM is that there exists a transition in M from s1 to s2
for input x that produces output y. For s�S and x�ΣI, we write out(s, x) to denote the set {y j 9s0 : (s, x, y, s0)� hM} of
all possible outputs produced by s in response to x. We define the size of M, denoted by jMj, as the number jSj of states
it contains. The language LM(s0) of some state s0 of M denotes the set of all sequences x=y� ðΣI �ΣOÞ ∗ of IO pairs such
that M can react to x applied to s0 with outputs y. More formally, if x¼ x1…xk and y¼ y1…yk, then x=y�LMðs0Þ, if
and only if there exist states s1,… sk�S, such that

8i¼ 1,…,k : ðsi�1,xi,yi,siÞ� hM ð1Þ

The language of M itself, denoted L(M), is the language of its initial state, that is, LðMÞ¼LMðsÞ.
In some situations, we are interested in all input sequences x of a given length jxj ¼ i. To this end, the notation Σi

I is
used to denote the set of all possible input sequences of length i over alphabet ΣI. By convention, Σ0

I denotes the set {ϵ}
containing only the empty sequence.

We assume that all states s of M are reachable. This means that for any s�S�fsg, there always exist
k >0, s1,…sk�1,x¼ x1…xk and y¼ y1…yk, such that formula (1) holds with s0¼ s and sk ¼ s. The initial state s is
reached by the empty sequence ϵ. If an initial definition of M contains unreachable states, these can be identified by
means of a breadth-first-search starting at the initial state and visiting the direct successors of each state linked via hM.

An FSM M is called observable, if for each state s, input x and output y there exists at most one state s0 in S such
that (s, x, y, s0) � hM. That is, the target state reached from some state with some input can be uniquely determined
using the observed output. This property also extends to IO sequences, as the state reached by an IO sequence
α � LM(s) applied to state s, denoted by s-after-α, is again uniquely determined. In the remainder of this paper, we
assume every FSM to be observable, since there exist algorithms transforming a non-observable FSM into an observ-
able one with the same language [14, appendix II].

An input x is defined in state s if outðs,xÞ≠ ;, and the set of all inputs defined in s for M is denoted ΔM(s). An FSM
M is called completely specified or complete if and only if ΔMðsÞ¼ΣI for all states s�S. Equivalently, this means that
jout(s, x) j>0 for all s�S and x�ΣI. An FSM which is not completely specified is called partial or incomplete. As we
assume any FSM to be observable, we sometimes write ΔM(α) for an IO sequence α, instead of ΔMðs-after-αÞ. Note that
ΔMðαÞ¼ ; if α =2L(M).

FSM M is called deterministic if and only if jout(s, x)j ≤ 1 for all s � S and x � ΣI. This means that each output is
uniquely determined by the current state and the selected input.

An FSM I is called a reduction of another FSM M, if both operate on the same input and output alphabets and L
(I) ⊆ L(M) holds. Reduction is a suitable conformance relation for ensuring safety properties: L(I) ⊆ L(M) asserts that
the implementation I will never produce an IO sequence which is not in the language of M. Therefore, if the reference
model M is considered as safe, I will be safe as well. Reduction is usually considered in the context of nondeterministic
reference models [9,16,17] or if incomplete implementations [1,2] are allowed. For deterministic, completely specified
reference models M, it is easy to see that any completely specified reduction I of M must already be language-equivalent
to M: Since I is complete, it has to accept any input sequence x�Σ ∗

I . Since M is deterministic, there is exactly one out-
put sequence y fulfilling x=y�LðMÞ. Because L(I)�L(M) holds, y is the only output sequence I is allowed to produce
in reaction to x. This proves LðIÞ¼LðMÞ.

For partial nondeterministic FSMs, an additional conformance relation has been proposed by Hierons [1,3] and
Petrenko and Yevtushenko [2] which takes partiality into account2: FSM I is a quasi-reduction of M if and only if the
following properties hold for all α � L(I) \ L(M) and x � ΔM(α).

x�ΔI ðαÞ ð2Þ

fy�ΣO jα:ðx=yÞ�LðIÞg⊆ fy�ΣO jα:ðx=yÞ�LðMÞg ð3Þ

Quasi-reduction implies that the implementation I, after having run through an IO sequence α which is also con-
tained in the language of the reference model, will accept at least the inputs accepted by the reference model after α.
For all inputs x accepted by M after α, the implementation will produce a subset of the outputs possible in M. For input
sequences not accepted by M, I may produce arbitrary behaviour. Obviously, quasi-reduction implies reduction and

2The definitions given by Hierons [1,3] and Petrenko and Yevtushenko [2] slightly differ; we use here a definition which is equivalent to the most recent definition
presented by Hierons [1, definition 5].

4 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

completeness of I for the case where M is completely specified. For partial reference FSMs M, however, neither quasi-
reduction nor reduction implies the other.

3 | MOTIVATING EXAMPLE

In this section, we introduce an example of an FSM reference model, which serves to motivate the new conformance
relation defined in Section 4 and to generate test cases using the adapted and optimized state counting algorithm
described in Section 5.

The Card Reader Payment Control System (CR) is a standard device used, for example, in super markets or ticket
vending machines to handle secure authorization of payment amounts specified by electronic cash registers for vending
machines. The CR interfaces are shown in Figure 1. Interface ci allows to insert a credit card which is then moved into
the system so that it cannot be removed until the transaction has been completed. At the end of the transaction, the card
is ejected, and a sensor indicates whether it has been removed from the slot by its owner. Interface pr receives payment
requests from cash registers or vending machines. Interface pi sends authorizations for the requested funds transfers
from card holders’ bank accounts to the vendors’ accounts. Interface ts represents a touch screen interface whose sub-
interfaces (output text fields, input keypad, different kinds of buttons) change during the transaction.

The formal behavioural specification of the CR is modelled by the finite state machine CR¼
ðSCR,init,ΣCR

I ,ΣCR
O ,hCRÞ specified in Figure 2. Its input alphabet is specified in Table 1, and its output alphabet in

Table 2.
While no payment request is present (state init), the insertion of valid or invalid credit cards (ci.in.v, ci.in.

i) leads immediately to their ejection (ci.out). They have to be removed (ci.r) before the system returns to its initial
state init, where it is ready to accept the next payment request.

When a payment request arrives (pr.a, pr.A), users are requested via touch screen output ts.out.ic to insert
their credit card. The concrete payment amounts that are requested are abstracted in the input alphabet of the FSM to
large amounts (pr.A) and small amounts (pr.a), leading to states card1 and card0, respectively.

Card insertion is abstracted to FSM inputs ci.in.v for insertion of a valid credit card and ci.in.i for an inva-
lid card. Invalid cards are ejected again from the card insertion slot (ci.out), reaching state ejected0. After removal
of the card (ci.r), the CR resumes its initial state.

After a valid card has been inserted, a request to authorize the payment amount is displayed on the touch screen
(ts.out.aut) and, depending on the requested payment amount, state auth1 or auth0 is entered. Now it becomes
possible to give touch screen commands ‘authorize payment’ (ts.in.ok), or ‘abort transaction’ (ts.in.ab). A
transaction abort leads to ejection of the card and return to the initial FSM state, after the card has been removed as
described above.

After authorization of the amount, the behaviour depends on the payment amount to be authorized. (1) If it is a
large amount (state auth1), the entry of the card’s PIN number is requested (ts.out.p, reaching state PIN0). After a
valid PIN entry (ts.in.vp, entering state ejected1), the card is ejected, and an authorization message (pi.aut) is
sent to the payment institution, after the card has been removed. (2) If a small amount has been authorized (state
auth0), a nondeterministic decision is performed upon receiving input ‘authorize payment’ (ts.in.ok): either the

F I GURE 1 CR interfaces

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 5 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

card is immediately ejected, and an authorization message is sent to the payment institution, after the card has been
removed or the PIN entry is requested just as for large amounts to be paid.

In any case, the PIN number entry is abstracted to inputs ‘valid PIN’ (ts.in.vp) and ‘invalid PIN’ (ts.in.ip)
in the CR model. If an invalid PIN is entered, a second and third input is possible, represented as states PIN1 and
PIN2. While trying to enter a new PIN, it is always possible to abort the transaction (ts.in.ab). After three invalid
inputs, the card is withdrawn by the CR (ts.out.cw), and the initial state is resumed.

F I GURE 2 FSM model CR¼ðSCR,init,ΣCR
I ,ΣCR

O ,hCRÞ of the card reader payment control system

TABLE 1 Input alphabet ΣCR
I of the card reader state machine CR

Input Description

pr.A Payment request for a large amount

pr.a Payment request for a small amount

ci.in.v Valid card insertion into the reader’s slot

ci.in.i Invalid card insertion into the reader’s slot

ci.r Removal of an ejected card

ts.in.ok Authorize payment command on touch screen

ts.in.ab Abort transaction command on touch screen

ts.in.vp Entry of a valid PIN via touch screen

ts.in.ip Entry of an invalid PIN via touch screen

TABLE 2 Output alphabet ΣCR
o of the card reader state machine CR

Output Description

ts.out.ic Insert-card request on touch screen

ts.out.aut Request to authorize payment amount on touch screen

ts.out.p Request PIN entry on touch screen

ts.out.ip ‘Invalid PIN’ message with request to re-enter PIN on touch screen

ts.out.cw ‘Card withdrawn’ message on touch screen

ts.out.clr Clear touch screen

ci.out Card is ejected (remains still in the slot)

pi.aut Payment authorization message

null No output

6 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

As described above and modelled in Figure 2, the FSM describing the CR behaviour is not completely specified.
The unspecified inputs in each state can be separated into two classes.

• Ignored inputs: The unspecified input is just an abbreviation for a self-loop transition labelled by this input and out-
put symbol null, indicating ‘no output’.

• Disabled inputs: It is impossible to provide this input in the state under consideration.

Table 3 specifies the input events that are ignored or disabled in each state. For example, input ci.r is disabled in
all states s but ejected0 and ejected1, since in these s, either no card is present or the card has been moved into
the system, so that it is mechanically impossible to remove it. Similarly, it is impossible to insert a card in any state but
init, because it is impossible to insert a second card while there is already one present. On the touch screen display,
input ts.in.ok is only possible in states auth1 and auth2, because the ‘ok’ button is not displayed in the other
states and can therefore not be pressed. In contrast to these disabled events, the inputs on interface pr are just ignored
in all states but init.

4 | STRONG REDUCTION—A NEW CONFORMANCE RELATION

The example presented above—though being quite realistic and practical—shows that none of the established confor-
mance relations are suitable for an implementation I of the reference FSM CR presented in Section 3.

(A) Language equivalence is not suitable as a conformance relation, as it would require implementations to exhibit
every behaviour of the reference model. For reference model CR, these include unbounded sequences of small amount
payments without PIN request. Practical implementations of the card reader, however, would often implement the non-
deterministic decision whether to require a PIN entry for authorizing a small payment in a way which guarantees that
at least one authorization request will be made within a limited number of payments.

(B) Reduction is not suitable because it would allow for an implementation corresponding to an empty FSM just
‘executing’ the empty IO sequence, which constitutes a reduction of every FSM, if partial FSMs are allowed as it is the
case discussed here. (If only completely specified FSMs were considered, then empty FSMs would be disallowed as
implementations, because then in each state, a reaction to every input would have to be implemented.)

(C) Quasi-reduction is not suitable because it would allow implementations that accept inputs disabled by the refer-
ence model and exhibit arbitrary behaviour after these inputs. For example, an implementation could accept payment
authorizations in the initial state, without a card having been inserted, and still be a quasi-reduction of CR.

