Partitioned Matching Games for International Kidney Exchange *

Márton Benedek ${ }^{1,2}$, Péter Biró ${ }^{1,2}$, Walter Kern ${ }^{3}$, Dömötör Pálvölgyi ${ }^{4}$, and Daniel Paulusma ${ }^{5}$
${ }^{1}$ KRTK, Budapest, Hungary \{peter.biro, marton.benedek\}@krtk.hu
${ }^{2}$ Corvinus University of Budapest, Budapest, Hungary
${ }^{3}$ University of Twente, Enschede, The Netherlands w.kern@utwente.nl
${ }^{4}$ MTA-ELTE Lendület, Budapest, Hungary domotorp@gmail.com
${ }^{5}$ Durham University, Durham, UK daniel.paulusma@durham.ac.uk

Abstract

We introduce partitioned matching games as a suitable model for international kidney exchange programmes, where in each round the total number of available kidney transplants needs to be distributed amongst the participating countries in a "fair" way. A partitioned matching game (N, v) is defined on a graph $G=(V, E)$ with an edge weighting w and a partition $V=V_{1} \cup \cdots \cup V_{n}$. The player set is $N=\{1, \ldots, n\}$, and player $p \in N$ owns the vertices in V_{p}. The value $v(S)$ of a coalition $S \subseteq N$ is the maximum weight of a matching in the subgraph of G induced by the vertices owned by the players in S. If $\left|V_{p}\right|=1$ for all $p \in N$, then we obtain the classical matching game. Let $c=\max \left\{\left|V_{p}\right| \mid 1 \leq p \leq n\right\}$ be the width of (N, v). We prove that checking core non-emptiness is polynomial-time solvable if $c \leq 2$ but co-NP-hard if $c \leq 3$. We do this via pinpointing a relationship with the known class of b-matching games and completing the complexity classification on testing core nonemptiness for b-matching games. With respect to our application, we prove a number of complexity results on choosing, out of possibly many optimal solutions, one that leads to a kidney transplant distribution that is as close as possible to some prescribed fair distribution.

Keywords. partitioned matching game; b-matching games; complexity classification; international kidney exchange.

1 Introduction

We consider two generalizations of a classical class of games in cooperative game theory, namely matching games, which in turn generalize the well-known class of assignment games. One of the two generalizations of matching games is the known class of b-matching games. The other one, the class of partitioned matching games, is a new class of cooperative games introduced in this paper. We show how these two generalizations are related to each other and justify the new class of cooperative games by an emerging real-world application: international kidney exchange [12|37]. Partitioned matching games implicitly played a role in international kidney exchange through the work of [723] and have recently been used as a basis for simulations in [6]. The goal of this paper is to provide a strong theoretical basis for partitioned matching games by proving a number of computational complexity results on computing core allocations and finding allocations close to prescribed "fair" (core) allocations. We start with introducing the necessary basic terminology.

[^0]

Fig. 1. An example [5] of a matching game (N, v) on a graph $G=(V, E)$, so $N=V$. Note that $v(N)=7$ and that the core of (N, v) is nonempty, e.g. the allocation $x=\left(\frac{1}{2}, \frac{3}{2}, \frac{3}{2}, 1,2, \frac{1}{2}\right)$ belongs to the core.

1.1 Basic Terminology

A (cooperative) game is a pair (N, v), where N is a set of n players (agents) and $v: 2^{N} \rightarrow \mathbb{R}$ is a value function with $v(\emptyset)=0$. A subset $S \subseteq N$ is a coalition and the set N is the grand coalition. For many natural games, it holds that $v(N) \geq v\left(S_{1}\right)+\cdots+v\left(S_{r}\right)$ for every possible partition $\left(S_{1}, \ldots, S_{r}\right)$ of N. Hence, the central problem is how to keep the grand coalition N stable by distributing $v(N)$ amongst the players of N in a "fair" way. Such distributions of $v(N)$ are also called allocations. That is, an allocation for a game (N, v) is a vector $x \in \mathbb{R}^{N}$ with $x(N)=v(N)$; here, we write $x(S)=\sum_{p \in S} x_{p}$ for a subset $S \subseteq N$. A solution concept prescribes a set of fair allocations for a game (N, v), where the notion of fairness depends on context.

One of the best-known solution concepts, the core of a game consists of all allocations $x \in \mathbb{R}^{N}$ satisfying $x(S) \geq v(S)$ for each $S \subseteq N$. Core allocations are highly desirable, as they offer no incentive for a subset S of players to leave N and form a coalition on their own. So core allocations ensure that the grand coalition N is stable. However, the core may be empty. Moreover, the following three problems may be computationally hard for a class of cooperative games (assuming a "compact" description of the input game, which is often, and also in our paper, a graph with an edge weighting):

P1. determine if a given allocation x belongs to the core, or find a coalition S with $x(S)<v(S)$,
P2. determine if the core is non-empty, and
P3. find an allocation in the core (if it is non-empty).
If P1 is polynomial-time solvable for some class of games, then so are P2 and P3 using the ellipsoid method $20 / 22$. As the core of a game might be empty, other solution concepts are also considered. Well-known examples of other solution concepts are the Shapley value and nucleolus (which are both computationally hard to compute).

The input games we consider are defined on an undirected graph $G=(V, E)$ with a positive edge weighting $w: E \rightarrow \mathbb{R}_{+}$; here, V is a set of vertices and E is a set of edges between pairs of distinct vertices. Such a game is said to be uniform (or simple) if $w \equiv 1$. For a subset $S \subseteq V$, we let $G[S]$ denote the subgraph of G induced by S, that is, $G[S]=(S,\{u v \in E \mid u, v \in S\})$ is the graph obtained from G after deleting all the vertices outside S. A graph is bipartite if its vertex set can be partitioned into two sets A and B such that every edge joins a vertex in A to a vertex in B. A matching M is a set of edges in a graph G such that no two edges of M have a common end-vertex.

A matching game defined on a graph $G=(V, E)$ with a positive edge weighting $w: E \rightarrow \mathbb{R}_{+}$is the game (N, v) where $N=V$ and the value $v(S)$ of a coalition S is equal to the maximum weight $w(M)=\sum_{e \in M} w(e)$ over all matchings M of $G[S]$; see Figure 1 for an example. Matching games defined on bipartite graphs are commonly known as assignment games.

Let $G=(V, E)$ be a graph with a vertex function $b: V \rightarrow \mathbb{N}_{+}$, which we call a capacity function. A b-matching of G is a subset $M \subseteq E$ such that each vertex $p \in V$ is incident to at most $b(p)$ edges in M. Let $w: E \rightarrow \mathbb{R}_{+}$be an edge weighting of G. A b-matching game defined on (G, b, w) is the game (N, v) where $N=V$ and the value $v(S)$ of a coalition S is the maximum weight $w(M)$ over all b-matchings M of $G[S]$. Note that if $b \equiv 1$, then we obtain a matching game. If G is bipartite, then we speak of a b-assignment game.

In this paper we introduce the notion of a partitioned matching game. Let $G=(V, E)$ be a graph with an edge weighting $w: E \rightarrow \mathbb{R}_{+}$. Let $\mathcal{V}=\left(V_{1}, \ldots, V_{n}\right)$ be a partition of V. A partitioned matching game defined on (G, w, \mathcal{V}) is the game (N, v) where $N=\{1, \ldots, n\}$ and the value $v(S)$ of a coalition S is the maximum weight $w(M)$ over all matchings M of $G\left[\bigcup_{p \in S} V_{p}\right]$. Let $c=\max \left\{\left|V_{p}\right| \mid 1 \leq p \leq n\right\}$ be the width of (N, v). Note that if $V_{p}=\{p\}$ for every $p \in N$, then we obtain a matching game.

We observe that if (N, v) is a b-matching game or a partitioned matching game, then $v(N) \geq$ $v\left(S_{1}\right)+\cdots+v\left(S_{r}\right)$ for every possible partition $\left(S_{1}, \ldots, S_{r}\right)$ of N. Hence, studying problems P1-P3 for both b-matching games and partitioned matching games is meaningful.

Before presenting our new results on P1-P3 for b-matching games and partitioned matching games in Section 1.3, we first survey the known results on P1-P3 for b-assignment games and b-matching games, including results for $b \equiv 1$, in Section 1.2. Afterwards, we describe the setting of international kidney exchange as an application of partitioned matching games in Section 1.4

1.2 Known Results for P1-P3 for Matching Games and Their Variants

It follows from results of Koopmans and Beckmann [27] and Shapley and Shubik [32] that the core of every assignment game is non-empty. In fact, this holds even for b-assignments for any capacity function b, as shown by Sotomayor [33]. However, the core of a matching game might be empty (for example, if G is a triangle with $w \equiv 1$). Problem P1 is linear-time solvable for matching games: the problem is equivalent to verifying whether for an allocation x, it holds that $x_{p}+x_{q} \geq w(p q)$ for every edge $p q \in E$. Hence, problems P2 and P3 are polynomial-time solvable for matching games (and thus also for assignment games). We refer to 1016 for some alternative polynomial-time algorithms for solving P2 and P3 on matching games.

Sotomayor [33] proved that P3 is polynomial-time solvable for b-assignment games. However, Biró et al. [11] proved that P1 is co-NP-complete even for uniform 3-assignment games. They also showed that for $b \leq 2, \mathrm{P} 1$ (and so, P2 and P3) is polynomial-time solvable for b-matching games.

Table 1 summarizes the known results for problems P1-P3 for matching games and their variants (in this table we have also included our new results, which we explain below in detail). In Section 5 we discuss future work. There, we also mention some results for other solution concepts. For an in-depth discussion on complexity aspects of solution concepts for matching games and their variants, we refer to the recent survey of Benedek et al. [5].

1.3 New Results for P1-P3 for the Two Generalizations of Matching Games

We start with the known generalization of matching games, namely the b-matching games. In Section 2 we prove the following result, solving the only case left open in 11 (see also Table 1).

Theorem 1. P2 and P3 are co-NP-hard for uniform b-matching games if $b \leq 3$.
For a capacity function $b: V \rightarrow \mathbb{N}_{+}$, we let b^{*} denote the maximum $b(p)$-value over all $p \in V$. In Section 2 we also prove the following two theorems, which together show that there exists a close relationship between b-matching games and partitioned matching games, our new generalization of matching games.
Theorem 2. P1-P3 can be reduced in polynomial time from b-matching games to partitioned matching games of width $c=b^{*}$, preserving uniformity.

	problem P1	problem P2	problem P3
assignment games	poly	yes	poly
matching games	poly	poly	poly
b-assignment games: if $b \leq 2$	poly	yes	poly
if $b \leq 3$	coNPc	yes	poly
b-matching games: if $b \leq 2$	poly	poly	poly
	if $b \leq 3$	coNPc	coNPh
coNPh			
partitioned matching games: if $c \leq 2$	poly	poly	poly
if $c \leq 3$	coNPc	coNPh	coNPh

Table 1. Complexity dichotomies for the core (P1-P3), with the following short-hand notations, yes: all instances are yes-instances; poly: polynomial-time; coNPc: co-NP-complete; and coNPh: co-NP-hard. The new results of this paper are put in bold. The seven hardness results in the table hold even if $w \equiv 1$.

Theorem 3. P1-P3 can be reduced in polynomial time from partitioned matching games of width c to b-matching games for some capacity function b with $b^{*} \leq c$.

Combining Theorems 13 with the aforementioned results of Biró et al. 11, which state that $\mathrm{P} 1-\mathrm{P} 3$ are polynomial-time solvable for b-matching games if $b \leq 2$ and that P1 is co-NP-complete even for uniform b-assignment games if $b \leq 3$, leads to the following dichotomy (see also Table 11).

Corollary 1. For $c \leq 2$, P1-P3 are polynomial-time solvable for partitioned matching games with width c, whereas for $c \leq 3, \mathrm{P} 1$ is co-NP-complete, and $\mathrm{P} 2-\mathrm{P} 3$ are co-NP-hard for uniform partitioned matching games.

1.4 An Application of Partitioned Matching Games

As a strong motivation for introducing partitioned matching games, we consider international kidney exchange programmes. We explain these programmes below but note that partitioned matching games can also be used to model other economic settings where multi-organizations control pools of clients 19 .