A suitable conformance relation for CR and—more generally—for reactive systems with interfaces that are enabled
or disabled in dependence of the actual state should have the following properties.

1. The implementation shall not exhibit any behaviour disallowed by the reference model. This means that the imple-
mentation must be a reduction of the reference model.

2. Additionally, states of the implementation shall not exhibit more or fewer defined inputs than corresponding states
of the reference model. That is, after having run through a given IO trace, the respective sets of enabled inputs of
the current state of the implementation and the state reached by the trace in the reference model shall be identical.

TABLE 3 State-dependent ignored and disabled inputs of the CR state machine

State Ignored inputs Disabled inputs

init ; {ci.r, ts.in.ok, ts.in.ab, ts.in.vp, ts.in.ip}

card0 {pr.a, pr.A} {ci.r, ts.in.ok, ts.in.ab, ts.in.vp, ts.in.ip}

card1 {pr.a, pr.A} {ci.r, ts.in.ok, ts.in.ab, ts.in.vp, ts.in.ip}

auth0 {pr.a, pr.A} {ci.r, ci.in.v, ci.in.i, ts.in.vp, ts.in.ip}

auth1 {pr.a, pr.A} {ci.r, ci.in.v, ci.in.i, ts.in.vp, ts.in.ip}

ejected0 {pr.a, pr.A} {ci.in.v, ci.in.i, ts.in.ok, ts.in.ab, ts.in.vp, ts.in.ip}

ejected1 {pr.a, pr.A} {ci.in.v, ci.in.i, ts.in.ok, ts.in.ab, ts.in.vp, ts.in.ip}

PIN0 {pr.a, pr.A} {ci.r, ci.in.v, ci.in.i, ts.in.ok}

PIN1 {pr.a, pr.A} {ci.r, ci.in.v, ci.in.i, ts.in.ok}

PIN2 {pr.a, pr.A} {ci.r, ci.in.v, ci.in.i, ts.in.ok}

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 7 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

These considerations lead to the following new definition, which expresses properties 1 and 2 as conditions (4)
and (5), respectively:

Definition 1. FSM I is a strong reduction of M, denoted I≼srM, if the following holds:

LðIÞ⊆LðMÞ ð4Þ

^ 8α�LðIÞ :ΔI ðαÞ¼ΔMðαÞ ð5Þ

It should be emphasized that all the conformance relations discussed above have their specific applications, so there
is no ‘best’ relation rendering the others superfluous: (A) Language equivalence is typically used when no degrees of
freedom should be left for the implementation, that is, when exactly the specified behaviour should be implemented,
neither more nor less. (B) Reduction is typically used to verify that a detailed implementation model still satisfies the
safety properties of a reference model. This means that the requirement ‘the implementation shall be a reduction of M’ is
never used as the only requirement for the system to be built but as a safety-related additional postulate. (C) Quasi-
reduction is the conformance relation to be chosen when dealing with incomplete specification models. The absence of
an input in a certain state has the meaning ‘we do not know what happens here, since this will be determined (later) in
another partial reference model’. (D) Strong reduction is chosen if the reference model is partial because certain inputs
cannot happen in certain situations. Typically, this occurs in complex user interfaces, where certain buttons to be
pressed only occur in specific system states. Also, as exemplified above, inputs may be impossible due to mechanical
reasons.

In the remainder of this paper, let FSM M represent the reference model to test against and assume that the SUT
behaves like an unknown member I of the fault domainFðmÞ, which is the set of all observable FSMs of size at most
equal to some fixed m ≥ jMj.

5 | A MODIFIED STATE COUNTING STRATEGY FOR STRONG REDUCTION TESTS

5.1 | Overview

In this section, we will elaborate a novel strategy which is optimized for testing against the strong reduction confor-
mance relation. It will turn out that this—while still being complete—leads to significantly fewer test cases, compared
to test suites created using conventional reduction testing strategies (typically for completely specified FSMs). The new
strategy is a substantial adaptation of the well-known state counting methods investigated, for example, by Petrenko
et al. [10] and Hierons [9]. These strategies generate test suites by extending a state cover of M by traversal sets and then
extending the resulting sequences by characterization sets designed to test whether sequences that reach reliably distin-
guishable states in M also reach distinct states in I. We adapt this strategy by modifying the definitions of deterministic
reachability and reliable distinguishability in the context of partial FSMs. Moreover, we reduce the number of times
that characterization sets have to be applied: this is achieved by checking on-the-fly during test generation, whether the
test suite created so far already contains a suitable distinguishing sequence for the actual state pair under consideration.
This technique is an adaptation of the one introduced for the H-Method [11] used in testing for (quasi-)equivalence
between FSMs.

5.2 | Test cases and pass relation

To simplify the presentation, we consider here test suites T ⊆Σ ∗
I consisting of input sequences only. Note that the strat-

egy presented here can easily be adapted to produce so called adaptive test cases as described by Petrenko and Yevtu-
shenko [17], which are acyclic FSMs that have at most one input in each state, allowing the choice of inputs to apply in
testing to depend on previously observed outputs.

We say that I passes a test case x�T if for all prefixes x1 �Pref ðxÞ and IO sequences x1=y1 �LðIÞ, it holds that
x1=y1 �LðMÞ and ΔI ðx1=y1Þ¼ΔMðx1=y1Þ. That is, I passes x if it produces only responses to x and its prefixes also
produced by the reference model and also each state visited along the application of x exhibits the same set of defined
inputs as the corresponding state of the reference model. Here, it is necessary to explicitly consider all prefixes, as x
may not be fully applicable in I even if I is a strong reduction of M. Note also that if I passes x, then I also passes all
prefixes of x. We say that I passes T if I passes all x�T .

8 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5.3 | Complete test suites

Black-box or grey-box tests do not allow for an inspection of all internal aspects (e.g., states) of the SUT during a test
execution. Therefore, it is not possible to guarantee that a test suite will reveal every conformance violation of every
implementation without imposing additional hypotheses. The latter are usually specified by means of a fault domain F
which consists of a set of FSMs that may or may not conform to the reference model [3]. It is then assumed that the true
behaviour of the SUT is equivalent to one FSM model I contained in the fault domain.

A test suite T is sound with respect to a given reference model M, conformance relation ≤ and fault domain F , if
every SUT whose behaviour is equivalent to some FSM I �F conforming toM (i.e., I ≤M) passes every test in T. A test
suite T is exhaustive with respect to M, ≤ and F , if every SUT whose behaviour is equivalent to some FSM I �F not
conforming to M (i.e., I≰M) fails at least one test in T. A test suite T is complete with respect to M, ≤ and F , if it is
both sound and exhaustive.

In this article, we consider the so-called m-completeness which denotes completeness with respect to the fault domain
FðΣI ,ΣO,mÞ of all state machines over the same input alphabet ΣI and output alphabet ΣO as the reference model, and
with at most m states. The impact of value m on test suite size is described in Section 5.8. In the following, we will
abbreviate FðΣI ,ΣO,mÞ to FðmÞ, as ΣI and ΣO are uniquely determined by the reference model.

5.4 | Test oracles and assumptions

For practical testing, we adopt the usual fairness assumption (sometimes called complete testing assumption) [9]: we assume
the existence of a known constant k � N, such that a nondeterministic SUT will exhibit every possible behaviour in
response to input sequence x, if x is executed at least k times against the SUT. Thus, we apply the entire test suite k times.

For the grey-box testing approach followed in this article, we assume that the set ΔI(s0) of inputs accepted by the
SUT in each state s0 may be observed in addition to the SUT outputs. The actual states s0 themselves, however, cannot
be observed during a test case execution.

As a test oracle,3 we execute the reference FSM in back-to-back test fashion with the SUT as follows. (1) Every test
case x¼ x1…xk �T is exercised on the SUT and on the reference model, both starting in their initial state. The test step
number i� {1,… , k} (this is the number of the next input xi to be passed to the SUT) is initialized by 1. (2) Before pass-
ing another input to the SUT, we check whether the set ΔI(s0) of inputs accepted by the SUT in its actual state equals
the set ΔM(s) of inputs to be accepted according to the reference model M. If ΔI(s0)≠ΔM(s), the test case execution
stops with verdict FAIL. (3) If the check (2) does not result in a failure, we pass the actual input value xi of the current
test step i to the SUT and observe its reaction y. Then we check whether output y is correct according to M, that is,
whether y� out(s, xi) holds. If this is not the case, the test case execution stops after Step i with verdict FAIL. Otherwise,
the target state s-after-ðxi=yÞ reached by M is determined and again denoted by s. Note that this target state is uniquely
determined since M is observable. The test step number is incremented by 1, and we continue the test execution with (2).
(4) If no failure occurs before, the test case execution terminates with verdict PASS after having processed test step k.

Observe that the grey-box test assumption is quite realistic in many testing scenarios: (a) For software testing of
graphical user interfaces, the graphical elements like buttons or input text fields can be checked by the test harness with
respect to visibility. (b) Hardware interfaces like the card insertion slot from our main example in Section 3 directly
reveal whether an input is mechanically enabled or disabled. (c) The existence of protocol communication end points
like sockets can be checked using, for example, the ping service.

Note further that this grey-box test assumption is the only new assumption we adopt compared to many other
model-based testing approaches based on FSMs [2,9,11], which share our assumptions on FSMs (reachability of all
states, possibility of resetting, observability), the containment of some unknown FSM I in the fault domain representing
the behaviour of the SUT and fairness as described above. Thus, the assumptions we adopt are not overly restrictive.

5.5 | Deterministically reachable states

Analogous to the classical state counting method, we begin construction of a test suite by computing a state cover of
the reference model. Since M may be both nondeterministic and partial, an input sequence x�Σ ∗

I may reach between
zero and jMj states of M. Furthermore, x may reach fewer states in I, potentially none, than in M, even if I conforms to
M. In a state cover, we wish to consider only input sequences x�Σ ∗

I that reach exactly one state s in M, regardless of

3Recall that a test oracle is a component in the test environment which decides whether the SUT reactions conform to the reactions expected according to the reference
model.

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 9 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the outputs produced along the application of x, as this enables exploitation of the fact that every state in a strong
reduction of M reached by x, of which at least one must exist for such x, must correspond to s with respect to strong
reduction. Thus, we consider only certain input sequences in a state cover. We say that an input sequence x deterministi-
cally reaches (d-reaches) a state s�S if s is the only state reached by x in M and x is also strongly defined in M, which
requires that for any prefix x1x of x and IO sequence x1=y1 �LðMÞ input x is defined in s-after-x1=y1. That is, x d-
reaches s if x reaches exactly {s} in any strong reduction M0 of M that is created by removing transitions from M. We
say that state s is d-reachable if there exists an input sequence that d-reaches s. Note that the initial state of any machine
M is always deterministically reachable by the empty input sequence.

A state cover V ⊆Σ ∗
I of M then is a minimal set of input sequences such that for any d-reachable state s�S, set

V contains some v that d-reaches s. In particular, we require V to contain the empty input sequence ϵ, which d-reaches
s. To calculate a state cover for a possibly nondeterministic and incomplete FSM M, we modify a procedure described
by Petrenko et al. [10]: First, we delete the outputs on the transitions of M and complete the result by adding a new
state s⊥ =2S, a transition to s⊥ for each s�S and x�ΣI such that x =2ΔM(s) and a self-loop on s⊥ for all x�ΣI. Next, we
determinize this automaton using standard techniques [18]. Then, state s of M is d-reachable by any input sequence x
that reaches {s} in the determinized automaton, and thus, we finally create V by selecting for each d-reachable s�S
one such input sequence, in particular selecting ϵ for s.

Consider, for example, FSM Mex given in Figure 3 with input alphabet {a, b} and output alphabet {0, 1, 2, 3}. The
initial state of this FSM behaves nondeterministically on any given input, but state s2 can still be deterministically
reached, for example, by sequence a.b, as a is defined in the initial state, b is defined in any state reached by a and
applying b to any such state reaches s2. This can be verified using the technique described above for the calculation of a
state cover, which results in the determinized automaton given in Figure 4. In this automaton, sequence a.b reaches
{s2} and thus d-reaches s2 in Mex. The automaton also shows that neither s1 nor s3 can be d-reached, as states {s1} and
{s3} are not reachable. As a result, Vex¼fϵ,a:bg is a state cover of Mex. Finally, sequences such as a.a.b are identified
as not strongly defined in Mex, since they reach states containing s⊥ in the determinized automaton.

In the following, we will write bS0 to denote the set of all d-reachable states in some state set S0 ⊆S. For a given state
cover V of M, we assign to each s� Ŝ a unique sequence vs �V that d-reaches s. Furthermore, we write V0 to denote the
set of all responses of M to V, that is, V 0 ¼ fx=y�LðMÞjx�Vg.

F I GURE 3 Example FSM Mex. The additional state s⊥ and transitions for undefined inputs used in the reachability analysis are rendered using
dashed lines

F I GURE 4 Determinized reachability automaton for Mex, restricted to reachable states

10 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

For the CR state machine from Figure 2, such an assignment of unique d-reaching sequences can be chosen as given
in Table 4, resulting in a state cover VCR¼fvs js�SCRg. The state cover of CR contains every state, because each state
is d-reachable (therefore, dSCR¼SCR), as can be easily seen from inspection of the FSM diagram in Figure 2.

5.6 | Reliably distinguishable states

We will now introduce the first significant change of the classical state counting method: this concerns the distinguish-
ability of states. In classical state counting, it is necessary to apply at least a single input x to distinguish states s1, s2,
where x reliably distinguishes the states if the sets of outputs observed on applying x to s1 and s2 are disjoint. This dis-
tinction is reliable in the sense that it does not depend on the occurrence of a nondeterministic output. The concept of
reliable distinguishability (r-distinguishability) is then extended inductively such that s1, s2 are reliably distinguishable
by input sequences up to length (k + 1) if they can be reliable distinguished by a single input or if there exists some
input x such that for all responses y observed for both s1 and s2 to x, the states reached by applying x/y to s1 and s2 are
reliably distinguishable by input sequences up to length k. Our definition takes into account that two states are immedi-
ately distinguishable if their accepted inputs ΔM(s1), ΔM(s2) differ. This distinction is again reliable, as no nonde-
terminism is encountered. It can thus be integrated into the classical definition of reliable distinguishability, possibly
reducing the number of inputs required to distinguish states. These considerations lead to the following definition.

Definition 2. States s1 and s2 of M are r(0)-distinguishable if ΔMðs1Þ≠ΔMðs2Þ holds. States s1 and s2 of
M are r(k+1)-distinguishable for k ≥ 0, if they are r(k)-distinguishable or if there exists some
x�ΔM(s1)\ΔM(s2) such that outðs1,xÞ\outðs2,xÞ¼ ; or for all y� out(s1, x)\ out(s2, x) it holds that
s1-after-x=y and s2-after-x=y are r(k)-distinguishable. States s1 and s2 of M are r-distinguishable if there exists
some k�ℕ such that s1 and s2 are r(k)-distinguishable.

Note that this definition of r-distinguishability extends the original definition given by Hierons [9] by a new base
case of r(0)-distinguishability for states that differ in their defined inputs, as motivated above. The base case of that
original definition, r(1)-distinguishability, is retained, as the extended definition considers states r(1)-distinguishable if
they are r(0)-distinguishable or if there exists some input defined in both states for which the states generate disjoint sets
of outputs.

This definition immediately leads to the following notion of sets of input sequences whose application is sufficient to
establish r-distinguishability:

Definition 3. Let W ⊆Σ ∗
I be some set of input sequences. Then Wr(0)-distinguishes any pair of r(0)-

distinguishable states of M. Furthermore, for k ≥ 0, W r(k+1)-distinguishes states s1 and s2 of M if
W already r(k)-distinguishes them or if there exists some x�ΔM(s1)\ΔM(s2)\Pref(W) such that for all
y� out(s1, x)\ out(s2, x), there exists some W0 such that {x}.W0 ⊆Pref(W) holds and W0 r(k)-distinguishes
s1-after-x=y and s2-after-x=y.

It is trivial to see that the following properties are equivalent:

1. States s1 and s2 are r-distinguishable according to Definition 2.
2. There exists W ⊆Σ ∗

I r-distinguishing s1 and s2 according to Definition 3.

TABLE 4 Elements of a state cover of the CR state machine

State s d-reaching sequence vs

init ϵ

card0 (pr.a)

card1 (pr.A)

auth0 (pr.a).(ci.in.v)

auth1 (pr.A).(ci.in.v)

PIN0 (pr.A).(ci.in.v).(ts.in.ok)

PIN1 (pr.A).(ci.in.v).(ts.in.ok).(ts.in.ip)

PIN2 (pr.A).(ci.in.v).(ts.in.ok).(ts.in.ip).(ts.in.ip)

ejected0 (ci.in.i)

ejected1 (pr.A).(ci.in.v).(ts.in.ok).(ts.in.vp)

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 11 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

FSM Mex given in Figure 3 exhibits several distinct examples of r-distinguishability. For example, state s3 can be r
(0)-distinguished from any other state, as s3 is the only state in which input b is not defined. Furthermore, states s1 and
s2 are r(1)-distinguishable, as there exists no output produced by both states in response to b. Next, states s0 and s2 are r
(2)-distinguishable using input a, as outðs0,xÞ\outðs2,aÞ¼ f0,1g and the states reached from s0 and s2 via a/0 and a/1
are respectively r(1)-distinguishable as described above. Finally, states s0 and s1 are not r-distinguishable, as for any
input x� {a, b} both states reach s2 via x/1 and no state can be r-distinguished from itself.

R-distinguishing sets can be computed based on the inductive definition of r-distinguishing sets, as described by
Petrenko et al. [10,16] for complete FSMs, employing either sets of input sequences or adaptive tests. Function COL-

LECTRDSETS(M), described in Figure 5, provides an extension of such algorithms that also considers r(0)-
distinguishability in computing pairs of state pairs and sets of input sequences such that ({s1, s2}, W) is contained in the
return value only if s1 and s2 are r-distinguished by W in M.

To do so, the algorithm first initializes set R in line 2 by assigning to each pair of r(0)-distinguishable states the r-
distinguishing empty set W ¼;. The PðSÞ-valued auxiliary variable P contains all state pairs to which no r-
distinguishing set has been assigned already. Consequently, P is initialized in line 3 to contain all state pairs that have
not been captured in R, since they are not r(0)-distinguishable.

Thereafter, in each iteration of the loop spanning lines 5 to 17, the algorithm computes for each pair {s1, s2} � P
(initialized in line 7) the set of all inputs x defined in both states such that for all y � out(s1, x) \ out(s2, x), there exists
some Wy assigned to fs1-after-x=y,s2-after-x=yg in R, resulting in set X (line 8). If X is not empty (line 9), then an arbi-
trary x�X is selected in line 10 and an r-distinguishing set for s1 and s2 is created in line 12 by extending x with Wy for
all y� out(s1, x)\ out(s2, x) (collected in set W0 in line 11) and assigning the resulting set to {s1, s2} in R.4 Furthermore,
{s1, s2} is removed from P in line 13. If X is empty, then {s1, s2} is to be considered again in the next iteration.

The algorithm terminates returning R, if all pairs of states of M have been assigned some r-distinguishing set (in this
case, auxiliary variable P is empty), or if in some iteration no r-distinguishing set could be assigned to any element of P,
in which case the remaining pairs in P are not r-distinguishable. This latter condition is tracked by variable changed,
which is set to False at the start of each iteration (line 6) and is set to True only if P is modified in that iteration (line
14). Following from this termination criterion, if s1 and s2 are r-distinguishable in M, then there exists some r-
distinguishing W such that ({s1, s2}, W) is contained in the return value of COLLECTRDSETS(M). Note that this algo-
rithm always terminates, as P is finite and each iteration after which the algorithm does not immediately terminate must
remove at least one element of P.

The following lemma justifies the use of any W that r-distinguishes states of M reached by a pair of IO sequences to
distinguish the states of I reached by the same sequences, if no failure is uncovered by applying W:

Lemma 1. Let k �ℕ and suppose that W ⊆Σ ∗
I does r(k)-distinguish s-after-x1=y1 and s-after-x2=y2 for some

x1=y1,x2=y2 �LðMÞ\LðIÞ. Then, if I passes fx1,x2g:W , traces x1=y1 and x2=y2 reach distinct states in I.

F I GURE 5 An algorithm to compute r-distinguishing sets for all pairs of r-distinguishable states of an FSM

4The fact that this resulting set is indeed r-distinguishing s1 and s2 can be shown via induction on the number of previous iterations, using as base case the assignment of ;
to all r(0)-distinguishable pairs.

12 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Proof. Let si¼ s-after-xi=yi and ti¼ t-after-xi=yi for i� {1, 2}. We prove the desired result by induction on
k. First assume that k¼ 0. Then, as I passes fx1,x2g:W and thus in particular fx1,x2g,ΔI ðt1Þ¼
ΔMðs1Þ≠ΔMðs2Þ¼ΔI ðt2Þ and hence t1 ≠ t2.

As induction hypothesis, assume that the lemma holds for all k¼ 0,…,k0 with k0 ≥ 0.
For the induction step, let k¼ k0 þ1 and assume that s1 and s2 are not r(0)-distinguishable, as this case

would be identical to the base case. This implies that ΔMðs1Þ¼ΔMðs2Þ≠ ;, as s1 and s2 are r-distinguish-
able. Then, as W r(k)-distinguishes s1 and s2, there must exist some x�ΔM(s1)\ΔM(s2)\Pref(W) such that
for all y� out(s1, x)\ out(s2, x), there exists some W0 such that {x}.W0 ⊆Pref(W) holds and {x}.W0 does r
(k0)-distinguish s1-after-x=y and s2-after-x=y. If out(s1, x)\ out(s2, x) is empty, then t1 ≠ t2 follows from
W containing some sequence x:x0 and I passing fx1,x2g:fx:x0g, which requires out(ti, x)⊆ out(si, x) to hold
for i� {1, 2}. Thus, let y be an arbitrary element of out(s1, x)\ out(s2, x) and let s0i ¼ si-after-x=y¼
s-after-xi:x=yi:y for i� {1, 2}. By the properties of W and x, there must exist some W0 such that {x}.
W0 ⊆Pref(W) holds and W0 r(k0)-distinguishes s01 and s02. Then, by the induction hypothesis, t-after-x1:x=y1:y
and t-after-x2:x=y2:y reach distinct states in I, which implies the desired inequality t1 ≠ t2 due to I being
observable.

In the following, we will use SD ⊆PðSÞ to denote the set of maximal sets of pairwise r-distinguishable states of M.
For every s�S that is not r-distinguishable from any other state in S, SD includes a singleton set {s}. Therefore, every
state in S is contained in some element of SD.