The most effective treatment for kidney patients is transplantation. The best long-term outcome is to use living donors. A patient may have a willing donor, but the donor's kidney will often be rejected by the patient's body if donor and patient are medically incompatible. Therefore, in the last 30 years, an increasing number of countries have started to run a (national) Kidney Exchange Programme (KEP) [8. In such a programme, a patient and their incompatible donor are placed in a pool with other patient-donor pairs. If donor d of patient p is compatible with patient p^{\prime} and simultaneously, donor d^{\prime} of p^{\prime} is compatible with p, then the pairs (p, d) and (p^{\prime}, d^{\prime}) are said to be compatible and a (2-way) exchange between (p, d) and $\left(p^{\prime}, d^{\prime}\right)$ can take place. That is, the kidney of donor d can be given to patient p^{\prime}, and the kidney of donor d^{\prime} can be given to patient p.

KEPs operate in regular rounds, each time with an updated pool where some patient-donor pairs may have left and new ones may have entered. Naturally, the goal of a KEP is to help in each round as many patients as possible. For this goal, we construct for each round, the corresponding (undirected) compatibility graph G as follows. First, we introduce a vertex i_{d}^{p} for each patientdonor pair (p, d) in the pool. Next, we add an edge between two vertices i and j if and only if the corresponding patient-donor pairs are compatible. We give each edge ij of G a weight $w(i j)$ to express the utility of an exchange between i and j; we set $w \equiv 1$ if we do not want to distinguish between the utilities of any two exchanges.

It now remains to find a maximum weight matching of G, as such a matching corresponds to an optimal set of exchanges or, if we had set $w \equiv 1$, to a largest set of exchanges in the patient-donor pool. As we can find a maximum weight matching of a graph in polynomial time, we can find an optimal solution for each round of a KEP in polynomial time.

i_{3}

Fig. 2. Left: a directed computability graph $\bar{G}=(V, A)$ with a positive edge weighting w for a certain round of an international KEP; note that \bar{G} has a directed 4 -vertex cycle, so in the corresponding KEP even a 4 -way exchange could take place. Right: the corresponding undirected compatibility graph $G=(V, E)$ (which is used when only 2 -way exchanges are allowed).

We can generalize 2-way exchanges by defining the directed compatibility graph $\bar{G}=(V, A)$, in which V consists of the patient-donor pairs and A consists of every arc (i, j) such that the donor of pair i is compatible with the patient of pair j. Each arc $(i, j) \in A$ may have an associated weight $w_{i j}$ expressing the utility of a kidney transplant involving the donor of i and the patient of j; note that $w_{i j} \neq w_{j i}$ is possible, should both $\operatorname{arcs}(i, j)$ and (j, i) exist in \bar{G}. For $\ell \geq 2$, an ℓ-way exchange corresponds to a directed ℓ-vertex cycle in a directed computability graph. It involves ℓ distinct patient-donor pairs $\left(p_{1}, d_{1}\right), \ldots,\left(p_{\ell}, d_{\ell}\right)$, where for $i \in\{1, \ldots, \ell-1\}$, donor d_{i} donates to patient p_{i+1} and donor d_{ℓ} donates to patient p_{1}. We refer to Figure 2 for an example. The same figure also illustrates how we can obtain an undirected compatibility graph $G=(V, E)$ from a directed compatibility graph $\bar{G}=(V, A)$: we add an edge $i j$ to E if and only if both (i, j) and (j, i) are arcs in A and in that case we set

$$
w(i j)=w_{i j}+w_{j i}
$$

Allowing ℓ-way exchanges for some $\ell>2$ leads to possibly more patients being treated. However, Abraham, Blum and Sandholm 1 proved that already for $\ell=3$ it becomes NP-hard to find an optimal solution for a round. We therefore set $\ell=21$, just like some related papers [14|15|35], which we discuss later.

Nowadays, several countries are starting an international Kidney Exchange Programme (IKEP) by merging the pools of their national KEPs; for example, Austria with the Czech Republic [12]; Denmark with Norway and Sweden; and Italy with Portugal and Spain [37. This may lead to more patients being helped. However, apart from a number of ethical and legal issues, which are beyond the scope of this paper, we now have an additional issue that must be addressed. Namely, in order to ensure full participation of the countries in the IKEP, it is crucial that proposed solutions will be accepted by each of the participating countries. Otherwise countries may decide to leave the IKEP at some point. So, in order for an IKEP to be successful, we need to ensure that the programme is stable on the long term. This is a highly non-trivial issue, as we can illustrate even with the following small example.

Example 1. Let G be a compatibility graph with vertices i_{1}, i_{2}, j and edges $i_{1} i_{2}$ and $i_{2} j$ with weights $1-\epsilon$ and 1 respectively, for some small ϵ. The weight $1-\epsilon$ may have been obtained after desensitization, which we explain below. Let $V_{1}=\left\{i_{1}, i_{2}\right\}$ and $V_{2}=\{j\}$. The optimum solution is an exchange between i_{2} and j with weight 1 . However, the solution consisting of the exchange between i_{1} and i_{2} (with weight $1-\epsilon$) is better for V_{1}, as then both patients in the pairs i_{1} and i_{2} receive a kidney, and with more or less the same chance of success.

[^1]To ensure stability, Carvalho and Lodi (14) used a 2 -round system with 2 -way exchanges only: in the first round each country selects an internal matching, and in the second round a maximum matching is selected for the international exchanges. They gave a polynomial-time algorithm for computing a Nash-equilibrium that maximizes the total number of transplants, improving the previously known result of [15] for two countries. Sun et al. [35] also considered 2-way exchanges only. They defined so-called selection ratios using various lower and upper target numbers of kidney transplants for each country. In their setting, a solution is considered to be fair if the minimal ratio across all countries is maximized. They also required a solution to be a maximum matching and individually rational. They gave theoretical results specifying which models admit solutions with all three properties and they provided polynomial-time algorithms for computing such solutions, if they exist.

In contrast to 14]1535, we model an IKEP as follows. Consider a directed compatibility graph $\bar{G}=(V, A)$ with a positive arc weighting w. Let $\mathcal{V}=V_{1} \cup \cdots \cup V_{n}$ be a partition of V. Let $G=(V, E)$ be the corresponding undirected compatibility graph. If $w \equiv 1$, then we model a round of an IKEP of a set N of n countries as a partitioned matching game (N, v) defined on (G, w) with partition \mathcal{V}. Else, we consider the directed partitioned matching game (N, v) on (\bar{G}, w) with partition \mathcal{V}; so for each $S \subseteq N$, we have that $v(S)=\sum_{p \in S} \sum_{i, j: i j \in M, j \in V_{p}} w_{i j}$, where M is a maximum weight matching in $G[S]$. We define the following set:

$$
\mathcal{M}=\{M \mid M \text { is a maximum weight matching of } G\} .
$$

Note that \mathcal{M} is the set of maximum matchings of G if $w \equiv 1$ on G. We note also that \mathcal{M} may consist of only a few matchings, or even a unique matching. The latter is highly likely when weights $w(i j)$ take many different values at random [28. However, in our context, this will not be the case. Compatibility graphs will usually have only a small number of different weights. The reason is that to overcome certain blood and antigen incompatibilities, patients can undergo one or more desensitization treatments to match with their willing donor or some other potential donor. After full desensitization the chance on a successful kidney transplant is almost the same as in the case of full compatibility. Allowing desensitization results in compatibility graphs with weights either 1 (when no desensitization was needed) or $1-\epsilon$ (after applying desensitization) 3]. Hence, in our application, \mathcal{M} is likely to have exponential size.

Our approach is based on a credit-based system that was first introduced by Klimentova et al. [23]. In each round, we maximize the total welfare, that is, we choose some matching M from the set \mathcal{M} for that round. In addition, we specify a target allocation x. A target allocation prescribes exactly which share of $v(N)$ each country ideally should receive in a certain round. However, if we use $M \in \mathcal{M}$, then the allocated share of $v(N)$ for country p is

$$
u_{p}(M)=\sum_{i, j: i j \in M, j \in V_{p}} w_{i j} .
$$

Note that $\sum_{p \in N} u_{p}(M)=w(M)=v(N)$. The aim is now to choose a matching $M \in \mathcal{M}$ with $u_{p}(M)$ "as close as possible" to x_{p} for each country p. The difference $x_{p}-u_{p}(M)$ will then be taken as (positive or negative) credits for country p to the next round. In the next round we repeat the same steps after updating the underlying partitioned matching game (N, v).

For setting the target allocations, we start with choosing, for the round under consideration, a "fair" initial (kidney) allocation y that is prescribed by some solution concept for the underlying directed partitioned matching game (N, v) for that round, so $y(N)=v(N)$ holds. Then, for each country p, we change y_{p} into p 's target $x_{p}=y_{p}+c_{p}$, where c_{p} are the credits for country p from the previous round (we set $c \equiv 0$ for the first round). The initial allocation y could correspond to a core allocation of the game (N, v). We give more specific examples later.

We now define what we mean with being "as close as possible" to the target allocation. For country p, we say that $\left|x_{p}-u_{p}(M)\right|$ is the deviation of country p from its target x_{p} in a certain
round. We may want to select a minimal matching from \mathcal{M}, which is a matching $M \in \mathcal{M}$ that minimizes

$$
\max _{p \in N}\left\{\left|x_{p}-u_{p}(M)\right|\right\}
$$

over all matchings of \mathcal{M}. As a more refined selection, we may want to select a matching from \mathcal{M} that is even lexicographically minimal. That is, let

$$
d(M)=\left(\left|x_{p_{1}}-u_{p_{1}}(M)\right|, \ldots,\left|x_{p_{n}}-u_{p_{n}}(M)\right|\right)
$$

be the vector obtained by reordering the components $\left|x_{p}-u_{p}(M)\right|$ non-increasingly. We now say that M is lexicographically minimal for x if $d(M)$ is lexicographically minimal over all matchings $M \in \mathcal{M}$. Note that every lexicographically minimal matching in \mathcal{M} is minimal, but the reverse might not be true.

From now on, if $w \equiv 1$ on G, we consider the actual number of incoming kidneys that country p will receive in a certain round if M is used. That is, we let for every $p \in N, u_{p}(M)$ be equal to

$$
s_{p}(M)=\left|\left\{j \in V_{p} \mid \exists i \in V: i j \in M\right\}\right|
$$

We say that the vector $\left(s_{1}(M), \ldots, s_{n}(M)\right)$ is the actual allocation for a certain round. Note that $s_{1}(M)+\cdots+s_{n}(M)=2 v(N)$ for every $M \in \mathcal{M}$, so formally we should consider $u_{p}=\frac{1}{2} s_{p}$ instead of s_{p}. However, for our proofs it does not matter. Moreover, by defining s_{p} as above we have a more natural definition in terms of actual numbers of kidneys. This is a natural utility function, both due to its simplicity and because in practice the weights $w(e)$ are sparsely spread, as we explained above.

Example 2. Consider the directed compatibility graph $G=(V, A)$ with the edge weighting w from Figure 2. Let $V_{1}=\left\{i_{1}, i_{2}, i_{3}\right\}$ and $V_{2}=\left\{j_{1}, j_{2}\right\}$. It holds that $\mathcal{M}=\left\{M_{1}, M_{2}\right\}$, where $M_{1}=\left\{i_{2} j_{2}\right\}$ and $M_{2}=\left\{i_{1} i_{2}, j_{1} j_{2}\right\}$. Note that $v(N)=w\left(M_{1}\right)=w\left(M_{2}\right)=4$. We have that $u_{1}\left(M_{1}\right)=3$ and $u_{2}\left(M_{1}\right)=1$, whereas $u_{1}\left(M_{2}\right)=u_{2}\left(M_{2}\right)=2$. We now set $w \equiv 1$ and consider the corresponding undirected compatibility graph $G=(V, E)$, which is also displayed in Figure 2 It now holds that $\mathcal{M}=\left\{M_{2}\right\}$. Note that $v(N)=\left|M_{2}\right|=2$. We have $s_{1}\left(M_{2}\right)=s_{2}\left(M_{2}\right)=2$, so $s_{1}\left(M_{2}\right)+s_{2}\left(M_{2}\right)=$ $2 v(N)$, as we count "incoming" kidneys if $w \equiv 1$ on G.

Recall that the aim of this paper is to provide a theoretical basis for our understanding of partitioned matching games. We refer to a number of recent papers [6|7/23] for experimental results on international kidney exchange that were obtained from simulations using uniform partitioned matching games. As initial allocations, Benedek et al. 6] used two "hard-to-compute" solution concepts, namely the Shapley value and nucleolus, and two easy-to-compute solution concepts, the benefit value and contribution value. They found that almost all initial and actual allocations in their simulations were core allocations, with the Shapley value yielding the best results. The latter finding was in line with the findings of [7] and [23]. In both [7] and [23], 3 -way exchanges were allowed at the expense of a significant lower number of countries than the study of [6].

In line with our research aim we prove, apart from the results in Section 1.3 a number of computational complexity results for computing (lexicographically) minimal maximum (weight) matchings. The first of these results, the main result of Section 1.4 is a polynomial-time algorithm that was used for the simulations in [6]. For the proof of this result we refer to Section 3

Theorem 4. It is possible to find a lexicographically minimal maximum matching for a uniform partitioned matching game (N, v) and target allocation x in polynomial time.

In the nonuniform case, we can show the following positive but weaker result than Theorem 4 It only holds for directed partitioned matching games of width 1. Its proof can be found in Section 3 as well.

Theorem 5. It is possible to find a lexicographically minimal maximum weight matching for a directed partitioned matching game (N, v) of width 1 and target allocation x in polynomial time.

Our remaining results, all proven in Section4, are all hardness results. They show that the situation quickly becomes computationally more difficult when weights are involved, even if we only want to find minimal maximum weight matchings and the input is restricted in some way. For example, in the first of these hardness results we set the number of countries n equal to 2 .

Theorem 6. It is NP-hard to find a minimal maximum weight matching for a directed partitioned matching game (N, v) with $n=2$ and target allocation x.

Recall that the setting of sparsely spread edge weights is highly relevant in our context. Hence, we consider this situation more carefully. We say that a directed partitioned matching game (N, v), defined on a graph G with positive edge weighting w and partition \mathcal{V} of V, is d-sparse if w takes on only d distinct values. Note that if $d=1$, we obtain a uniform game (possibly after rescaling w) and in that case we can apply Theorem[4] If $d=2$, then we already obtain computational hardness, as shown in our next result.

Theorem 7. It is NP-hard to find a minimal maximum weight matching for a 2 -sparse directed partitioned matching game (N, v) and target allocation x.

As will be clear from its proof, both the width c and the number of countries n in the hardness construction of Theorem 7 is arbitrarily large. If c and n are constant, the partitioned matching game has constant size. Hence, it is natural to consider sparse directed partitioned matching games (N, v) for which either c or n is a constant. We were not able to solve either of these two cases, but we can show two partial results for the case where n is a constant.

By a "compact description" of a game defined on a graph we mean a logarithmic description of the graph (if possible). For example, a cycle of length k can be described by its length, which results in input size $O(\log k)$ rather than k. If we assume that we have such a compact description of a directed partitioned matching game, then having a constant number of countries does not make the problem easier, as our next result shows.

Theorem 8. It is NP-hard to find a minimal maximum weight matching for a 3-sparse compact directed partitioned matching game (N, v) with $n=2$ and target allocation x.
We now make a connection to the Exact Perfect Matching problem introduced by Papadimitriou and Yannakakis [29] forty years ago. This problem has as input an undirected graph G whose edge set is partitioned into a set R of red edges and a set B of blue edges. The question is whether G has a perfect matching with exactly k red edges for some given integer k. The complexity status of Exact Perfect Matching is a longstanding open problem, and so far only partial results were shown (see, for example, 21]).

We consider directed partitioned matching games (N, v) even with $n=2$. As before, we let $\bar{G}=(V, A)$ be the underlying directed compatibility graph with a positive arc weighting w and with partition $\left(V_{1}, V_{2}\right)$ of V. For every 2 -cycle $i j i$ with $i \in V_{1}$ and $j \in V_{2}$, we set $w_{i j}=\frac{1}{3}$ and $w_{j i}=\frac{2}{3}$. For every other 2-cycle $i j i$ in \bar{G} (so where $i, j \in V_{1}$ or $i, j \in V_{2}$) we set $w_{i j}=w_{j i}=\frac{1}{2}$. Note that $w \equiv 1$ in the corresponding undirected compatibility graph $G=(V, E)$ for the weighting w given by $w(i j)=w_{i j}+w_{j i}$ for every edge $i j \in E V^{2}$ We also assume that G has a perfect matching. Hence, as $w \equiv 1$ in G, the set \mathcal{M} consists of all perfect matchings of G. We say that (N, v) is perfect. So, by definition, perfect partitioned matching games (N, v) are 3 -sparse and have $n=2$. We show the following result.

[^2]Theorem 9. Exact Perfect Matching and the problem of finding a minimal maximum weight matching for a (3-sparse) perfect directed partitioned matching game (with $n=2$) and target allocation x are polynomially equivalent.
In Section 5 we finish our paper with a discussion on future work.

2 The Proofs of Theorems [1-3

In this section we prove Theorems 1.3. A b-matching M in a graph G with capacity function b covers a vertex u if M contains an edge incident to u, whereas M saturates u if M contains $b(u)$ edges incident to u. We identify M with the subgraph of G induced by M (that is, the subgraph of G consisting of all edges in M and all vertices covered by M). We speak about (connected) components of M. For instance, for $b=1$, every edge $e \in M$ is a component.

We start with Theorem 1 which we restate below.
Theorem 1 (restated). P2 and P3 are co-NP-hard for uniform b-matching games if $b \leq 3$.
Proof. The proof is by reduction from a variant of the 3 -Regular Subgraph problem. This problem is to decide if a given graph has a 3-regular subgraph (a graph is 3-regular if every vertex has degree 3). This problem is NP-complete even for bipartite graphs 34. We define the NEARLY 3-Regular Subgraph problem. This problem is to decide whether a (non-bipartite) graph G has an nearly 3-regular subgraph, that is, a subgraph in which all vertices have degree 3 except for one vertex that must be of degree 2 .

The Nearly 3-Regular Subgraph problem is also NP-complete. Namely, we can reduce from 3-Regular Subgraph restricted to bipartite graphs. Given a bipartite graph $(U \cup V, E)$, we construct the non-bipartite graph G consisting of $|E|$ disjoint copies of $(U \cup V, E)$ where in the copy corresponding to $e \in E$ the edge e is subdivided by a new vertex v_{e} (that is, we replace e by v_{e} and make v_{e} adjacent to the two end-vertices of $\left.e\right)$. Now, $(U \cup V, E)$ has a 3-regular subgraph if and only if G has a nearly 3 -regular subgraph. Indeed, if there is a 3-regular subgraph in $(U \cup V, E)$ that contains the edge e, there will be a nearly 3 -regular subgraph in G whose degree 2 vertex is v_{e}. Conversely, if there is a nearly 3 -regular subgraph in G, it must contain a vertex v_{e} for some e; otherwise the subgraph would be bipartite, but an almost 3-regular graph cannot be bipartite.

As mentioned, we reduce from Nearly 3-Regular Subgraph for non-bipartite graphs. Given an instance $G=(V, E)$ of the latter, we construct a graph \bar{G} with vertex capacities $b(i) \leq 3$ and edge weights $w=1$ as follows (see also Figure 3).

- Give each $v \in V$ capacity $b(v)=3$.
- Make each $v \in V$ adjacent to new vertices $a_{v, 1}, a_{v, 2}, a_{v, 3}$ with $b\left(a_{v, 1}\right)=b\left(a_{v, 2}\right)=b\left(a_{v, 3}\right)=2$.
- Make each $a_{v, j}$ part of a triangle with two new vertices $c_{v, j}$ and $d_{v, j}$ with $b\left(c_{v, j}\right)=b\left(d_{v, j}\right)=2$.
- For each $v \in V$ add a new vertex a_{v} with $b\left(a_{v}\right)=3$ and make a_{v} adjacent to $a_{v, 1}, a_{v, 2}, a_{v, 3}$.
- For each $v \in V$ add a new vertex c_{v} with $b\left(c_{v}\right)=3$ and make c_{v} adjacent to $c_{v, 1}, c_{v, 2}, c_{v, 3}$.
- For each $v \in V$ add a new vertex d_{v} with $b\left(d_{v}\right)=3$ and make d_{v} adjacent to $d_{v, 1}, d_{v, 2}, d_{v, 3}$.
- Make a new vertex r called the root node r with $b(r)=1$ adjacent to every $v \in V$.

We next describe a maximum b-matching in \bar{G}, as indicated, in part, in Figure 3 as well. Let M consist of all edges $v a_{v, j}$ plus all edges of the form $c_{v, j} d_{v, j}$ plus all edges incident to a_{v}, c_{v} and d_{v}. As M saturates all vertices except r, we find that M is a maximum b-matching. Hence,

$$
v(\bar{N})=|M|=3|V|+3|V|+9|V|=15|V| .
$$

We let (\bar{N}, v) be the b-matching game defined on (\bar{G}, w). To show the theorem it remains to prove the following claim.

Claim: G has a nearly 3-regular subgraph if and only if (\bar{N}, v) has an empty core.
First suppose G contains no nearly 3 -regular subgraph. We define a vector x as follows.

Fig. 3. A vertex $v \in V$ with the three pendant triangles $\left(a_{v}, c_{v}, d_{v}\right)$. Thick edges are edges in M.

- Set $x \equiv \frac{3}{2}$ on the vertices of V.
- Set $x \equiv 1$ on all triangle vertices $a_{v, j}, c_{v, j}, d_{v, j}$.
- Set $x \equiv \frac{3}{2}$ on all vertices a_{v}, c_{v}, d_{v}.
- Set $x_{r}=0$.

Note that $x(\bar{N})=\frac{3}{2}|V|+9|V|+3 \cdot \frac{3}{2}|V|=15|V|=v(\bar{N})$. Hence, x is an allocation.
We claim that x is even a core allocation. For a contradiction, suppose $x(S)<v(S)$ for some $S \subseteq \bar{N}$; we say that S is a blocking coalition. Let M_{S} be a maximum b-matching in $\bar{G}[S]$, so $x(S)<\left|M_{S}\right|$. We assume that S is a minimal blocking coalition (with respect to set inclusion).

As x_{i} equals half the capacity of each vertex i except r, we find that for every $S^{*} \subseteq N \backslash\{r\}$, we have $x\left(S^{*}\right) \geq v\left(S^{*}\right)$. Hence, S contains r. By the same reason, M_{S} must saturate all vertices of S (as otherwise $x(S) \geq\left|M_{S}\right|=v(S)$ would hold). So, in particular M_{S} contains some edge $r v_{0}$ for some $v_{0} \in V$. As M_{S} saturates all vertices of S, v_{0} must be matched by M_{S} to two more vertices (other than r).

Assume first that all $v \in S \cap V \backslash\left\{v_{0}\right\}$ are either matched "down" to $a_{v, 1}, a_{v, 2}, a_{v, 3}$ by three matching edges in M_{S} or matched "up" by three matching edges belonging to E. Let $v \in V \cap S$ be matched down to its three triangles. Let A be the component of M containing v. Note that $V(A)$ is a subset of the union of $\left\{v, a_{v}, c_{v}, d_{v}\right\}$ and the set of vertices of the three triangles for v. Hence, as all vertices in A are saturated by M_{S} and each vertex except r gets exactly half of its capacity, we find that $x(A) \geq v(V(A))$. So, $S \backslash V(A)$ is a smaller blocking set, contradicting the minimality of S. Thus, all vertices $v \in S \cap V$ with $v \neq v_{0}$ must be matched "up". If also v_{0} is matched "up" by two edges in $M_{S} \cap E$, then $\left(S \cap V, M_{S}\right)$ is a nearly 3-regular subgraph of G, a contradiction.

From the above, we are left to deal with the case where there exists a vertex $v \in S \cap V$ that is, say, matched down by some edge $e=v a_{v, 1} \in M_{S}$ but, say, $e^{\prime}=v a_{v, 3} \notin M_{S}$. We distinguish the following three cases:

Case 1. $a_{v}, c_{v}, d_{v} \in S$.
Since all these are saturated by M_{S}, we have all $a_{v, j}, c_{v, j}, d_{v, j} \in S$. Thus $a_{v, 3}, c_{v, 3}, d_{v, 3} \in S$ and each of these is already matched to a_{v}, c_{v}, d_{v}, respectively. Since $v a_{v, 3} \notin M_{S}$, at most two of $a_{v, 3}, c_{v, 3}, d_{v, 3}$ can be saturated by M_{S}, a contradiction.