Note here that calculating this set is identical to finding all maximal cliques in the undirected graph whose vertices
are the state of M and where two states are adjacent if and only if they are r-distinguishable. This constitutes a compu-
tationally expensive problem, as described, for example, by Tomita et al. [19]. Should this computation be unfeasible
for some large FSM, then it is also sufficient to use only a subset of SD, as long as each state of the FSM is contained in
some element of this subset. Such a reduction might delay the termination of algorithms described later.

Using Table 3, it is easy to see that in the CR state machine many pairs of states are r(0)-distinguishable due to dif-
fering defined inputs. That is, the states of the CR state machine can be partitioned into four sets based on their dis-
abled inputs:

G1 :¼finit; card0; card1g
G2 :¼fauth0; auth1g
G3 :¼fejected0; ejected1g
G4 :¼fPIN0; PIN1; PIN2g

such that for all 1 ≤ i < j ≤ 4, it holds that each pair of states si � Gi, sj � Gj is r(0)-distinguishable and hence r-
distinguished by any set of input sequences. Furthermore, state init can be r(1)-distinguished from any other state by
application of pr.a or pr.A, as it is the only state not ignoring these inputs. Neither the two card-states nor the two
auth-states are r-distinguishable, as they differ in behaviour only by the additional transition from auth0 to
ejected1 on ts.in.ok. This cannot be used to r-distinguish auth0 and auth1, as both of these states also reach
PIN0 on input ts.in.ok with the same output ts.out.p. Next, the PIN-states can be r-distinguished by one or two
applications of ts.in.ip. Finally, the ejected-states can be r(1)-distinguished via ci.r. Thus, there exist four max-
imal sets of pairwise r-distinguishable states of the CR state machine:

S00 :¼fcard0; auth0g[finitg[G3[G4

S01 :¼fcard0; auth1g[finitg[G3[G4

S10 :¼fcard1; auth0g[finitg[G3[G4

S11 :¼fcard1; auth1g[finitg[G3[G4

5.7 | Test suite generation

The test suite generation algorithm described in this section is the second significant change in comparison to the classi-
cal state counting method. By taking the information ΔM(s) about accepted events in states s into account, we can save
a substantial number of test cases.

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 13 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Throughout this section, we assume that the reference model M is represented in such a form that

8y�ΣO,s2 �S:ðs1,x,y,s2Þ =2 hM

implies that input x is disabled in state s1. Ignored events are supposed to be always present in h with self-loop transi-
tions and associated null-output. For our example from Section 3, this means that self-loop transitions labelled by pr.
a/null and pr.A/null are added in Figure 2 to all states but init. All other unhandled inputs in this diagram indi-
cate disabled inputs.

The test strategy described by Hierons [9] creates a test suite by iterative extension of sequences after each vs �V ,
using a termination criterion based on state counting. For each vs, this extension process starts with {ϵ}. In each itera-
tion, the process extends a previously considered sequence x only if there exists some y such that x=y�LMðsÞ and for
all S0 �SD, it holds that the nonempty prefixes of x=y applied to s reach states of S0 at most m�jbS0j times (recall that bS0
denotes the subset of d-reachable states from state set S0). For any s� Ŝ,x=y�LMðsÞ and S0 �SD, we say that S0 termi-
nates x=y for s and m, if the nonempty prefixes of x=y applied to s reach states of S0 exactly m�j bS0jþ1 times and no
proper prefix of x=y is terminated for s and m by any element of SD. We denote the set of all S0 �SD that terminate x=y
for s and m by termðs,x=y,mÞ. The result of the iterative extension process for some s� Ŝ can then be defined as

Trðs,mÞ :¼Pref fxj 9y : x=y�LMðsÞ^ termðs,x=y,mÞ≠ ;g

Note here that this iterative extension process always terminates, as each state s � S is contained in at least one set
S0 � SD. Thus, each extension x:x=y:y�LMðsÞ of some trace x=y visits at least one element of SD an additional time
compared to x=y. Therefore, as SD is finite, no trace can be extended infinitely without being terminated.

Continuing example Mex from Figure 3, Figure 6 shows the extension process of calculating Tr(s0, 4) such that the
maximal paths in the tree constitute the set of all x=y�LMðs0Þ that are terminated by at least one of the two maximal
sets of pairwise distinguishable states of Mex, namely, {s0, s2, s3} and {s1, s2, s3}. The resulting input projection of these
paths then constitutes Tr(s0, 4), which in this case is the set of all input sequences of length 3 or 4 over alphabet {a, b}.

Finally, the test suite is constructed by applying for each s� Ŝ all sequences in Tr(s,m) after vs and by applying r-
distinguishing sets based on the termination criterion. That is, for any x=y terminated for s and m, some Si is selected
that terminates it and then after each pair of distinct sequences x1=y1,x2=y2 �V 0 [ðfvsg:Pref ðx=yÞÞ that reach distinct

F I GURE 6 Graphical representation of the extension process for Tr(s0, 4) in Mex as a tree which merges sequences visiting the same sequence of
states in Mex. Nodes indicate reached states, while the sets given in brackets below the leaves indicate termðs0,x=yÞ for all x=y reaching these leaves

14 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

states s1, s2 in Si, some set W is selected that r-distinguishes those states, and the sequences fx1,x2g:W are added to the
test suite. Finally, all proper prefixes of the test suite are removed.

This test strategy is implemented in function GENERATETESTSUITE(M, m) detailed in Figure 7, which computes a test
suite T �Σ ∗

I for specification M and upper bound m of the size of FSMs in the fault domain FðmÞ. A result of applying
the strategy to Mex for m¼ 4 is given in Appendix A. Note that, similar to COLLECTRDSETS given in Figure 5, function
GENERATETESTSUITE contains steps that choose elements out of a given set (lines 8 and 15), without specifying how ele-
ments are chosen. Thus, implementations of these algorithms may perform arbitrary heuristics to realize these steps.
For example, the concrete implementation used in Appendix A performs a random choice in line 8 and uses pre-
computed sets in line 15, avoiding repeated time-consuming computations of new r-distinguishing sets at the risk of not
choosing elements that produce minimal test suites.

In future work, we plan to measure the impact of different concrete heuristics, for example, by adapting the heuristic
approach for deriving adaptive distinguishing test cases developed by El-Fakih et al. [20]. Furthermore, we plan to
investigate and adapt techniques for test suite minimization for nondeterministic reference models, including the proba-
bilistic strategy developed by Kushik et al. [21].

The following two lemmata establish the soundness and exhaustiveness of any test suite generated by this
strategy.

Lemma 2. Let T be a test suite generated by GENERATETESTSUITE(M, m). Then T is sound: For any
I �FðmÞ, if I≼srM holds, then I passes T.

Proof. Let x be an input sequence in T and assume that I≼srM holds but I fails x and thus T. Suppose that
x is the empty input sequence. Then the test case can only fail because ΔI ðtÞ≠ΔMðsÞ, and this contradicts
the assumption that I≼srM.

If x has positive length, then there must exist some prefix x0:a0 of x and some y0:z0 �Σ ∗
O , such that

x0:a0=y0:z0 �LðIÞ and x0=y0 �LðIÞ\LðMÞ and ΔI ðt-after-x0=y0Þ ¼ΔMðs-after-x0=y0Þ (so the test has not yet
failed), but either (1) x0:a0=y0:z0 =2LðMÞ or (2) ΔI ðt-after-x0:a0=y0:z0Þ≠ΔMðs-after-x0:a0=y0:z0Þ. Case (1) contra-
dicts the fact that I is a reduction of M, and Case (2) contradicts the fact that, as a strong reduction,
I always needs to accept exactly the same inputs as M. This completes the proof.

F I GURE 7 Algorithm generating m-complete ≼sr-conformance test suites

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 15 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Lemma 3. Let T be a test suite generated by GENERATETESTSUITE(M, m). Then T is exhaustive: For any
I �FðmÞ, if I passes T, then I≼srM holds.

Proof. Assume that I passes T though I≼srM does not hold. Consider first the special case that I≼s̸rM
because ΔI ðtÞ≠ΔMðsÞ. This means that the first violation of the strong reduction relation already occurs in
the initial state t of the implementation, without providing any input. Since the grey-box testing assumption
provides ΔI ðtÞ and the test oracle operates by comparing the SUT behaviour to the model M in back-to-
back fashion (see Section 5.4), this error will be immediately revealed, regardless of the test suite applied.
Therefore, we assume for the remainder of this proof that ΔI ðtÞ¼ΔMðsÞ, so that detection of the confor-
mance violation requires an input sequence of minimal length 1.

Let V, V0 be defined as in lines 2 and 3 of the algorithm. Then, as V contains ϵ, there must exist a mini-
mal length sequence x=y such that some s� Ŝ and vs=v0s �V 0 exist such that ΔI ðvs:x=v0s:yÞ≠ΔMðvs:x=v0s:yÞ
or vs:x=v0s:y�LðIÞ ∖LðMÞ holds. Therefore, input sequence vs:x cannot be contained in T, as I passes T, and
hence, there must exist a proper prefix x0=y0 of x=y such that ðs,x0=y0Þ�D, where D is the set of all ðs,x=yÞ
such that x=y is terminated for s� Ŝ and m, as assigned in line 6 of the algorithm. The for-loop in line 7 will
then run through one cycle where the pair ðs,x0=y0Þ is processed.

In this cycle, let Si � termðs,x0=y0,mÞ denote the set chosen in line 8 of the algorithm. Let P¼
fx00=y00 �Pref ðx0=y0Þ ∖ fϵgjs-after-x00=y00 �Sig denote the set of all nonempty prefixes of x0=y0 that reach
states of Si if applied to s. By construction, fvs=v0sg:P must reach states of Si exactly m�j bSijþ1 times and
hence jPj ¼m�j bSijþ1. Let P¼fτ1,…,τ

m�jbSi jþ1
g, where τi is a proper prefix of τj for all

1 ≤ i< j ≤m�j bSijþ1.
Next, note that I must exhibit some behaviour v=v0 �V 0 \LðIÞ for any v�V in order to pass V⊆Pref

(T). Let bSi¼fs1,…,skg, and for each si � bSi let πi�V0 \L(I) denote an arbitrary IO trace vsi=v
0
si �V 0 \LðIÞ,

and finally let VI ¼fπi ji� f1,…,kgg. Set VI then contains j bSij sequences reaching states fs1,…,skg¼bSi ⊆Si in M.
Thus, the sequences in the disjoint union of VI and fvs=v0sg:P reach states in Si exactly m+ 1 times.

Therefore, as jIj ≤m, there must exist some state of I that is reached by two IO traces α,β� VI [fvs=v0sg:P
� �

that are either distinct or contained in both operands of the union. Regarding the containment of α and β in
VI or fvs=v0sg:P, there exist three possible cases:

Both α and β in VI , that is; ðaÞ
9i< j � f1,…, j bSijg : t0-after-πi ¼ t0-after-πj

Different sets :α�VI and β� fvs=v0sg:P, that is; ðbÞ
9i� f1,…, j bSijg, j � f1,…,m�j bSijþ1g : t0-after-πi¼ t0-after-ðvs=v0sÞ:τj

Both α and β infvs=v0sg:P, that is; ðcÞ
9i< j � f1,…,m�j bSijþ1g : t0-after-ðvs=v0sÞ:τi¼ t0-after-ðvs=v0sÞ:τj

Consider next the properties of α and β in M. Let sα¼ s-after-α and sβ ¼ s-after-β. Suppose that sα≠ sβ, then these states
are r-distinguishable, as they are both contained in Si. Thus, after having executed lines 10 to 16 of the algorithm,
T contains an r-distinguishing set W for sα and sβ that is applied after {α, β} and thus, by Lemma 1, α and β must reach
distinct states in any I passing T, contradicting the assumption that they reach the same state t in I. This shows that α
and β reach the same state in M.