Case 2. $a_{v}, c_{v} \in S, d_{v} \notin S$.
Again we find that $a_{v, 1}, a_{v, 2}, a_{v, 3} \in S$ and $c_{v, 1}, c_{v, 2}, c_{v, 3} \in S$. Moreover, each of these is already matched by some edge in M_{S} to a_{v} or c_{v}. In addition, $a_{v, 1}$ is matched to v, so $a_{v, 1}$ is "already" saturated. Hence, in order to saturate also $c_{v, 1}, M_{S}$ must contain $c_{v, 1} d_{v, 1}$. Hence, $d_{v, 1} \in S$ and M_{S} cannot saturate it (as $d_{v} \notin S$), a contradiction.

Case 3. $a_{v} \in S, c_{v}, d_{v} \notin S$.
Here, we conclude that $a_{v, 1}, a_{v, 2}, a_{v, 3} \in S$. Since $v a_{v, 3} \notin M_{S}, a_{v, 3}$ can only be saturated if, say, $a_{v, 3} c_{v, 3} \in M_{S}$ and hence $c_{v, 3} \in S$. The latter can only be saturated by $c_{v, 3} d_{v, 3} \in M_{S}$. Hence, $d_{v, 3} \in S$ and $d_{v, 3}$ cannot be saturated (since $a_{v, 3} a_{v}$ and $a_{v, 3} c_{v, 3}$ are in M_{S}), a contradiction.

Case 4. $a_{v} \notin S$.
Since $a_{v, 1}$ is in S, it must be saturated, and as $a_{v} \notin S$, either $a_{v, 1} c_{v, 1}$ or $a_{v, 1} d_{v, 1} \in M_{S}$. By symmetry, suppose that $a_{v, 1} c_{v, 1} \in M_{S}$. Then $c_{v, 1}$ is in S and must be saturated, so either $c_{v, 1} c_{v} \in$ M_{S} or $c_{v, 1} d_{v, 1} \in M_{S}$. In the first case $c_{v} \in S$ and $d_{v} \notin S$ (as $d_{v, 1} \notin S$) and in the second case $c_{v} \notin S$ and $d_{v} \in S$ (as $d_{v, 1}$ can only be saturated by $d_{v, 1} d_{v}$). In both cases we get a contradiction when considering the third triangle, as follows. If $c_{v} \in S$ and $d_{v} \notin S$, then we have $c_{v} c_{v, 3} \in M_{S}$. Thus $c_{v, 3}$ is in S and must be saturated, so must be matched to either $a_{v, 3}$ or $d_{v, 3}$. In the former case $a_{v, 3}$ must be matched to $d_{v, 3}$ and the latter remains unsaturated, a contradiction. In the second case, $d_{v, 3}$ must be saturated by matching it to $a_{v, 3}$ and then again, the latter remains unsaturated. The case $d_{v} \in S$ and $c_{v} \notin S$ is similar. From $d_{v} \in S$ we conclude that $d_{v} d_{v, 3} \in M_{S}$. Thus $d_{v, 3} \in S$ and hence, $d_{v, 3}$ must be matched to either $a_{v, 3}$ or $c_{v, 3}$. In the first case, $a_{v, 3}$ must be matched to $c_{v, 3}$ (as v and a_{v} are not available) and $c_{v, 3}$ remains unsaturated. In the second case, $c_{v, 3}$ must be matched to $a_{v, 3}$ and again, $a_{v, 3}$ remains unsaturated, a contradiction.

Conversely, suppose that G^{\prime} be a nearly 3 -regular subgraph in G. We claim that (\bar{N}, v) has an empty core. For a contradiction, suppose that (\bar{N}, v) has a core allocation x. Fix any $v \in V$ and let $S_{a c}:=\left\{a_{v}, c_{v}, a_{v, j}, c_{v, j} \mid j=1,2,3\right\}$. As $S_{a c}$ allows a saturating matching $M_{a c}$ of size $\left|M_{a c}\right|=9$, we find that $x\left(S_{a c}\right) \geq 9$. Similarly, $x\left(S_{c d}\right) \geq 9$ and $x\left(S_{a d}\right) \geq 9$ for $S_{c d}$ and $S_{a d}$ defined analogously. Adding all three inequalities and dividing by 2 yields

$$
x\left(S_{v}\right) \geq \frac{27}{2} \text { for } S_{v}:=S_{a c} \cup S_{c d} \cup S_{a d} .
$$

We now recall the maximum b-matching M that we displayed, in part, in Figure 3, As M is maximum and x is a core allocation, it holds that $x(A)=v(A)$ for every component A of M, and moreover, $x_{r}=0$. The set $S_{v} \cup\{v\}$ is covered exactly by two components of M. Hence, $x\left(S_{v} \cup\{v\}\right)=3+12=15$. As we also have that $x\left(S_{v}\right) \geq \frac{27}{2}$, this implies that $x_{v} \leq \frac{3}{2}$. As v was chosen arbitrarily, the inequality holds for every vertex of V.

Now, let v_{0} be the unique vertex that has degree 2 in G^{\prime}, and recall that by definition all other vertices of G^{\prime} have degree 3 in G^{\prime}. Consider the coalition $V\left(G^{\prime}\right) \cup\{r\}$. The edge set $E\left(G^{\prime}\right) \cup\left\{r v_{0}\right\}$ matches each vertex in S up to its capacity, while x assigns only half this value to each vertex in S and zero to r. Hence, $x(S)<v(S)$, contradicting to our assumption that x is in the core.

Fig. 4. Left: a b-matching game (N, v) with six players, where $b \equiv 1$ apart from $b(2)=2$ and $b(5)=3$, so $b^{*}=3$. Note that $v(N)=10$ (take $M=\{12,35,45,56\}$). Right: the reduction to the partitioned matching game (\bar{N}, \bar{v}). Note that $|\bar{N}|=14$ and $c=b^{*}$ (example taken from [5].)

We will now prove Theorem 2 In order to do this we first explain our reduction. Let (N, v) be a b-matching game defined on a graph $G=(V, E)$ with a positive capacity function b and a positive edge weighting w. We construct a graph $\bar{G}=(\bar{V}, \bar{E})$ with a positive edge weighting \bar{w} and partition \mathcal{V} of \bar{V} by applying the construction of Tutte [36]:

- Replace each vertex $i \in V$ with capacity $b(i)$ by a set V_{i} of $b(i)$ vertices $i^{1}, \ldots, i^{b(i)}$.
- Replace each edge $i j \in E$ by an edge $i_{j} j_{i}$ where i_{j} and j_{i} are new vertices, such that i_{j} is adjacent to $i^{1}, \ldots, i^{b(i)}$, while j_{i} is adjacent to $j^{1}, \ldots, j^{b(j)}$. Let $E_{i j}=\left\{i_{j}, j_{i}\right\}$.
- Let \bar{V} consist of all the vertices in the sets V_{i} and the sets $E_{i j}$, and let \bar{E} consist of all the edges defined above.
- Give every edge $i_{j} j_{i}, i_{j} i^{h}(h \in\{1, \ldots, b(i)\}), j_{i} j^{h}(h \in\{1, \ldots, b(j)\})$ weight $w(i j)$ to obtain the weighting \bar{w}.
- Let \mathcal{V} consist of all the sets V_{i} and $E_{i j}$.

We denote the partitioned matching game defined on (\bar{G}, w) with partition \mathcal{V} by (\bar{N}, \bar{v}). See Figure 4 for an example. We let b^{*} be the maximum $b(i)$-value for the vertex capacity function b. Note that, by construction, we have that $c=b^{*}$ and that uniformity is preserved. We use the above construction to prove Theorem 2, which we restate below.
Theorem 22 (restated). P1-P3 can be reduced in polynomial time from b-matching games to partitioned matching games of width $c=b^{*}$, preserving uniformity.

Proof. Let (N, v) be a b-matching game defined on a graph $G=(V, E)$ with a positive capacity function b and a positive edge weighting w. We construct in polynomial time the pair (\bar{G}, \bar{w}) and partition \mathcal{V} to obtain the partitioned matching game (\bar{N}, \bar{v}). Recall that the players of \bar{N} are of the form V_{i} and $E_{i j}$, and they are in $1-1$ correspondence with $V=N$ and E, respectively, so below we sometimes will identify the players of \bar{N} with $V \cup E$.

The idea is that any b-matching M in G can be represented by a corresponding matching $\bar{M} \subseteq \bar{E}$ in \bar{G} as follows. For each edge $i j$ in G we do as follows. If $i j \in M$, then we match i_{j} to some copy of i in \bar{G} and, similarly, j_{i} to some copy of j; note that, by definition, enough copies of i and j are available. If $i j \notin M$, then we match i_{j} and j_{i} to each other in \bar{G}. We refer to the resulting matching \bar{M} in \bar{G} as a transform of M (different transforms differ by the choice of copies of vertex i that are "matched" to j). Note that \bar{M} has size $|E|+|M|$ and weight $w(E)+w(M)$.
We first reduce P1. Let x be an allocation of (N, v). We define a vector \bar{x} on \bar{N} by setting $\bar{x}\left(V_{i}\right):=x_{i}$ for every $i \in N$ and $\bar{x}\left(E_{i j}\right)=w(i j)$ for every $i j \in E$. We claim that $x \in \operatorname{core}(N, v)$ if and only if $\bar{x} \in \operatorname{core}(\bar{N}, \bar{v})$.

First suppose that $x \in \operatorname{core}(N, v)$. Assume that M is a maximum weight b-matching in G (so $v(N)=w(M))$. The transform \bar{M} of M is a maximum weight matching in \bar{G}, so

$$
\bar{v}(\bar{N})=\bar{w}(\bar{M})=w(E)+w(M)=\bar{x}(\bar{N})
$$

Thus \bar{x} is an allocation. To check the core constraints, consider a coalition $S \subseteq \bar{N}$. Let $\hat{S} \subseteq \bar{V}$ be the union of all vertices of all sets $E_{i j}$ and V_{i} that belong as a player to S, that is,

$$
\hat{S}=\bigcup\left\{V_{i} \mid V_{i} \in S\right\} \cup \bigcup\left\{i_{j}, j_{i} \mid E_{i j} \in S\right\}
$$

Then $\bar{v}(S)$ is the weight of a maximum weight matching in $\bar{G}[\hat{S}]$. The latter is obtained as a transform of a maximum weight b-matching M in the subgraph $G_{S}=G\left[V_{S}\right]$, where $V_{S} \subseteq V$ consists of every vertex $i \in V$ with $V_{i} \in S$. As $x \in \operatorname{core}(N, v)$, we have $x\left(V_{S}\right) \geq v\left(V_{S}\right)=w(M)$. Hence,

$$
\bar{x}(S)=w\left(E\left(G_{S}\right)\right)+x\left(V_{S}\right) \geq w\left(E\left(G_{S}\right)\right)+w(M)=\bar{v}(S)
$$

We conclude that $\bar{x} \in \operatorname{core}(\bar{N}, \bar{v})$.

Now suppose that $\bar{x} \in \operatorname{core}(\bar{N}, \bar{v})$. Then we can use the same arguments in reverse order to prove that $x \in \operatorname{core}(N, v)$.