Next, we consider cases (a) to (c):
In case (a), α¼ πi and β¼ πj reaching the same state in M requires V to contain two distinct input

sequences reaching the same state in M, which contradicts the minimality of state covers.
In case (b), let α¼ πi and β¼ðvs=v0sÞ:τj, and note that there exists some τ0 such that x=y¼ τj :τ0 and also

jτjj ≥ 1 and hence jτ0j< jx=yj. Then, as α and β reach the same states both in M and in I, and since a failure
can be observed along τ0 applied after β and hence also after α, for τ0 it holds that si � bSi,α�V 0, and
also one of the following holds: ΔI ðα:τ0Þ≠ΔMðα:τ0Þ or α.τ0 �L(I) ∖L(M), which contradicts the minimality
of x=y.

In case (c), similarly to case (b), let α¼ðvs=v0sÞ:τi and β¼ðvs=v0sÞ:τj and note that there exists nonempty
τ0, τ00 such that τj ¼ τi:τ0 and x=y¼ τj:τ00 ¼ τi:τ0:τ00 and thus jτi:τ00j< jx=yj. Then, as ðvs=v0sÞ:τi and ðvs=v0sÞ:τi:τ0
reach the same states both in M and in I and as a failure can be observed along τ00 applied after ðvs=v0sÞ:τi:τ0
and hence also after ðvs=v0sÞ:τi, for τi.τ00 it holds that si � bSi, vs=v0s �V 0, ðvs=v0sÞ:τi:τ0 �LðIÞ\LðMÞ and also

16 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

one of the following holds: ΔI ððvs=v0sÞ:τi:τ00Þ≠ΔMððvs=v0sÞ:τi:τ00Þ or ðvs=v0sÞ:τi:τ00 �LðIÞ ∖LðMÞ, which again
contradicts the minimality of x=y.

Thus, in every case, a contradiction can be derived. Therefore, the initial assumption that I passes
T without fulfilling I≼srM cannot hold, establishing the exhaustiveness of T.

The m-completeness of test suites generated by the strategy described above then follows from Lemmas 2 and 3:

Theorem 1. Let T be a test suite generated by GENERATETESTSUITE(M, m). Then T is m-complete: For any
I �FðmÞ, I ≼ srM holds if and only if I passes T.

5.8 | Complexity considerations

In this section, a few boundary cases of the test generation algorithm specified in Figure 7 are analysed with respect to
the number of test cases to be generated by the algorithm. Throughout the section, let a¼m�n ≥ 0 denote the maximal
number of additional states that may be contained in the implementation.

5.8.1 | Deterministic, completely specified case

For this type of FSMs, testing for strong reduction is equivalent to testing for language equivalence. Asymptotically,
considering large state spaces n or large differences a¼m�n, the bound calculated in Appendix B.1, Formula (B2) is
simplified to

B¼Oðn2 � jΣI jaþ1Þ

This is the worst case bound for the W-Method already known from Chow [12] and Vasilevskii [13]. It should be noted
that, on average, the algorithm presented here produces significantly fewer test cases than the W-Method for the deter-
ministic, completely specified case, because it executes the H-Method algorithm which is known to produce significantly
fewer cases for complete test suites than the W-Method [11].

5.8.2 | Best-case test suite size reduction effect from grey-box testing

As shown in Appendix B.2, the number of test cases needed for a ≼sr-complete test suite is bounded by

n � jΣI jaþ1

if the nondeterministic reference model has d-reachable states only, and each pair of states is r(0)-distinguishable. In this
case, states can simply be distinguished by their grey-box information about enabled inputs. Then the test suite size only
depends linearly on the size n of the reference model. This leads to a significant reduction of test suite size in situations,
where many large r-distinguishing sets would be needed in absence of r(0)-distinguishability. For example, if for each
state s1 of the reference model there exists for each other state s2 some input sequence r-distinguishing s1, s2, then the
total number of traces in r-distinguishing sets applied to sequences reaching s is already proportional to the number
n of states.5 In this case, the test suite size in a black-box setting (no r(0)-distinguishability) would be proportional
to n2. This theoretical complexity result is practically confirmed by the experiments described in Section 5.10.

It should be noted, however, that in the best case for black-box testing, a single input sequence might suffice to r-
distinguish all pairs of r-distinguishable states. Then, the black-box test suite size would also grow linearly with n.

The assumed maximal difference a¼m�n influences the test suite size again exponentially. This exponential depen-
dency is inevitable, as explained by El-Fakih et al. [23].

5It is shown by the second author [22, section 4.6], for example, that the maximal cardinality of minimal characterization sets in language equivalence testing is n � 1. This
also constitutes an upper bound for the minimal combined size of r-distinguishing sets applied after some sequence, if each pair of states in the reference model is r-
distinguishable by a single input sequence.

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 17 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5.8.3 | Worst case

We now consider the worst case situation leading to the maximal number of test cases necessary to achieve complete-
ness. This occurs when the reference model is nondeterministic, the initial state is the only d-reachable state of the refer-
ence model and no two states are reliably distinguishable. This means that the reference model M is effectively
completely specified: all states exhibit the same set of defined inputs (otherwise, we would have r(0)-distinguishable
states). Moreover, it is shown in Appendix B.3 that up to

jΣI jmn

test cases are needed to prove ≼sr-completeness, which is again ‘ordinary’ reduction completeness because M is
completely specified. This result is consistent with the observation that testing all traces of length mn can detect any con-
formance violation, when applying suitable test oracles. The proof of this statement is based on the investigation of the
product FSM built from reference model M and implementation model I; see, for example, Peleska and Huang [22,
section 4.5].

Summarizing the complexity considerations presented above, we can say that the complete test generation strategy
discussed here has the same worst-case and best-case boundaries that are already known from other complete testing
methods. The grey-box approach, however, increases the number of reference models where test suite size depends only
linearly on n.

Initially, the interest in complete testing methods was mostly of a theoretical nature, and it was thought that the
large number of test cases required to prove conformance would prevent their practical application. Today, however,
the increased computation power and the possibility to execute a large number of test cases concurrently (e.g., on cloud
servers) allow to generate and execute test suites that were thought to be infeasible in former times. Moreover, the possi-
bility to create equivalence classes allows for considerable reductions of test suite sizes [6], so that systems of industrial
size and practical relevance can be tested using complete methods [7,8].

5.9 | Applicability to other conformance relations

As described in Section 4, strong reduction differs from language equivalence, reduction and quasi-reduction in the
implementations it considers to be conforming to a given specification. Furthermore, r-distinguishability for strong
reduction, as given in Definition 2, is weaker than r-distinguishability for (quasi-)reduction, as defined by Hierons [9] or
Petrenko and Yevtushenko [2]. The latter does not consider states s1, s2 to be r-distinguishable by inputs that are
defined in only either s1 or s2. Since quasi-reduction allows conforming implementation to behave arbitrarily in
response to undefined inputs, r(0)-distinguishability cannot be exploited in testing for this conformance relation.

Test suites and associated test oracles that are complete for language equivalence, reduction or quasi-reduction are
not necessarily complete for testing strong reduction. For example, oracles for language equivalence require SUT and
specification to exhibit exactly the same sets of responses to given input sequences. Obviously, this would lead to
unsound test suites for strong reduction.

If the oracle described in Section 5.4 is used instead, some test suites for language equivalence, reduction or quasi-
reduction may also be complete for strong reduction. The class of strategies generating such test suites includes the
well-known ‘brute force’ strategy based on product FSMs,6 which enumerates all input sequences of length mn and thus
generates prohibitively large test suites for non-trivial specifications. By the same adaptation of oracles, complete test
strategies for quasi-reduction such as those described by Petrenko and Yevtushenko [2] can be employed to test strong
reduction, since states that are r-distinguishable for quasi-reduction are also r-distinguishable for strong reduction.
However, as will be discussed in Section 5.10, this stronger definition of r-distinguishability can result in fewer pairs of
states being r-distinguishable, leading to larger test suites. These inefficiencies in adapting existing test strategies for
strong reduction justify the introduction of function GENERATETESTSUITE presented in Section 5.7 as a new and com-
plete test suite generation strategy for this conformance relation.

Consider next a test suite T generated by GENERATETESTSUITE for some specification M, with use of the test oracles
described in Section 5.4. This T is complete for strong reduction, but in general not complete for language equivalence,
reduction or quasi-reduction. First, T is not exhaustive for language equivalence if M is nondeterministic, as T can be
passed by implementations I �FðmÞ that only exhibit a proper subset of the language of M. Next, T is not sound for
reduction if the language of M is not empty, as FðmÞ contains FSMs I with LðIÞ¼ ;. Such I are reductions of M but do
not pass T, as their initial states do not have defined inputs, whereas the initial state of M does. Finally, T is not sound

6This strategy has been described, for example, in the lecture notes provided by Peleska and Huang [22, section 4.5].

18 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

for quasi-reduction if M contains a state s with disabled input x, as FðmÞ includes FSMs I that contain all states and
transitions of M and also some transition for state s and input x. Such I are quasi-reductions but do not pass T, as they
contain states exhibiting more defined inputs than the corresponding states in reference model M.

By using modified oracles, test suites generated by GENERATETESTSUITE can be used to test for language equivalence.
Such oracles must require the SUT to exhibit the same set of responses as the specification to any test case and also
check after each step that the defined inputs in the current states of SUT and specification coincide. This approach uses
the fact that any set W that r-distinguishes states s1, s2 must contain some input sequence x such that the responses of s1
and s2 to x differ or some shared response leads to state with differing defined inputs. Furthermore,
GENERATETESTSUITE can be used to test for reduction between complete observable FSMs, as in this case the algorithm
is essentially reduced to the classical state counting method. This also enables the use of GENERATETESTSUITE in generat-
ing test suites that are complete for quasi-reduction between an observable specification M and complete observable
implementations I �FðmÞ, as there exist techniques to complete M to some M0 such that I is a quasi-reduction of M if
and only if it is a reduction of M0. Such completion techniques are described by Hierons [3].

5.10 | Significance of r(0)-distinguishability

As discussed in the previous section, function GENERATETESTSUITE could also be implemented using r-distinguishability
as defined for quasi-reduction, considering only defined inputs. However, stronger definitions of r-distinguishability can
result in fewer pairs of states being r-distinguishable, possibly reducing the size of maximal pairwise r-distinguishable
sets. This can in turn increase the length of traces in Tr(s, m), as the termination criterion used in their construction is
based on the number of visits to states in a single pairwise r-distinguishable set.