To reduce P 2 and P 3 , it suffices to show that $\operatorname{core}(N, v)$ is non-empty if and only if $\operatorname{core}(\bar{N}, \bar{v})$ is non-empty. Above we already showed that if core (N, v) is non-empty, then core (\bar{N}, \bar{v}) is non-empty. Hence, assume $\operatorname{core}(N, v)=\emptyset$. Then, by the Bondareva-Shapley Theorem 1331, there is a function $\lambda: 2^{N} \backslash\{\emptyset\} \rightarrow[0,1]$ with for every $i \in N, \sum_{S \ni i} \lambda(S)=1$ such that $\sum_{S \neq \emptyset} \lambda(S) v(S)>v(N)$. For every non-empty coalition $S \subseteq N$, we define the set

$$
\bar{S}:=\bigcup\left\{V_{i} \mid i \in S\right\} \cup \bigcup\left\{E_{i j} \mid i, j \in S\right\} .
$$

We now define a function $\bar{\lambda}: 2^{\bar{N}} \backslash\{\emptyset\} \rightarrow[0,1]$ as follows. We set $\bar{\lambda}(\bar{S}):=\lambda(S)$ for every $S \subseteq N$. For every $E_{i j} \in \bar{N}$, we set

$$
\bar{\lambda}\left(E_{i j}\right):=1-\sum_{\bar{S}: E_{i j} \subseteq \bar{S}} \bar{\lambda}(\bar{S})=1-\sum_{S: i j \in E(S)} \lambda(S) .
$$

Finally, set $\bar{\lambda}\left(S^{*}\right):=0$ for all other $S^{*} \subseteq \bar{N} \backslash\{\emptyset\}$. By construction, we have $\sum_{S^{*} \subseteq \bar{N}, V_{i} \in S^{*}} \bar{\lambda}\left(S^{*}\right)=1$ for every $V_{i} \in \bar{N}$ and $\sum_{S^{*} \subseteq \bar{N}, E_{i j} \in S^{*}} \bar{\lambda}\left(S^{*}\right)=1$ for every $E_{i j} \in \bar{N}$. Now, in order to show that $\operatorname{core}(\bar{N}, \bar{v})$ is empty, we must prove that

$$
\sum_{\emptyset \neq S^{*} \subseteq \bar{N}} \bar{\lambda}\left(S^{*}\right) \bar{v}\left(S^{*}\right)>\bar{v}(\bar{N}) .
$$

Let M_{S} denote a maximum weight b-matching on $G[S]$, and let $\overline{M_{S}}$ be a transform of M_{S}, which is a maximum weight matching in $\bar{G}[\bar{S}]$ with weight $\bar{w}\left(\overline{M_{S}}\right)=w\left(M_{S}\right)+w(E(G[S]))$. So, we have

$$
\bar{v}(\bar{S})=\bar{w}\left(\overline{M_{S}}\right)=w\left(M_{S}\right)+w(E(G[S]))=v(S)+w(E(G[S])) .
$$

Hence, it follows that

$$
\begin{aligned}
& \sum_{\emptyset \neq S^{*} \subseteq \bar{N}} \bar{\lambda}\left(S^{*}\right) \bar{v}\left(S^{*}\right) \\
= & \sum_{\emptyset \neq S \subseteq N} \bar{\lambda}(\bar{S}) \bar{v}(\bar{S})+\sum_{i j \in E(G)} \bar{\lambda}\left(E_{i j}\right) \bar{v}\left(E_{i j}\right) \\
= & \sum_{\emptyset \neq S \subseteq N} \lambda(S)(v(S)+w(E[S]))+\sum_{i j \in E(G)} \bar{\lambda}\left(E_{i j}\right) w(i j) \\
= & \sum_{\emptyset \neq S \subseteq N} \lambda(S) v(S)+\sum_{i j \in E(G)} \sum_{S: i j \in E(S)} \lambda(S) w(i j)+\sum_{i j \in E(G)} \bar{\lambda}\left(E_{i j}\right) w(i j) \\
= & \sum_{\emptyset \neq S \subseteq N} \lambda(S) v(S)+\sum_{i j \in E(G)}\left[\sum_{S: i j \in E(S)} \lambda(S)+\bar{\lambda}\left(E_{i j}\right)\right] w(i j) \\
= & \sum_{\emptyset \neq S \subseteq N} \lambda(S) v(S)+w(E) \\
> & v(N)+w(E) \\
= & \bar{v}(\bar{N}) .
\end{aligned}
$$

This completes the proof of Theorem [2]
As the final result in this section, we will prove Theorem 3. Again, we first explain the reduction. Let (N, v) be a partitioned matching game of width c defined on a graph $G=(V, E)$ with a positive edge weighting w and with a partition $\left(V_{1}, \ldots, V_{n}\right)$ of V. We assume that $c \geq 2$, as otherwise we obtain a matching game. Construct a graph $\bar{G}=(\bar{N}, \bar{E})$ with a positive vertex capacity function b and a positive edge weighting \bar{w} as follows.

- Put the vertices of V into \bar{N} and the edges of E into \bar{E}.
- For each V_{i}, add a new vertex r_{i} to \bar{N} that is adjacent to all vertices of V_{i} and to no other vertices in \bar{G}.
- Let \bar{w} be the extension of w to \bar{E} by giving each new edge weight $2 v(N)$.
- In \bar{V}, give every $u \in V$ capacity $b(u)=2$ and every r_{i} capacity $b\left(r_{i}\right)=\left|V_{i}\right|$.

Fig. 5. Left: a partitioned matching game (N, v) with three players and width $c=3$. Note that $v(N)=7$. Right: the reduction to the b-matching game (\bar{N}, \bar{v}). Note that $|\bar{N}|=9$ and that for every $i \in \bar{N}, b(i) \leq c$ (example taken from [5]).

We denote the b-matching game defined on (\bar{G}, b, \bar{w}) by (\bar{N}, \bar{v}). See Figure 5 for an example and note that, by construction, we have $b \leq c$. We are now ready to prove Theorem 3, which we restate below.

Theorem 3 (restated). P1-P3 can be reduced in polynomial time from partitioned matching games of width c to b-matching games for some capacity function b with $b^{*} \leq c$.

Proof. Recall that we assume $c \geq 2$, as for $c=1$ both problems are identical. Let (N, v) be a generalized matching game defined by a graph $G=(V, E)$ with edge weights w and partition $\mathcal{V}=\left(\underline{V_{1}}, \ldots, V_{n}\right)$. We construct in polynomial time the triple (\bar{G}, b, \bar{w}) to obtain the b-matching game (\bar{N}, \bar{v}).
We first reduce P 1 . Let x be an allocation of (N, v). We define a vector \bar{x} on \bar{N} by setting for every $i \in N, \bar{x}: \equiv \frac{x_{i}}{\left|V_{i}\right|}+v(N)$ on V_{i} and $\bar{x}_{r_{i}}:=v(N) \cdot\left|V_{i}\right|$. We claim that $x \in \operatorname{core}(N, v)$ if and only if $\bar{x} \in \operatorname{core}(\bar{N}, \bar{v})$.

First suppose that $x \in \operatorname{core}(N, v)$. By construction, $\bar{x}(\bar{N})=v(N)+2 v(N) \cdot|V|=\bar{v}(\bar{N})$. To check the core constraints, consider a coalition $\bar{S} \subseteq \bar{N}$. Let $S:=\left\{i \mid \bar{S} \cap V_{i} \neq \emptyset\right\}$. A maximum weight b-matching in $\bar{G}[\bar{S}]$ is obtained by matching each root node $r_{i} \in \bar{S}$ to all its neighbors in \bar{S} and matching the nodes in $\bar{S} \cap V$ to each other in the best possible way. Thus

$$
\bar{v}(\bar{S}) \leq v(S)+\sum_{i: r_{i} \in \bar{S}} 2 v(N)\left|\bar{S} \cap V_{i}\right|
$$

while

$$
\bar{x}(\bar{S})=\sum_{i \in S}\left(\frac{\left|\bar{S} \cap V_{i}\right|}{\left|V_{i}\right|} x_{i}+v(N)\left|\bar{S} \cap V_{i}\right|\right)+\sum_{i: r_{i} \in \bar{S}} v(N)\left|V_{i}\right| .
$$

Hence, the core constraint $\bar{x}(\bar{S}) \geq \bar{v}(\bar{S})$ holds unless $\bar{S}=\bigcup_{i \in S} V_{i} \cup\left\{r_{i}\right\}$. In the latter case, however, $\bar{v}(\bar{S})=v(S)+\sum_{i \in S} 2 v(N)\left|V_{i}\right|$ and $\bar{x}(\bar{S})=x(S)+\sum_{i \in S} 2 v(N)\left|V_{i}\right|$, so that the core constraint follows from the fact that $x \in \operatorname{core}(N, v)$, and thus $x(S) \geq v(S)$ holds.

Now suppose that $\bar{x} \in \operatorname{core}(\bar{N}, \bar{v})$. Then we can use the same arguments in reverse order to prove that $x \in \operatorname{core}(N, v)$, as follows. For every $S \subseteq N$, let $\bar{S}=\bigcup_{i \in S} V_{i} \cup\left\{r_{i}\right\}$. Then

$$
\begin{aligned}
v(S)+\sum_{i \in S} 2 v(N)\left|V_{i}\right| & =\bar{v}(\bar{S}) \\
& \leq \bar{x}(\bar{S}) \\
& =x(S)+\sum_{i \in S} 2 v(N)\left|V_{i}\right|,
\end{aligned}
$$

which implies that $v(S) \geq x(S)$ for every $S \subseteq N$, thus $x \in \operatorname{core}(N, v)$.
To reduce P 2 and P 3 , it suffices to show that core (N, v) is non-empty if and only if core (\bar{N}, \bar{v}) is non-empty. Above we already showed that if core (N, v) is non-empty, then core (\bar{N}, \bar{v}) is non-empty. Hence, assume $\operatorname{core}(N, v)=\emptyset$. Then, by the Bondareva-Shapley Theorem 13|31, there is a function $\lambda: 2^{N} \backslash\{\emptyset\} \rightarrow[0,1]$ with for every $i \in N, \sum_{S \ni i} \lambda(S)=1$ such that $\sum_{S \neq \emptyset} \lambda(S) v(S)>v(N)$. For every $S \subseteq N$, we define again $\bar{S}=\bigcup_{i \in S} V_{i} \cup\left\{r_{i}\right\}$. Note that $\bar{v}(\bar{S})=v(S)+\sum_{i \in S} 2 v(N)\left|V_{i}\right|$. We define $\bar{\lambda}(\bar{S})=\lambda(S)$ for every $S \subseteq N$ and let $\bar{\lambda}\left(S^{*}\right)=0$ for every other $S^{*} \subset \bar{N}$. First note that $\sum_{S^{*} \ni i} \bar{\lambda}\left(S^{*}\right)=1$ for every $i \in \bar{N}$. Furthermore, it holds that

$$
\begin{aligned}
\sum_{S^{*} \subseteq \bar{N}} \bar{\lambda}\left(S^{*}\right) \bar{v}\left(S^{*}\right) & =\sum_{S \subseteq N} \bar{\lambda}(\bar{S}) \bar{v}(\bar{S}) \\
& =\sum_{S \subseteq N} \lambda(S)\left(v(S)+\sum_{i \in S} 2 v(N)\left|V_{i}\right|\right) \\
& =\sum_{S \subseteq N} \lambda(S) v(S)+\sum_{i \in N}\left(\sum_{S \ni i} \lambda(S) 2 v(N)\left|V_{i}\right|\right) \\
& =\sum_{S \subseteq N} \lambda(S) v(S)+\sum_{i \in N} 2 v(N)\left|V_{i}\right| \\
& =\sum_{S \subseteq N} \lambda(S) v(S)+2 v(N) \cdot|V| \\
& >v(N)+2 v(N) \cdot|V| \\
& =\bar{v}(\bar{N}) .
\end{aligned}
$$

Therefore $\operatorname{core}(\bar{N}, \bar{v})=\emptyset$. This completes the proof of Theorem 3

3 The Proofs of Theorems 4 and 5

In this section we give the proofs of Theorems 4 and 5 To prove Theorem 4 we need an additional result as a lemma; a similar construction was used by Plesnik 30 to solve a constrained matching problem. Note that in the lemma we allow arbitrary edge weightings and thus \mathcal{M} is the set of maximum weight matchings. Hence, the lemma is a slightly more general result than we strictly need.

Lemma 1. Given a partitioned matching game (N, v) on a graph $G=(V, E)$ with a positive edge weighting w and and partition \mathcal{V} of V, and intervals I_{1}, \ldots, I_{n}, it is possible in $O\left(|V|^{3}\right)$-time to decide if there exists a matching $M \in \mathcal{M}$ with $s_{p}(M) \in I_{p}$ for $p=1, \ldots, n$, and to find such a matching (if it exists).

Proof. First assume that the intervals I_{1}, \ldots, I_{n} are closed. For $p=1, \ldots, n$, we let $I_{p}=\left[a_{p}, b_{p}\right]$, where we assume without loss of generality that $b_{p} \leq\left|V_{p}\right|$. We extend (G, w) to a weighted graph (\bar{G}, \bar{w}) in linear time as follows. For $p=1, \ldots, n$, we add a set B_{p} of $\left|V_{p}\right|-b_{p}$ new vertices, each of them joined to all vertices of V_{p} by edges of weight $\bar{w}_{e}=0$. We also introduce a set A_{p} of $b_{p}-a_{p}$
new vertices that are completely joined to all vertices of V_{p} by edges of weight $\bar{w}_{e}=0$. In addition, all vertices in $\bigcup_{p} A_{p}$ are joined to each other by edges of weight $\bar{w}_{e}=0$. The original edges $e \in E$ in G keep their (original) weights, that is, $\bar{w}_{e}=w_{e}$. If the total number of vertices is odd, we add an additional vertex \bar{v} and join it by zero weight edges to all vertices of $\bigcup_{p} A_{p}$. This completes the description of (\bar{G}, \bar{w}). Note that $|V(\bar{G})| \leq 2|V|$.

Now, let w^{*} be the maximum weight of a matching in G. Let \bar{w}^{*} denote the maximum weight of a perfect matching in \bar{G}. Note that we can compote w^{*} and \bar{w}^{*}, and corresponding matchings, in $O\left(|V|^{3}\right)$ time [17]. To prove the lemma, it suffices to show there is a matching $M \in \mathcal{M}$ with $s_{p}(M) \in\left[a_{p}, b_{p}\right]$ for $p=1, \ldots, n$ if and only if $\bar{w}^{*}=w^{*}$.
$" \Rightarrow:$ " Suppose there is a matching $M \in \mathcal{M}$ with $s_{p}(M) \in\left[a_{p}, b_{p}\right]$ for $p=1, \ldots, n$. As $M \in \mathcal{M}$, we have $w(M)=w^{*}$. As $s_{p}(M) \leq b_{p}$, we can match all vertices of B_{p} to V_{p} by all zero weight edges. Finally, since $s_{p}(M) \geq a_{p}$, we can match the $b_{p}-s_{p}(M) \leq b_{p}-a_{p}$ remaining vertices in V_{p} to vertices from A_{p}. Thus all vertices of V_{p} will be matched. If after doing this for every $p \in\{1, \ldots, n\}$, there still exist unmatched vertices in $\bigcup_{p} A_{p}$, then we match these to each other and, should their number be odd, to the extra vertex \bar{v}. This yields a perfect matching in \bar{G} of weight \bar{w}^{*}.
$" \Leftarrow: "$ Suppose $\bar{w}^{*}=w^{*}$. Let \bar{M} be a corresponding perfect matching in \bar{G} of weight \bar{w}^{*}. Let $M:=\bar{M} \cap E$ denote the corresponding matching in G. As \bar{M} matches all vertices of B_{p} into V_{p}, we know that M leaves at least $\left|V_{p}\right|-b_{p}$ vertices unmatched. Hence, $s_{p}(M) \leq b_{p}$ as required. Similarly, since all vertices of V_{p} are matched by \bar{M} and at most $\left|V_{p}\right|-b_{p}+b_{p}-a_{p}=\left|V_{p}\right|-a_{p}$ vertices in V_{p} can be matched to $B_{p} \cup A_{p}$, we find that M matches at least a_{p} vertices in V_{p}. Hence, $s_{p}(M) \geq a_{p}$, as required.

Now suppose we are given a set of intervals $I_{1}, \ldots I_{n}$, some of which are open instead of closed. Let I_{p} be an open interval. Recall that the s-values are sizes of subsets of matching edges and thus are integers. Hence, we may replace I_{p} by the largest closed interval with integer end-points contained in I_{p} if this closed interval exists. If not, then a matching $M \in \mathcal{M}$ with $s_{p}(M) \in I_{p}$ does not exist.

Let (N, v) be a partitioned matching game with a set V of patient-donor pairs. Recall that \mathcal{M} denotes the set of maximum matchings in the corresponding (undirected) compatibility graph G, and let x be an allocation. Using Lemma 1, our algorithm Lex-Min computes for a partitioned matching game (N, v) and allocation x, values d_{1}, \ldots, d_{t} with $d_{1}>\ldots>d_{t}$ for some integer $t \geq 1$, and, as we will prove, returns a matching $M \in \mathcal{M}$ that is lexicographically minimal for x.

Lex-Min

input : a partitioned matching game (N, v) and an allocation x
output : a matching $M \in \mathcal{M}$ that is lexicographically minimal for x.
Step 1. Compute the smallest number $d_{1} \geq 0$ such that there exists a matching $M \in \mathcal{M}$ with $\left|x_{p}-s_{p}(M)\right| \leq d_{1}$ for all $p \in N$.
Step 2. Compute a minimal set $N_{1} \subseteq N$ (with respect to set inclusion) such that there exists a matching $M \in \mathcal{M}$ with

$$
\begin{array}{lr}
\left|x_{p}-s_{p}(M)\right|=d_{1} & \text { for all } p \in N_{1} \\
\left|x_{p}-s_{p}(M)\right|<d_{1} & \text { for all } p \in N \backslash N_{1} .
\end{array}
$$

Step 3. Proceed in a similar way for $t \geq 1$:

- while $N_{1} \cup \cdots \cup N_{t} \neq N$ do
- $t \leftarrow t+1$.
- $d_{t} \leftarrow$ smallest d such that there exists a matching $M \in \mathcal{M}$ with

$$
\begin{array}{lr}
\left|x_{p}-s_{p}(M)\right|=d_{j} & \text { for all } p \in N_{j}, j \leq t-1 \\
\left|x_{p}-s_{p}(M)\right| \leq d_{t} & \text { for all } p \in N \backslash\left(N_{1} \cup \cdots \cup N_{t-1}\right)
\end{array}
$$

- $N_{t} \leftarrow$ inclusion minimal subset of $N \backslash\left(N_{1} \cup \cdots \cup N_{t-1}\right)$ such that there exists a matching $M \in \mathcal{M}$ with

$$
\begin{array}{rr}
\left|x_{p}-s_{p}(M)\right|=d_{j} & \text { for all } p \in N_{j}, j \leq t-1 \\
\left|x_{p}-s_{p}(M)\right|=d_{t} & \text { for all } p \in N_{t} \\
\left|x_{p}-s_{p}(M)\right|<d_{t} & \text { for all } p \in N \backslash\left(N_{1} \cup \cdots \cup N_{t}\right)
\end{array}
$$

Step 4. Return a matching $M \in \mathcal{M}$ with $\left|x_{p}-s_{p}(M)\right|=d_{j}$ for all $p \in N_{j}$ and all $j \in\{1, \ldots, t\}$.

We say that the countries in a set $N \backslash\left(N_{1} \cup \cdots \cup N_{t-1}\right)$ are unfinished and that a country is finished when it is placed in some N_{t}. Note that Lex-Min terminates as soon as all countries are finished.

We are now ready to prove Theorem 4. which we restate below.
Theorem 4 (restated). It is possible to find a lexicographically minimal maximum matching for a uniform partitioned matching game (N, v) and target allocation x in polynomial time.

Proof. To prove the theorem we will show that the Lex-Min algorithm is correct and runs in $O\left(n|V|^{3} \log |V|\right)$ time for a uniform partitioned matching game (N, v) with an allocation x.
Correctness proof. We first prove the correctness of Lex-Min. Let (N, v) be a uniform partitioned matching game on a graph $G=(V, E)$ with partition \mathcal{V}, and let x be an allocation. Let \bar{M} be the matching from \mathcal{M} that is returned by Lex-Min. We claim that \bar{M} is a lexicographically minimal matching for x. In order to prove this, let $M^{*} \in \mathcal{M}$ be a lexicographically minimal matching. Since both \bar{M} and M^{*} are maximum matchings, we have $M^{*}=\bar{M} \oplus \mathcal{P} \oplus \mathcal{C}$, where \mathcal{P} and \mathcal{C} are sets of even alternating paths and (even) alternating cycles, respectively. We make the additional assumption that among all the lexicographically minimal matchings in \mathcal{M}, the matching M^{*} is chosen as closest to \bar{M} in the sense that $|\mathcal{P}|+|\mathcal{C}|$ is as small as possible.

We claim that $\mathcal{C}=\emptyset$. Otherwise, we would switch M^{*} to another maximum matching along an alternating cycle $C \in \mathcal{C}$. This yields a new matching $M^{*} \oplus C \in \mathcal{M}$, which is again lexicographically minimal, as the switch does not affect any $s_{p}\left(M^{*}\right)$. Moreover, $M^{*} \oplus C$ is closer to \bar{M}, contradictioning our choice of M^{*}. Hence, there exists a disjoint union of paths P_{1}, \ldots, P_{k} such that $M^{*}=\bar{M} \oplus P_{1} \oplus \cdots \oplus P_{k}$. We claim that each P_{j} has endpoints in different countries; otherwise switching from M^{*} to \bar{M} along P_{j} would not affect any $s_{p}\left(M^{*}\right)$ and so again leads to a new lexicographically minimal matching closer to \bar{M}.

Let $d_{1}^{*}>d_{2}^{*}>\ldots$ denote the different values of $\left|x_{p}-s_{p}\left(M^{*}\right)\right|$ and let $N_{j}^{*} \subseteq N$ denote the corresponding sets of players $p \in N$ with $\left|x_{p}-s_{p}\left(M^{*}\right)\right|=d_{j}^{*}$. We prove by induction on t that for every t, it holds that $d_{t}^{*}=d_{t}$ and $N_{t}^{*}=N_{t}$, which implies that $M^{*}=\bar{M}$ and thus \bar{M} is lexicographically minimal. Let $t=1$. In Claims 1 and 2 , we prove that $d_{1}^{*}=d_{1}$ and $N_{1}^{*}=N_{1}$.
Claim 1: $d_{1}^{*}=d_{1}$.
Proof: As M^{*} is lexicographically minimal, $d_{1}^{*} \leq d_{1}$. If $d_{1}^{*}<d_{1}$, then d_{1} was not chosen as small as possible, since $M=M^{*}$ satisfies $\left|x_{p}-s_{p}(M)\right| \leq d_{1}^{*}$ for every $p \in N$. Hence $d_{1}^{*}=d_{1}$.
Claim 2: $N_{1}^{*}=N_{1}$.
Proof: If $N_{1}^{*} \subsetneq N_{1}$, then N_{1} is not minimal, as $\left|x_{p}-s_{p}\left(M^{*}\right)\right| \leq d_{1}^{*}=d_{1}$ for $p \in N_{1}^{*}$ and $\left|x_{p}-s_{p}\left(M^{*}\right)\right|<d_{1}^{*}=d_{1}$ for $p \in N \backslash N_{1}^{*}$. This contradicts Step 2 of Lex-Min. Hence, $N_{1}^{*} \nsubseteq N_{1}$. Let $p_{0} \in N_{1}^{*} \backslash N_{1}$. So, $\left|x_{p_{0}}-s_{p_{0}}\left(M^{*}\right)\right|=d_{1}^{*}=d_{1}>\left|x_{p_{0}}-s_{p_{0}}(\bar{M})\right|$. We distinguish two cases.

Case 1. $s_{p_{0}}\left(M^{*}\right)=x_{p_{0}}+d_{1}^{*}$.
Then $s_{p_{0}}\left(M^{*}\right)>s_{p_{0}}(\bar{M}) \geq 0$, so there exists an even path, say, P_{1} starting in $V_{p_{0}}$ with an M^{*}-edge and ending in some $V_{p_{1}}$ with an \bar{M}-edge. Recall that the endpoints of P_{1} are in different countries, hence $p_{1} \neq p_{0}$. Note that replacing M^{*} by $M^{*} \oplus P_{1}$ would decrease $s_{p_{0}}\left(M^{*}\right)$ and increase $s_{p_{1}}\left(M^{*}\right)$.

Assume first that $s_{p_{1}}\left(M^{*}\right) \geq s_{p_{1}}(\bar{M})$. As P_{1} ends in $V_{p_{1}}$, we have $s_{p_{1}}(\bar{M}) \geq 1$. Hence, there exists an alternating path, say \bar{P}_{2}, that starts with an M^{*}-edge in $V_{p_{1}}$ and ends with an \bar{M}-edge in some $\underline{V_{p_{2}}}, p_{2} \neq p_{1}$. If $p_{2}=p_{0}$, then $M^{*} \oplus P_{1} \oplus P_{2}$ would be lexicographically minimal and closer to \bar{M}, a contradiction. Hence $p_{2} \notin\left\{p_{0}, p_{1}\right\}$ and in case $s_{p_{2}}\left(M^{*}\right) \geq s_{p_{2}}(\bar{M})$, we may continue to construct a sequence $p_{0}, p_{1}, p_{2}, \ldots$ in this way. Note that whenever we run into a cycle, that is, when $p_{s}=p_{r}$ for some $r>s$, then we get a contradiction by observing that $M^{*} \oplus P_{r+1} \oplus \cdots \oplus P_{s}$ is also lexicographically minimal (indeed switching M^{*} to \bar{M} along P_{r+1}, \ldots, P_{s} does not affect any $s_{p}\left(M^{*}\right)$) and closer to \bar{M}. Hence, eventually, our sequence $p_{0}, p_{1}, \ldots, p_{r}$ must end up with $s_{p_{r}}\left(M^{*}\right)<s_{p_{r}}(\bar{M})$. We then derive that $s_{p_{r}}\left(M^{*} \oplus P_{1} \oplus \cdots \oplus P_{r}\right) \leq s_{p_{r}}(\bar{M}) \leq x_{p_{r}}+d_{1}$. If $p_{r} \notin N_{1}$, then we even get $s_{p_{r}}\left(M^{*} \oplus P_{1} \oplus \cdots \oplus P_{r}\right) \leq s_{p_{r}}(\bar{M})<x_{p_{r}}+d_{1}$. We now define the matching $M^{\prime}:=M^{*} \oplus P_{1} \oplus \cdots \oplus P_{r}$. Note that M^{\prime} is a maximum matching closer to \bar{M}. To obtain a contradiction with our choice of M^{*} it remains to show that M^{\prime} is lexicographically minimal.