To provide some intuition on the impact of the definition of r-distinguishability on the generated test suite, we have
computed test suites for Mex and the card reader example CR, using three different variants of r-distinguishability:

rd1 r-distinguishability as described in Definition 2
rd2 r-distinguishability as described in Definition 2, but excluding r(0)-distinguishability (still allowing s1 and s2 to be

r(1)-distinguished by some input x defined in only one of them)
rd3 r-distinguishability for (quasi-)reduction (considering only inputs defined in both s1 and s2)

Table 5 describes the number of test cases and the total number of inputs applied over all test cases for these variants
for Mex and the card reader specification CR, assuming in both cases that implementations have at most as many states
as the specification (i.e., that m= n). The increase in test suite size between rd1 and rd2 can be attributed to rd2
always requiring the application of at least one input to r-distinguish states. Variations rd1 and rd2 do not, however,
differ in the pairs of states considered r-distinguishable. This is in contrast to rd3, which no longer allows states to be r-
distinguished due to differing defined inputs. Thus, rd3 can induce smaller maximal sets of pairwise r-distinguishable
states. For CR, rd3 induces 6 such sets:

S01 :¼finit,card0g
S02 :¼finit,card1g
S03 :¼finit,auth0g
S04 :¼finit,auth1g
S05 :¼finit,PIN0,PIN1,PIN2g
S06 :¼finit,ejected0,ejected1g

TABLE 5 Test suite sizes depending on the definition of r-distinguishability

Variant Mex CR

Test cases Inputs Test cases Inputs

rd1 20 116 473 3186

rd2 25 146 1509 9984

rd3 54 365 Out of memory -

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 19 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

These are much smaller than the sets S00 to S11 computed for rd1 in Section 5.6, each of which contained 8 states.
Recall, that in CR all states are d-reachable. Thus, when using rd3, termination of traces in, for example,
Trðinit,mÞ¼Trðinit,10Þ occurs only after visiting states of Si0 exactly m�2þ1¼ 9 times for 1 ≤ i ≤ 4 or states of
S50 or S60 exactly m�3þ1¼ 8 times. This requires many more visits compared to using rd1 or rd2, where termina-
tion of traces in Tr(init, 10) occurs after visiting states of any of the four maximal pairwise r-distinguishable sets
exactly m�8þ1¼ 3 times. Furthermore, each Si0 is a proper subset of at least one of the sets S00 to S11. Therefore,
traces in Tr(init, 10) are much longer when using rd3, than they are for rd1 or rd2. For example, using rd3 requires
the cycle init, card0, auth0, PIN0, ejected0, init to be repeated 4 times, for a total of 20 transitions, until
termination occurs by reaching states of S6 exactly 8 times. In contrast, the same cycle is not completed once when
using rd1, as the first three transitions already visit states of S00 exactly 3 times. Due to this effect, the test suite for CR
and rd3 is not feasible to compute in a reasonable amount of time or space7 and is not included in Table 5.

The test suites described in Table 5 and executable implementations of all three variants are available for download
under https://www.mbt-benchmarks.org.

6 | RELATED WORK

The investigation of complete test suites derived from FSMs has a very long tradition, starting with Chow [12] and
Vasilevskii [13] where the so-called W-Method for testing language equivalence against deterministic completely speci-
fied FSMs has been presented. These original generation methods were refined with the objective to reduce test suite
sizes while preserving completeness. Today, the H-Method published by Dorofeeva et al. [11], the SPY method
described by Sim~ao et al. [24] and the SPYH-method developed by Soucha and Bogdanov [25] appear to be the most
advanced test generation methods for language equivalence testing.

At the same time, the investigation of complete test generation methods was extended to nondeterministic FSMs,
where language equivalence is of lesser importance, since implementations typically show only subsets of the behaviours
allowed by the reference model. This led to tests checking whether an implementation is a reduction of a (non-
deterministic) reference model. Important publications in this direction have been published by Petrenko and Yevtu-
shenko [16] and Hierons [9].

The utilization of fault models has originally been advocated by Petrenko et al. [26] and (using the terms validity
and unbias for exhaustiveness and soundness, respectively) by Gaudel [27]. The concept of fault models has been refined
further by Pretschner [28].

Partial FSMs have been defined and investigated to some extent quite early, initially without considering applica-
tions to testing. Gill [29, chapter 7] has used the term input restricted machine to introduce partial, deterministic FSMs.
The unavailability of certain inputs in specific states was considered to be imposed by environments that are ‘unable’ or
‘unwilling’ to provide these inputs in these situations. The notion of quasi-equivalence has also been defined by Gill
[29] for the first time. Since only deterministic machines were considered, however, quasi-reduction or comparable
terms have not been discussed. Starke [30] already acknowledged the notion of partial nondeterministic FSMs but only
interpreted it as malformed specification models, since in presence of partial machines, ‘… the system can not function
in a well-defined way’ [30, p. 146].

The practical relevance of partial FSMs was recognized in the 1990s in the context of protocol specifications and
protocol testing [31]. As reviewed by Petrenko and Yevtushenko [32], different suggestions have been made to treat
missing inputs in a given state: (1) partial FSMs can been completed by adding a self-loop for each missing input,
together with a ‘null-output’ indicating that the FSM does not provide any reaction to such an input [33,34]. This vari-
ant corresponds to ignored inputs in our classification. (2) Alternatively, a partial FSM can be completed by adding an
error state and creating a transition for every state and unspecified input to the error state, accompanied by an output
indicating the occurrence of an error. The error state responds with a self-loop and error output to any input [34].

These techniques to construct complete FSMs from partial ones were regarded as useful in the context of protocol
testing for the purpose of strong conformance testing [34], where reference models are considered to determine every
behaviour of a protocol implementation. It has been criticized by Petrenko [31], however, that the completion method
is useless in a situation where the operational environment prevents the occurrence of unspecified events. This situation
may be formally captured by modelling both the expected behaviour of the SUT and the operational environment as
state machines and building the resulting product machine, which is only partially defined as long as the environment is
not allowed to produce any input in any operation situation.

7The experiments were performed using Ubuntu 18.04 on an Intel Core i7-4700MQ processor and 16-GB RAM.

20 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.mbt-benchmarks.org

The notion of quasi-equivalence has also been discussed by Yannakakis and Lee [34], where the definition of weak
conformance has been introduced for partial deterministic FSMs: in weak conformance, the implementation machine
may exhibit any behaviour in case of a missing input.

None of the publications referenced above discuss the possibility that the target system itself disables the occurrence
of inputs. Consequently, the practicability and the advantages of a grey-box testing approach to systems with state-
dependent disabled inputs, as well as the notion of strong reduction studied in this article have not been investigated
either.

In UML and SysML [4,35], the FSM concept of inputs triggering a transition has been generalized to triggers
denoting that the transition will accept the occurrence of an (atomic or parameterized) signal, a change event indicating
that the valuation of a specified condition changes from false to true or an operation invocation. The occurrence of such
an event in a state machine state where none of the transitions have a corresponding trigger leads to the event being lost
for this state machine, unless the event is deferred to be processed in a state to be visited later. This corresponds to the
concept of ignored events discussed in this paper. There are no analogies in UML/SysML to the concepts of undefined
events and disabled events.

It is interesting to note that in the field of labelled transition systems, the well-known ioco-conformance relation [36]
is very similar to quasi-reduction for FSMs: with ioco, the implementation is allowed to exhibit any behaviour on
sequences of events that are not contained in the so-called suspension traces of the reference transition system.

In this article, we have considered several interpretations of input events that do not occur in a certain FSM state,
but we did not consider the possibility that the environment could be blocked when offering an unspecified input to an
FSM. The reason for this omission is that the simple semantics of FSMs does not consider concepts like ‘blocking’ or
‘deadlock’. These notions have been investigated in depth in the field of process algebras, in particular Communicating
Sequential Process (CSP) [37,38], where synchronous channel communications can be nondeterministically refused,
and communicating processes may offer or accept communications simultaneously on several channels. It is interesting
to note that, despite their more expressive semantics, complete testing theories also exist for these algebras as shown,
for example, by Cavalcanti and da Silva Sim~ao [39] and Peleska et al. [40].

7 | CONCLUSION AND FUTURE WORK

We have presented the new conformance relation strong reduction for testing implementations against partial, non-
deterministic, finite state machines. This relation is especially well suited for the verification of systems whose inputs
may be disabled or enabled, depending on the internal system state. This occurs frequently in the case of graphical user
interfaces or systems with interfaces that are mechanically enabled or disabled during system execution. We have
explained how the new relation complements the existing FSM-related conformance relations language equivalence,
reduction, quasi-equivalence and quasi-reduction.

A new test generation algorithm producing complete suites for verifying strong reduction conformance has been
introduced, and its completeness property has been proven. Tests are executed in a grey-box setting, where the state-
dependent enabled and disabled inputs of the implementation are revealed in each test step. This grey-box information
leads to significantly smaller test suites: complexity calculations showed that in the best case, the test suite size depends
on the reference model size only in a linear way, while the known black-box algorithms for other conformance relations
produce suites growing at least quadratically with the size of the reference model.

The test generator is available in the open source library libfsmtest.
For future work, we plan to investigate the extension of the theory presented here to timed finite state machines

(TFSM), as introduced by Bresolin et al. [41]. We expect that existing complete testing strategies for TFSM can be
extended to the conformance relation presented here, at least under certain restrictions. Moreover, we expect that the
equivalence class theory presented by Huang and Peleska [6] can be applied to reduce the test effort by creating effective
input equivalence classes for timed guard conditions used in TFSM.

ACKNOWLEDGEMENTS
The authors would like to thank Wen-ling Huang and Rob Hierons for helpful comments on initial versions of this
article.

Jan Peleska is partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
project number 407708394.

Open access funding enabled and organized by Projekt DEAL.

ORCID
Robert Sachtleben https://orcid.org/0000-0001-5514-7593
Jan Peleska https://orcid.org/0000-0003-3667-9775

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 21 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-5514-7593
https://orcid.org/0000-0001-5514-7593
https://orcid.org/0000-0003-3667-9775
https://orcid.org/0000-0003-3667-9775

REFERENCES
1. Hierons RM. FSM quasi-equivalence testing via reduction and observing absences. Science of Computer Programming. 2019;177:1–8. https://

doi.org/10.1016/j.scico.2019.03.004
2. Petrenko A, Yevtushenko N. Conformance tests as checking experiments for partial nondeterministic FSM. In Formal Approaches to Software

Testing, 5th International Workshop, FATES 2005, Edinburgh, UK, July 11, 2005, Revised Selected Papers. In: Grieskamp W, Weise C, editors.
Lecture Notes in Computer Science, vol. 3997. Springer; 2005. p. 118–33. https://doi.org/10.1007/11759744_9

3. Hierons RM. Testing from partial finite state machines without harmonised traces. IEEE Transactions on Software Engineering. 2017;43(11):
1033–43. https://doi.org/10.1109/TSE.2017.2652457

4. Object Management Group. OMG Unified Modeling Language (OMG UML), version 2.5.1, OMG; 2017.
5. Huang W, Peleska J. Complete model-based equivalence class testing. Software Tools for Technology Transfer. 2016;18(3):265–83. https://doi.

org/10.1007/s10009-014-0356-8
6. Huang W, Peleska J. Complete model-based equivalence class testing for nondeterministic systems. Formal Aspects of Computing. 2017;29(2):

335–64. https://doi.org/10.1007/s00165-016-0402-2
7. Hübner F, Huang W, Peleska J. Experimental evaluation of a novel equivalence class partition testing strategy. Software & Systems Modeling.

2019;18(1):423–43. Published online 2017.
8. Peleska J, Huang W, Hübner F. A novel approach to HW/SW integration testing of route-based interlocking system controllers. In Reliability,

Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification—First International Conference, RSSRail 2016,
Paris, France, June 28–30, 2016, Proceedings. In: Lecomte T, Pinger R, Romanovsky A, editors. Lecture Notes in Computer Science, vol. 9707.
Springer; 2016. p. 32–49. https://doi.org/10.1007/978-3-319-33951-1_3

9. Hierons RM. Testing from a nondeterministic finite state machine using adaptive state counting. IEEE Trans. Computers. 2004;53(10):1330–42.
https://doi.org/10.1109/TC.2004.85

10. Petrenko A, Yevtushenko N, Bochmann GV. Testing deterministic implementations from nondeterministic FSM specifications. In Testing of
Communicating Systems, IFIP TC6 9th International Workshop on Testing of Communicating Systems. Chapman and Hall; 1996. p. 124–41.

11. Dorofeeva R, El-Fakih K, Yevtushenko N. An improved conformance testing method. In Formal Techniques for Networked and Distributed
Systems—FORTE 2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan, October 2–5, 2005, Proceedings. In: Wang F, editor.
Lecture Notes in Computer Science, vol. 3731. Springer, 2005. p. 204–18. https://doi.org/10.1007/11562436_16

12. Chow TS. Testing software design modeled by finite-state machines. IEEE Transactions on Software Engineering. 1978; SE-4(3): 178–86.
13. Vasilevskii MP. Failure diagnosis of automata. Kibernetika (Transl.) 1973. pp. 98–108.
14. Luo G, von Bochmann G, Petrenko A. Test selection based on communicating nondeterministic finite-state machines using a generalized Wp-

method. IEEE Transactions on Software Engineering. 1994;20(2):149–62. https://doi.org/10.1109/32.265636
15. Petrenko A, Yevtushenko N, Lebedev A, Das A. Nondeterministic state machines in protocol conformance testing. In Protocol Test Systems,

VI, Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test Systems, Pau, France, 28–30 September, 1993. In:
Rafiq O (ed.)., IFIP Transactions, vol. C-19. North-Holland; 1993. p. 363–78.

16. Petrenko A, Yevtushenko N. 2011. Adaptive testing of deterministic implementations specified by nondeterministic FSMs. In Testing Software
and Systems, Lecture Notes in Computer Science Springer: Berlin, Heidelberg; p. 162–78.

17. Petrenko A, Yevtushenko N. Adaptive testing of nondeterministic systems with FSM. In 15th International IEEE Symposium on High-Assurance
Systems Engineering, HASE 2014, Miami Beach, FL, USA, January 9–11, 2014. IEEE Computer Society; 2014. p. 224–8. https://doi.org/10.
1109/HASE.2014.39

18. Hopcroft JE, Ullman JD. Introduction to Automata Theory, Languages and Computation. Addison-Wesley: Reading, Mass; 1979.
19. Tomita E, Tanaka A, Takahashi H. The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret-

ical Computer Science. 2006;363(1):28–42. Computing and Combinatorics.
20. El-Fakih K, Yevtushenko N, Saleh A. Incremental and heuristic approaches for deriving adaptive distinguishing test cases for non-deterministic

finite-state machines. The Computer Journal. 2019;62(5):757–68. https://doi.org/10.1093/comjnl/bxy086
21. Kushik N, Yevtushenko N, L�opez J. Testing against non-deterministic FSMs: a probabilistic approach for test suite minimization. In IFIP Inter-

national Conference on Testing Software and Systems. Springer; 2021; to appear.
22. Peleska J, Huang W. Test Automation—Foundations and Applications of Model-Based Testing. University of Bremen, 2017. Lecture notes,

available under http://www.informatik.uni-bremen.de/agbs/jp/papers/testautomation-huang-peleska.pdf
23. El-Fakih K, Dorofeeva R, Yevtushenko N, von Bochmann G. FSM-based testing from user defined faults adapted to incremental and mutation

testing. Programming and Computer Software. 2012;38(4):201–9. https://doi.org/10.1134/S0361768812040019
24. Sim~ao A, Petrenko A, Yevtushenko N. On reducing test length for FSMs with extra states. Software Testing, Verification and Reliability. 2012;

22(6):435–54. https://doi.org/10.1002/stvr.452
25. Soucha M, Bogdanov K. SPYH-method: an improvement in testing of finite-state machines. In 2018 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), 2018. p. 194–203.
26. Petrenko A, Yevtushenko N, Bochmann G. 1996. Fault models for testing in context. In Formal Description Techniques IX—Theory, Applica-

tion and Tools, Gotzhein R, Bredereke J, editors. Chapman&Hall; p. 163–77.
27. Gaudel M-C. 1995. Testing can be formal, too. In: Tapsoft, Mosses PD, Nielsen M, Schwartzbach MI, editors. Lecture Notes in Computer Sci-

ence, vol. 915 Springer; p. 82–96.
28. Pretschner A. 2015. Defect-based testing. In Dependable Software Systems Engineering. In: Irlbeck M, Peled DA, Pretschner A, editors. NATO

Science for Peace and Security Series, D: Information and Communication Security, vol. 40 IOS Press; p. 224–45. https://doi.org/10.3233/978-1-
61499-495-4-224

29. Gill A. Introduction to the Theory of Finite-State Machines. McGraw-Hill: New York, 1962.
30. Starke PH. Abstract Automata. Elsevier: North-Holland, Amsterdam, 1972.
31. Petrenko A. Checking experiments with protocol machines. In Protocol Test Systems, IV, Proceedings of the IFIP TC6/WG6.1 Fourth Interna-

tional Workshop on Protocol Test Systems, Leidschendam, The Netherlands, 15–17 October 1991. In: Kroon J, Heijink RJ, Brinksma E, editors.
IFIP Transactions, vol. C-3. North-Holland, 1991. p. 83–94.

32. Petrenko A, Yevtushenko N. Testing from partial deterministic FSM specifications. IEEE Transactions on Computers. 2005;54(9):1154–65.
https://doi.org/10.1109/TC.2005.152

22 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1016/j.scico.2019.03.004
https://doi.org/10.1007/11759744_9
https://doi.org/10.1109/TSE.2017.2652457
https://doi.org/10.1007/s10009-014-0356-8
https://doi.org/10.1007/s10009-014-0356-8
https://doi.org/10.1007/s00165-016-0402-2
https://doi.org/10.1007/978-3-319-33951-1_3
https://doi.org/10.1109/TC.2004.85
https://doi.org/10.1007/11562436_16
https://doi.org/10.1109/32.265636
https://doi.org/10.1109/HASE.2014.39
https://doi.org/10.1109/HASE.2014.39
https://doi.org/10.1093/comjnl/bxy086
http://www.informatik.uni-bremen.de/agbs/jp/papers/testautomation-huang-peleska.pdf
https://doi.org/10.1134/S0361768812040019
https://doi.org/10.1002/stvr.452
https://doi.org/10.3233/978-1-61499-495-4-224
https://doi.org/10.3233/978-1-61499-495-4-224
https://doi.org/10.1109/TC.2005.152

33. Sidhu DP, Leung T-K. Formal methods for protocol testing: a detailed study. IEEE Transactions on Software Engineering. 1989;15(4):413–26.
https://doi.org/10.1109/32.16602

34. Yannakakis M, Lee D. Testing finite state machines: fault detection. Journal of Computer and System Sciences. 1995;50(2):209–27. https://doi.
org/10.1006/jcss.1995.1019

35. Object Management Group. OMG Systems Modeling Language (OMG SysML), Version 1.6, Object Management Group, 2019. http://www.
omg.org/spec/SysML/1.4

36. Tretmans J. 2008. Model based testing with labelled transition systems. In Formal Methods and Testing, Hierons RM, Bowen JP, Harman M,
editors. Lecture Notes in Computer Science, vol. 4949 Springer; pp. 1–38.

37. Hoare CAR. Communicating Sequential Processes. Prentice-Hall, Inc.: Upper Saddle River, NJ, USA; 1985.
38. Roscoe AW. The Theory and Practice of Concurrency. Prentice Hall PTR: Upper Saddle River, NJ, USA; 1997.
39. Cavalcanti A, da Silva Sim~ao A. Fault-based testing for refinement in CSP. In Testing Software and Systems—29th IFIP WG 6.1 International

Conference, ICTSS 2017, St. Petersburg, Russia, October 9–11, 2017, Proceedings, Yevtushenko N, Cavalli AR, Yenigün H, editors. Lecture
Notes in Computer Science, vol. 10533. Springer; 2017. p. 21–37. https://doi.org/10.1007/978-3-319-67549-7_2

40. Peleska J, Huang W, Cavalcanti A. Finite complete suites for CSP refinement testing. Science of Computer Programming. 2019;179:1–23.
41. Bresolin D, El-Fakih K, Villa T, Yevtushenko N. Equivalence checking and intersection of deterministic timed finite state machines, 2021.

https://arxiv.org/abs/2103.04868

How to cite this article: Sachtleben R, Peleska J. Effective grey-box testing with partial FSM models. Softw Test
Verif Reliab. 2022;32(2):e1806. https://doi.org/10.1002/stvr.1806

APPENDIX A: A 4-COMPLETE TEST SUITE FOR THE EXAMPLE FSM

The following 20 test cases, containing a total of 116 inputs, constitute a possible result of applying
GENERATETESTSUITE(MEX, 4). Recall that Mex has been defined in Section 5.5.

f a:a:a:a:b, a:a:a:b:b, a:a:b:a:b, a:a:b:b:b, a:b:a:a:a:a:b,

a:b:a:a:b:a:b, a:b:a:b:a:a:b, a:b:a:b:b:a:b, a:b:b:a:a:a:b, a:b:b:a:b:a:b,

a:b:b:b:a:a:b, a:b:b:b:b:a:b, b:a:a:a:b, b:a:a:b:b, b:a:b:a:b,

b:a:b:b:b, b:b:a:a:b, b:b:a:b:b, b:b:b:a:b, b:b:b:b:bg

This test suite can be obtained using the libfsmtest library,8 an open source project programmed in C++. The
library contains fundamental algorithms for processing Mealy Machine FSMs and a variety of model-based test gener-
ation algorithms, including an implementation of GENERATETESTSUITE as described in Figure 7.

After installation, the generator executable can be employed as follows:
generator -ssc -a0

Here, -ssc indicates that a test suite for strong reduction by state counting is to be computed. Next, -a0 specifies
the maximum number of additional states of FSMs in the fault domain compared to the specification FSM M. Thus, in
the above command, m is set to jMj+0. The name of the test suite to be created is specified. Finally, a path to a file
specifying M is required. The expected format of such files and further available parameters of generator are
described in the library documentation which is part of the download.

APPENDIX B: PROOF OF COMPLEXITY RESULTS

In order to calculate bounds on the number of test cases to be generated in specific situations, it is useful to ‘unroll’ the
test generation algorithm specified in Figure 7 into the representation shown in Figure B1. There, we use the notation
Pref 1ðx=yÞ to denote the set of non-empty prefixes of x=y. The cardinality is obviously jPref 1ðx=yÞj ¼ jxj. It is straight-
forward to see that the two algorithm representations are semantically equivalent. Throughout this section, we use
notation a¼m�n to denote the maximal number of additional states that may be used in the SUT.

Deterministic, completely specified case
If the reference model M is deterministic and completely specified, M can also be assumed to be minimized. Under
these assumptions, all states are d-reachable, so jV j ¼ jSj ¼ n, and Ŝ¼S. Moreover, all states are pairwise distinguish-
able, so SD¼fSg. Therefore, every step through the FSM visits a state of the only element S of SD. The termination

8Publicly available for download at https://bitbucket.org/JanPeleska/libfsmtest/src/master/.