We first consider $p=p_{r}$. We have $s_{p_{r}}\left(M^{\prime}\right)=s_{p_{r}}\left(M^{*}\right)+1 \geq x_{p_{r}}-d_{1}+1>x_{p_{r}}-d_{1}$. Combining this with the upper bound found above, we obtain

$$
\begin{gather*}
x_{p_{r}}-d_{1}<s_{p_{r}}\left(M^{\prime}\right) \leq x_{p_{r}}+d_{1} \text { if } p_{r} \in N_{1} \tag{1}\\
x_{p_{r}}-d_{1}<s_{p_{r}}\left(M^{\prime}\right)<x_{p_{r}}+d_{1} \text { if } p_{r} \notin N_{1}
\end{gather*}
$$

For $p=p_{0}$, we have that $s_{p_{0}}\left(M^{\prime}\right)=s_{p_{0}}\left(M^{*}\right)-1=x_{p_{0}}+d_{1}-1$, where the last equality holds because $p_{0} \in N_{1}^{*}$. Hence, we found that

$$
\begin{equation*}
\left|s_{p_{0}}\left(M^{\prime}\right)-x_{p_{0}}\right|=d_{1}-1 \tag{2}
\end{equation*}
$$

From (11) and (21) and the fact that $\left|s_{p}\left(M^{\prime}\right)-x_{p}\right|=\left|s_{p}\left(M^{*}\right)-x_{p}\right|$ if $p \notin\left\{p_{0}, p_{r}\right\}$, we conclude that either M^{\prime} is lexicographically minimal, which yields our contradiction, or $p_{r} \in N_{1}$ and $s_{p_{r}}\left(M^{\prime}\right)=$ $x_{p_{r}}+d_{1}$. Assume that the latter case holds. Then we have $s_{p_{r}}\left(M^{*}\right)=s_{p_{r}}\left(M^{\prime}\right)-1=x_{p_{r}}+d_{1}-1$. However, then M^{*} and M^{\prime} are symmetric with respect to p_{0} and p_{r}, namely, $\left|s_{p_{0}}\left(M^{*}\right)-x_{p_{0}}\right|=$ $d_{1}=\left|s_{p_{r}}\left(M^{\prime}\right)-x_{p_{r}}\right|$ and $\left|s_{p_{r}}\left(M^{*}\right)-x_{p_{r}}\right|=\left|d_{1}-1\right|=\left|s_{p_{0}}\left(M^{\prime}\right)-x_{p_{0}}\right|$. Combining these equalities with the fact that $\left|s_{p}\left(M^{\prime}\right)-x_{p}\right|=\left|s_{p}\left(M^{*}\right)-x_{p}\right|$ if $p \notin\left\{p_{0}, p_{r}\right\}$ implies that M^{\prime} is lexicographically minimal, our desired contradiction. Hence, $N_{1}^{*} \backslash N_{1}=\emptyset$. As $N_{1}^{*} \nsubseteq N_{1}$, we conclude that $N_{1}^{*}=N_{1}$.

Case 2. $s_{p_{0}}\left(M^{*}\right)=x_{p_{0}}-d_{1}^{*}$.
In this case we have $s_{p_{0}}\left(M^{*}\right)<s_{p_{0}}(\bar{M})$. Hence, there must exist an alternating path P_{1} that starts in $V_{p_{0}}$ with an \bar{M}-edge and that ends in some $V_{p_{1}}$ with an M^{*}-edge. Just as in Case 1, it holds that $p_{1} \neq p_{0}$. If $s_{p_{1}}\left(M^{*}\right) \leq s_{p_{1}}(\bar{M})$, we may continue with an alternating path P_{2} starting from $V_{p_{1}}$ and ending in some $V_{p_{2}}$ with $p_{2} \notin\left\{p_{0}, p_{1}\right\}$, and continuing in this way we eventually end up with a sequence $p_{0}, p_{1}, \ldots, p_{r}$ such that $s_{p_{r}}\left(M^{*}\right)>s_{p_{r}}(\bar{M})$. Then $M^{\prime}:=M^{*} \oplus P_{1} \cdots \oplus P_{r}$ has $s_{p_{0}}\left(M^{\prime}\right)=s_{p_{0}}\left(M^{*}\right)+1$ and $s_{p_{r}}\left(M^{\prime}\right)=s_{p_{r}}\left(M^{*}\right)-1$. By the same arguments that we used in Case 1, we prove that M^{\prime} is a maximum matching that is lexicographically minimal and that is closer to \bar{M} than M^{*} is. This contradicts our choice of M^{*}, and we have proven Claim 2.

Now let $t \geq 2$. Assume that $d_{1}^{*}=d_{1}, \ldots, d_{t-1}^{*}=d_{t-1}$ and $N_{1}^{*}=N_{1}, \ldots, N_{t-1}^{*}=N_{t-1}$. By using the same arguments as in the proof of Claim 1, we find that $d_{t}^{*}=d_{t}$. By using the same arguments as in the proof of Claim 2, we find that $N_{t}^{*} \nsubseteq N_{t}$. We will now show that $N_{t}^{*}=N_{t}$. We consider a country $p_{0} \in N_{t}^{*} \backslash N_{t}$ and split the proof into two cases similar to Cases 1 and 2 for the case $t=1$, namely when $s_{p_{0}}\left(M^{*}\right)=x_{p_{0}}+d_{1}^{*}$ and $s_{p_{0}}\left(M^{*}\right)=x_{p_{0}}-d_{1}^{*}$. We will only show the first case in detail, as the proof of the other case is similar. Hence, from now on we assume that $s_{p_{0}}\left(M^{*}\right)=x_{p_{0}}+d_{t}^{*}$.

We know that $p_{0} \in N_{t}^{*}$, so $p_{0} \notin N_{1}^{*} \cup \cdots \cup N_{t-1}^{*}=N_{1} \cup \cdots \cup N_{t-1}$. Hence $s_{p_{0}}(\bar{M}) \leq x_{p_{0}}+d_{t}$, and $p_{0} \notin N_{t}$ implies $s_{p_{0}}(\bar{M})<x_{p_{0}}+d_{t}$, so that $s_{p_{0}}\left(M^{*}\right)>s_{p_{0}}(\bar{M})$. So there is an alternating
path P_{1} starting in $V_{p_{0}}$ with an M^{*}-edge and ending in some $V_{p_{1}}$ with an \bar{M}-edge. Again, we may assume that $p_{1} \neq p_{0}$. If $s_{p_{1}}\left(M^{*}\right) \geq s_{p_{1}}(\bar{M})$, then there must be some alternating P_{2} starting in $V_{p_{1}}$ with an M^{*}-edge and leading to some $V_{p_{2}}$ with $p_{2} \notin\left\{p_{0}, p_{1}\right\}$ and so on, until eventually we obtain a sequence $p_{0}, p_{1}, \ldots, p_{r}$ with $s_{p_{r}}\left(M^{*}\right)<s_{p_{r}}(\bar{M})$.

As before, we let $M^{\prime}:=M^{*} \oplus P_{1} \cdots \oplus P_{r}$ and note that $M^{\prime} \in \mathcal{M}$ is closer to \bar{M} than M^{*} is. Hence, to obtain a contradiction, it remains to show that M^{\prime} is lexicographically minimal. As $p_{0} \notin N_{1} \cup \cdots \cup N_{t}$, we find that $s_{p_{0}}\left(M^{\prime}\right)=s_{p_{0}}\left(M^{*}\right)-1 \geq s_{p_{0}}(\bar{M})>x_{p_{0}}-d_{t}$. On the other hand, $s_{p_{0}}\left(M^{\prime}\right)<s_{p_{0}}\left(M^{*}\right)=x_{p_{0}}+d_{t}$. Hence

$$
\begin{equation*}
\left|s_{p_{0}}\left(M^{\prime}\right)-x_{p_{0}}\right|<d_{t} \tag{3}
\end{equation*}
$$

Now consider $p=p_{r}$. We first rule out that $p_{r} \in N_{1} \cup \cdots \cup N_{t-1}$. Assume to the contrary that $p_{r} \in N_{j}$ for some $j \in\{1, \ldots, t-1\}$. Then as lower bound we have $s_{p_{r}}\left(M^{\prime}\right)=s_{p_{r}}\left(M^{*}\right)+1 \geq$ $x_{p_{r}}-d_{j}+1>x_{p_{r}}-d_{j}$, and as upper bound, $s_{p_{r}}\left(M^{\prime}\right)=s_{p_{r}}\left(M^{*}\right)+1 \leq s_{p_{r}}(\bar{M}) \leq x_{p_{r}}+d_{j}$. Hence,

$$
\begin{equation*}
\left|s_{p_{r}}\left(M^{\prime}\right)-x_{p_{r}}\right| \leq d_{j} \tag{4}
\end{equation*}
$$

Inequality (4), together with (3) and the fact that $\left|s_{p}\left(M^{\prime}\right)-x_{i}\right|=\left|s_{p}\left(M^{*}\right)-x_{p}\right|$ for $p \notin\left\{p_{0}, p_{r}\right\}$ shows that M^{\prime} is lexicographically smaller than M^{*}, a contradiction. We conclude that $p_{r} \notin$ $N_{1} \cup \cdots \cup N_{t-1}$.

We now have $s_{p_{r}}(\bar{M}) \leq x_{p_{r}}+d_{t}$ if $p_{r} \in N_{t}$ and $s_{p_{r}}(\bar{M})<x_{p_{r}}+d_{t}$ if $p_{r} \notin N_{t}$. Hence, we can repeat the arguments that we used for the case where $t=1$ to obtain our contradiction. This completes the correctness proof of Lex-Min.
Running time analysis. As x_{p} is fixed and $s_{p}(M)$ is an integer between 0 and $|V| / 2$, there are $O(|V|)$ values for $\left|x_{p}-s_{p}(M)\right|$. Hence, we can find d_{t} by binary search in $O(\log |V|)$ time. This requires $O(\log |V|)$ applications of Lemma 1 each of which taking time $O\left(|V|^{3}\right)$. So, finding a d_{t} takes $O\left(|V|^{3} \log |V|\right)$ time. Each time we find a d_{t}, the number of finished countries increases by at least one. Hence, as the number of countries is n, we find that the total running time of Lex-Min is $O\left(n|V|^{3} \log |V|\right)$.

We now give the proof of Theorem [5. In our proof we use exponentially increasing weights to minimize deviations from a target solution in a lexicographic way. This is similar in nature to techniques used in the literature for representing lexicographic preferences of agens over bundles in many-to-one allocation problems, see, for example, [2].

Theorem 5(restated). It is possible to find a lexicographically minimal maximum weight matching for a directed partitioned matching game (N, v) of width 1 and target allocation x in polynomial time.

Proof. Assume that our directed compatibility graph is $\bar{G}=(V, A)$, and our undirected compatibility graph is $G=(V, E)$, where $i j \in E$ if both (i, j) and (j, i) are arcs in A. Extend G to a complete graph by adding zero-weight edges to it; note that a lexicographically minimal maximum weight matching in the extended graph yields a lexicographically minimal maximum weight matching in G if we forget its newly added zero-weight edges. To keep notation simple, from now on we will assume that G is a complete graph.

Furthermore, if $|V|$ is odd, then we add a dummy vertex v to G with target allocation $x_{v}=$ 0 . This still does not change the structure of the lexicographically minimal maximum weight matchings, however, now each of them can be extended to a lexicographically minimal maximum weight perfect matching by adding some zero-weight edges to it. Because of this, from now on we focus on this problem in a weighted complete graph with an even number of vertices.