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 23 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/32.16602
https://doi.org/10.1006/jcss.1995.1019
https://doi.org/10.1006/jcss.1995.1019
http://www.omg.org/spec/SysML/1.4
http://www.omg.org/spec/SysML/1.4
https://doi.org/10.1007/978-3-319-67549-7_2
https://arxiv.org/abs/2103.04868
https://doi.org/10.1002/stvr.1806
https://bitbucket.org/JanPeleska/libfsmtest/src/master/

F I GURE B 1 Algorithm generating m-complete ≼sr-conformance test suites—unrolled version equivalent to the algorithm in Figure 7

24 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

criterion to reach m�j bSijþ1 states of some Si�SD is simplified to
m�j bSijþ1¼m�jŜjþ1¼m�jSjþ1¼m�nþ1¼ aþ1. Thus, the definition of the sets Tr(s,m) can be re-written as

Trðs,mÞ ¼Pref fxj 9y : x=y�LMðsÞ^ termðs,x=y,mÞ≠ ;g
¼Pref fxjjxj ¼ aþ1g
¼Saþ1

i¼0 Σ
i
I

Note that for the case considered here, the sets Tr(s, m) are in fact independent of the state s.
Therefore, the set T is initialized to Tinit V :

Saþ1
i¼0 Σ

i
I in line 5 of the algorithm. In the loop of the algorithm from

line 7 to line 20, this set may be extended, but the elements initially inserted remain unchanged. In line 21, the test case
set T is finally reduced to input sequences of maximal length. From the initial assignment in line 5, just the elements
from V :Σaþ1

I remain. The cardinality of this set has the following upper bound.

jTinitj ¼ jV :Σaþ1
I j ≤ jV j � jΣaþ1

I j ¼ n � jΣI jaþ1 ðB1Þ

The set D assigned in line 6 of the algorithm is calculated for the case considered here by

D ¼fðs,x=yÞjs� Ŝ,x=y�LMðsÞ, termðs,x=y,mÞ≠ ;g
¼fðs,x=yÞjs�S,x=y�LMðsÞ, jxj ¼ aþ1g
¼fðs,x=yÞjs�S,x�Σaþ1

I ,x=y�LMðsÞg

Since M is deterministic and completely specified, there exists exactly one output sequence y for any given input
x�Σaþ1

I . Therefore, the cardinality of D is jDj ¼ jSj � jΣI jaþ1¼ n � jΣI jaþ1 and corresponds to the number of cycles per-
formed by the outer loops in lines 18 and 32 of the algorithm in Figure B1.

We will now elaborate bounds for the number of input sequences added to T in each of the loops starting in lines 7,
18 and 32.

Loop in line 7. Since M is deterministic and completely specified by assumption, each input sequence stimulates
exactly one output sequence. Therefore, jV 0j ¼ jV j ¼ n. The number of distinct pairs x1=y1 ≠ x2=y2 �V 0 is
n
2

� �¼ 1
2ðn2�nÞ. For a worst-case estimate, it is assumed that the if-condition in line 10 always evaluates to true, so that

T is extended by exactly two input sequences in line 14 (note that W contains just one element distinguishing s1, s2).
Summarizing, the loop in line 7 adds at most n2� n new elements to T.

Loop in line 18. The outer loop in line 18 is executed jDj times. Therefore, the upper bound of elements to be added
in the inner loop starting in line 20 needs to be multiplied by n � jΣIja + 1 according to the cardinality of D.

The inner for-loop starting in line 20 is executed jV 0j � jxj ¼ n � ðaþ1Þ times. In line 19, S is always chosen, since
SD¼fSg. Therefore, the if-condition in line 23 evaluates to true whenever s1≠ s2. For the worst-case upper bound, it is
assumed that this is always true and that W0 defined in line 24 never distinguishes s1 and s2. Thus, the inner loop adds
at most 2 � n � (a+ 1) elements to T. Multiplied with number of iterations of the outer loop starting in line 18, this results
in the following upper bound on the number of elements to be added to T:

n � jΣI jaþ1 �2 �n � ðaþ1Þ¼ 2 �n2 � ðaþ1Þ � jΣI jaþ1

Loop in line 32. Again, the outer loop in line 32 is executed jDj ¼ n � jΣI jaþ1 times. The if-block in lines 39–42 of the

inner loop starting in line 34 is executed at most jfvsg:Pref 1ðx=yÞj
2

� �
times. Recalling that jPref 1ðx=yÞj ¼ aþ1, that aþ1

2

� �¼
1
2 � ða2þaÞ and that two input sequences are added in line 41, this leads to an upper bound of n � jΣIja+ 1 � (a2+ a) of ele-
ments to be added to T when executing the outer loop starting in line 32.

Overall estimate. We do not have an estimate for the prefixes to be deleted from T in line 46, originating from input
sequences previously added during execution of the three loops. Therefore, we use the sum of jTinitj after removal of
prefixes plus the maximal contribution of elements in the three loops as upper bound B, that is,

B¼ n � jΣI jaþ1
� �

þ n2�n
� �þ 2 �n2 � ðaþ1Þ � jΣI jaþ1

� �
þ n � jΣI jaþ1 � ða2þaÞ
� �

¼ n2 � jΣI jaþ1 �2ðaþ1Þþn2þn � jΣI jaþ1 � ða2þaþ1Þ�n
ðB2Þ

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 25 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Best-case test suite size reduction effect from grey-box testing
Next, we consider reference FSMs M where M is nondeterministic and partial, so that all states are pairwise r(0)-
distinguishable (i.e., ΔM(s1) ≠ ΔM(s2) for all s1 ≠ s2 � S), and where all states of M are d-reachable. These properties
represent the edge case of a nondeterministic, partial model which is best-suited for reduction testing, since complete test
suites can be created with a minimal amount of cases.

Since all states are d-reachable, V ¼S. Since all states are r(0)-distinguishable, Ŝ¼S and SD¼fSg. The termination
condition to reach states of some Si�SD at m�j bSijþ1 times is simplified as m�nþ1¼ aþ1. Therefore, the sets Tr
(s,m) are again independent of s and have the value Trðs,mÞ¼Saþ1

i¼0 Σ
i
I , just as in the deterministic, completely specified

case handled above. As a consequence, the initialization of set T in line 5 of the algorithm has the same result as in the
previous case, so its initial cardinality of T after removal of prefixes is bounded again by jTinitj ≤ n � jΣIja+ 1.

So far, the same properties hold as in the deterministic case investigated above. The set D is initialized again in line 6
to D¼fðs,x=yÞjs�S,x�Σaþ1

I ,x=y�LMðsÞg. The cardinality of D, however, is generally higher than in the determinis-
tic case, because more than one x=y�LMðsÞ can exist for a given input sequence x if M is nondeterministic. It will be
shown in the subsequent analysis that this does not affect the upper bound of test cases to be added to the suite.

The cardinality of V0 may similarly be greater than that of V, since one input sequence from V may lead to different
outputs, due to nondeterminism. By assumption, however, all states are d-reachable. Therefore, for a fixed v�V , all
pairs v=y�V 0 reach the same target state vs.

As before, we will now elaborate bounds for the number of input sequences added to T in each of the loops starting
in lines 7, 18 and 32.

Loop in line 7. Suppose that the states s1, s2 assigned in lines 8 and 9 of this loop are different and, therefore, r(0)-
distinguishable by assumption. Thus, an assignment in line 14 only adds the pair fx1,x2g to T, since W is the empty set.
Since x1=y1,x2=y2 �V 0, however, these input sequences x1,x2 are already contained in the state cover V and, therefore,
also contained as prefixes in the set T initialized in line 5. That is, this loop does not add new element to T for the case
considered here.

Loop in line 18. As explained for the loop in line 7, the sets W used in the assignment to T in line 27 are always
empty, since all pairs of non-equal states are r(0)-distinguishable. Moreover, every input sequence x1 is already con-
tained in T and, therefore, does not extend this set. Now consider the input sequences x2 arising from traces
x2=y2 � fvsg:Pref 1ðx=yÞ. By construction of D, the input sequence x2 is always a non-empty prefix of x, and, therefore,
x2 �

Saþ1
i¼1 Σ

i
I . Consequently, x2 is also already contained as some prefix of an input sequence in the set T as initialized in

line 5. Summarizing, this loop also does not add any new element to T for the case considered here.
Loop in line 32. The same argument as given for the previous loop yields the fact that no new input sequences are

added to T in the third loop.
Overall estimate. As a consequence of none of the loops adding further test cases to Tinit, an upper bound for the

number of test cases to be produced in this case is given by a bound for the cardinality of Tinit, which is n � jΣIja + 1.

Worst case
The worst case size of complete test suites occurs if the reference model is nondeterministic, the initial state is the only
d-reachable one and no pair of states is reliably distinguishable (so we can consider the reference model M to be
completely specified). For this case, we have V ¼fϵg,V 0 ¼ fϵg, Ŝ¼fsg and SD¼ffsgjs�Sg (recall that SD contains
singleton sets if no pair of states is reliably distinguishable). The termination criterion termðs,x=y,mÞ≠ ; requires in
this case that in applying x=y to s

• either the initial state of M is visited m�j cfsgjþ1¼m�jfsgjþ1¼m times
• or any other state s≠ s is visited m�j cfsgjþ1¼m�j;jþ1¼mþ1 times.

Consider now the longest possible trace x=y�LMðsÞ that is not terminated. By the above criterion, this sequence
reaches s at most (m� 1) times and any of the (n� 1) other states of M at most m times, while any extension of it by a
single input must be terminated. Therefore, ðm�1Þþðn�1Þ �m¼mn�1 constitutes an upper bound on the length of
traces not terminated. The tightness of this upper bound is demonstrated by FSMs in which from each state si there
exists only a single transition, forming a single cycle s,s1,…,sn�1,s of n states. In such FSMs, a trace of length mn� 1
applied to the initial state visits each state (m� 1) times, whereas a trace of length mn visits the initial state m times and
thus terminates.

From this upper bound, it follows that for any trace x=y�LMðsÞ of length mn, one of the prefixes of x=y must be
terminated. Hence, as M is effectively completely specified, the sets Tr(s,m) are each a subset of the set of all input
sequences of length up to mn, that is, Trðs,mÞ⊆Smn

i¼0Σ
i
I . Since Ŝ¼fsg and V ¼fϵg, the initialization of T in line 5 of

the algorithm results in

26 of 27 SACHTLEBEN AND PELESKA

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

T ¼fϵg:Trðs,mÞ⊆
[mn

i¼0Σ
i
I

Removing the true prefixes from input sequences in T results in a set of cardinality jTinitj ≤ jΣmn
I j ¼ jΣI jmn. The three

loops do not extend T, because this only happens for states s1, s2 that are r-distinguishable, which is never the case for
the model M considered here. Summarizing, the total number of test cases to be executed in a complete test suite is at
most jΣIjmn.

EFFECTIVE GREY-BOX TESTING WITH PARTIAL FSM MODELS 27 of 27

 10991689, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1806, W

iley O
nline L

ibrary on [24/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	Effective grey-box testing with partial FSM models
	1 INTRODUCTION
	1.1 Overview

	2 NOTATION AND BACKGROUND
	3 MOTIVATING EXAMPLE
	4 STRONG REDUCTION-A NEW CONFORMANCE RELATION
	5 A MODIFIED STATE COUNTING STRATEGY FOR STRONG REDUCTION TESTS
	5.1 Overview
	5.2 Test cases and pass relation
	5.3 Complete test suites
	5.4 Test oracles and assumptions
	5.5 Deterministically reachable states
	5.6 Reliably distinguishable states
	5.7 Test suite generation
	5.8 Complexity considerations
	5.8.1 Deterministic, completely specified case
	5.8.2 Best-case test suite size reduction effect from grey-box testing
	5.8.3 Worst case

	5.9 Applicability to other conformance relations
	5.10 Significance of r(0)-distinguishability

	6 RELATED WORK
	7 CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	 Deterministic, completely specified case
	 Best-case test suite size reduction effect from grey-box testing
	 Worst case