For a target allocation x, we create an edge weighting w^{x} of G where the weight of each edge will be a vector from \mathbb{R}^{2}, that is, $w^{x}(e)=(\alpha, \beta)$, where $w_{1}^{x}(e)=\alpha$ and $w_{2}^{x}(e)=\beta$ are both real
numbers. We can add or subtract two vectors coordinatewise, and compare them lexicographically, i.e., $w<w^{\prime}$ if $w_{1}<w_{1}^{\prime}$ or $w_{1}=w_{1}^{\prime}$ and $w_{2}<w_{2}^{\prime}$.

For every edge $p q \in E$, we let $w_{1}^{x}(p q)=w_{p q}+w_{q p}$. This is to ensure that the maximum weight matching according to w^{x} gives a maximum weight according to w.

To define $w_{2}^{x}(p q)$, we first let $\delta_{p q}^{x}=\left|x_{p}-w_{q p}\right|$ for all ordered pairs $p, q \in V$. We introduce a vector Δ^{x} that contains the $n(n-1)$ values of δ^{x} in a weakly increasing order. Let $r_{p q}$ denote the (average) rank of $\delta_{p q}^{x}$ in Δ^{x}, meaning that if there is a tie from position k to position l in Δ^{x}, then each of these elements will have rank $\frac{k+l}{2}$. Define $w_{2}^{x}(p q)=-2^{r_{p q}}-2^{r_{q p}}$ for all $p q \in E$.

The w weight of a matching M is $\sum_{p q \in M} w_{p q}+w_{q p}=\sum_{p q \in M} w_{1}^{x}(p q)$. If this latter sum is maximized by M, we can conclude that M has maximum weight.

Similarly, let $d(M)=\left(\left|x_{p_{1}}-u_{p_{1}}(M)\right|, \ldots,\left|x_{p_{n}}-u_{p_{n}}(M)\right|\right)$ be the deviation vector of the perfect matching M obtained by reordering the components $\left|x_{p}-u_{p}(M)\right|$ non-increasingly. If the deviation vector of some other perfect matching M^{\prime} is lexicographically larger than $d(M)$, then

$$
\sum_{p q \in M^{\prime}} w_{2}^{x}(p q)<\sum_{p q \in M} w_{2}^{x}(p q)=\sum_{p \in V, p q \in M}-2^{r_{p q}}
$$

Indeed, the first few terms in $\sum_{p \in V, p q \in M^{\prime}}-2^{r_{p q}}$ are the same as in $\sum_{p \in V, p q \in M}-2^{r_{p q}}$, until we reach a term that is larger in M, and by the exponential growth of $2^{r_{p q}}$ this single term is even larger than all further terms in M^{\prime}. Thus, if $\sum_{p q \in M} w_{p q}^{x}(2)$ is maximized by M among some perfect matchings, we can conclude that M is lexicographically minimal among them.

We can use this for the perfect matchings that maximize $\sum_{p q \in M} w_{1}^{x}(p q)$, to conclude that a maximum weight perfect matching according to w^{x} is a lexicographically minimal maximum weight perfect matching according to w. Since we can find a maximum weight perfect matching according to w^{x} by running the blossom algorithm of Edmonds [17] whose running time is $O\left(n^{3}\right)$ (independent of the weight $\sqrt[3]{ }$), we are done.

4 The Proofs of Theorems 6-9

In this section we prove Theorems 6.9. For the first three theorems we will reduce from one of the following two problems. The problem Partition is well-known to be NP-complete [18], and has as input a set of k integers a_{1}, \ldots, a_{k}. The question is whether there exists a set of indices $I \subseteq\{1, \ldots, k\}$ with

$$
a(I)=\frac{1}{2} \sum_{i=1}^{k} a_{i}
$$

The problem 3-Partition is to decide if we can partition a set of $3 k$ positive integers $a_{1}, \ldots, a_{3 k}$ with $\sum_{p=1}^{3 k} a_{p}=k c$, for some integer c, into k sets that each sum up to c. In contrast to Partition, the 3 -Partition problem is even strongly NP-complete [18] (so NP-complete when encoded in unary) even if $\frac{1}{4} c<a_{i}<\frac{1}{2} c$. The latter property ensures that each set in a solution has size exactly 3.

We can now start with giving the proofs, the first one of which is the proof of Theorem 6 .
Theorem6(restated). It is NP-hard to find a minimal maximum weight matching for a directed partitioned matching game (N, v) with $n=2$ and target allocation x.

Proof. We reduce from Partition. From an instance $\left(a_{1}, \ldots, a_{k}\right)$ of Partition we construct a partitioned matching game (N, v) with $n=2$. We define $V_{1}=\left\{v_{1}, \ldots, v_{k}, v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right\}$ and $V_{2}=$ $\left\{v_{1}^{\prime \prime}, \ldots, v_{k}^{\prime \prime}\right\}$. For $i=1, \ldots, k$ we have $\operatorname{arcs}\left(v_{i}, v_{i}^{\prime}\right),\left(v_{i}^{\prime}, v_{i}\right),\left(v_{i}, v_{i}^{\prime \prime}\right)$ and $\left(v_{i}^{\prime \prime}, v_{i}\right)$, each with weight

[^3]

Fig. 6. The construction of the (directed) compatibility graph in the proof of Theorem 6 for $k=3$.
a_{i}. Every maximum weight matching M matches each v_{i} with either v_{i}^{\prime} or $v_{i}^{\prime \prime}$. Matching v_{i} with v_{i}^{\prime} adds $2 a_{i}$ to u_{1} (and 0 to u_{2}), while matching v_{i} with $v_{i}^{\prime \prime}$ adds a_{i} to both u_{1} and u_{2}. Note that $v(N)=2 \sum_{j} a_{j}$. Let x be the allocation with $x_{1}=\frac{3}{2} \sum_{j} a_{j}$ and $x_{2}=\frac{1}{2} \sum_{j} a_{j}$. Then there exists a matching $M \in \mathcal{M}$ with $u_{1}(M)=x_{1}$ and $u_{2}(M)=x_{2}$ if and only if $\left(a_{1}, \ldots, a_{k}\right)$ is a yes-instance of Partition.

We now prove Theorem 7
Theorem 7 (restated). It is NP-hard to find a minimal maximum weight matching for a 2-sparse directed partitioned matching game (N, v) and target allocation x.

Proof. We reduce from 3-Partition. From an instance $\left(a_{1}, \ldots, a_{3 k}\right)$, such that $\sum_{p=1}^{3 k} a_{p}=k c$ for some integer c and $\frac{1}{4} c<a_{i}<\frac{1}{2} c$, we construct a directed partitioned matching game (N, v) on a (directed) compatibility graph $\bar{G}=(V, A)$ as follows (see also Fig. [7):

- We start with $3 k$ sources. That is, for $p=1, \ldots, k$, we define $S_{p}:=\left\{p, p^{\prime}, p^{\prime \prime}\right\}$ and $S:=\bigcup_{p} S_{p}$.
- We add a set of $3 k$ sinks $T:=\left\{z_{1}, \ldots, z_{3 k}\right\}$.
- We join every source to every sink by a path. That is, from each p (resp. p^{\prime} and $p^{\prime \prime}$) there is a path $P_{p q}$ (resp. $P_{p^{\prime} q}$ and $P_{p^{\prime \prime} q}$) to each z_{q} of (odd) length $2 a_{q}-1$. This gives a total number of $(3 k)^{2}$ pairwise internally vertex disjoint paths.
- Every two consecutive vertices on each path are joined by two opposite arcs of equal weight. The weights on each path alternate between L and $L+1$, starting and ending with opposite arcs of weight $L+1$, where L is a sufficiently large integer, say, $L>k c$.
- For $p=1, \ldots, k$, let $V_{p}=\left(\bigcup_{q} V\left(\left(P_{p q}\right) \cup V\left(P_{p^{\prime} q}\right) \cup V\left(P_{p^{\prime \prime} q}\right)\right)\right) \backslash T$, and let $V_{k+1}=T$.

Note that the edges of the underlying graph $G=(V, E)$ have either weight $2 L$ or $2(L+1)$. As $L>k c$, every maximum weight matching in G is perfect. More precisely, every maximum weight matching M of G looks as follows. Each edge has either weight $2 L$ or weight $2 L+2$. For $p=1, \ldots, k$ there is a path $P_{p q}$ from p to some z_{q}, a path $P_{p^{\prime} q^{\prime}}$ from p^{\prime} to some $z_{q^{\prime}}$, and a path $P_{p^{\prime \prime} q^{\prime \prime}}$ from $p^{\prime \prime}$ to some $z_{q^{\prime \prime}}$ that are completely matched in the sense that $M \cap P_{p q}$ is a perfect matching of $P_{p q}$, and the same holds for $P_{p q}^{\prime}$ and $P_{p q}^{\prime \prime}$. These paths contribute to $u_{p}(M)$ a total gain of

$$
\left(2\left(a_{q}-1\right)+1\right)(L+1)+\left(2\left(a_{q^{\prime}}-1\right)+1\right)(L+1)+\left(2\left(a_{q^{\prime \prime}}-1\right)+1\right)(L+1)=\left(2\left(a_{q}+a_{q^{\prime}}+a_{q^{\prime \prime}}\right)-3\right)(L+1)
$$

Fig. 7. The construction of the (directed) compatibility graph $\bar{G}=(V, A)$ in the proof of Theorem 7 when $k=2, a_{1}=3, a_{2}=2, a_{6}=4$. For clarity reasons, only three paths are displayed and the other 33 paths between sources and sinks have not been drawn.

For $p=1, \ldots, k$, there are also $3(k-1)$ paths from $\left\{p, p^{\prime}, p^{\prime \prime}\right\}$ to the remaining $3 k-3$ sinks in $T \backslash\left\{z_{q}, z_{q^{\prime}}, z_{q^{\prime \prime}}\right\}$ that start and end with a non-matching edge (and are otherwise M-alternating). These paths contribute to $u_{p}(M)$ a total of

$$
2 L\left(\sum_{r \notin\left\{q, q^{\prime}, q^{\prime \prime}\right\}}\left(a_{r}-1\right)\right)=2 L\left(\left(\sum_{r} a_{r}\right)-\left(a_{q}+a_{q^{\prime}}+a_{q^{\prime \prime}}\right)-(3 k-3)\right) .
$$

This means that for $p=1, \ldots, k$,

$$
u_{p}(M)=2\left(a_{q}+a_{q^{\prime}}+a_{q^{\prime \prime}}\right)+2 L\left(\sum a_{r}\right)-6 L(k-1)-3(L+1)
$$

Let x be the allocation with for $p=1, \ldots, k$,

$$
x_{p}=2 c+2 L\left(\sum a_{r}\right)-6 L(k-1)-3(L+1)
$$

and

$$
x_{k+1}=3 k(L+1) .
$$

We now observe that there is a matching $M \in \mathcal{M}$ with $u_{p}(M)=x_{p}$ for $p=1, \ldots, k+1$ if and only if $\left(a_{1}, \ldots, a_{3 k}\right)$ is a yes-instance of 3-PARTITIon. Moreover, as 3-Partition is strongly NP-complete, $a_{1}, \ldots, a_{3 k}$ can be represented in unary. Thus, the size of $\left(a_{1}, \ldots, a_{3 k}\right)$ is $k c$. Hence, (\bar{G}, w) has polynomial size.

We continue with the proof of Theorem 8
Theorem 8 (restated). It is NP-hard to find a minimal maximum weight matching for a 3-sparse compact directed partitioned matching game (N, v) with $n=2$ and target allocation x.

Proof. We reduce again from the NP-complete Partition problem [18. From a given instance $\left(a_{1}, \ldots, a_{k}\right)$ of Partition we construct a 3 -sparse compact partitioned matching game (N, v) of width 2. We assume without loss of generality that
$-k$ is even; else we just add $a_{k+1}=0$;

- the size of a solution I (if it exists) is $|I|=k / 2$; else we just add a large number to each a_{i};
- every a_{i} is odd; else we just replace every a_{i} by $2 a_{i}+1$.

The undirected compatibility graph $G=(V, E)$ for (N, v) is a disjoint union $C_{1}+\ldots+C_{k}$ of k cycles C_{1}, \ldots, C_{k}, where for $i \in\{1, \ldots, k\}, C_{i}$ has length $4 a_{i}+1$.

Let $C=C_{i}$ be an even undirected cycle of length $4 a_{i}+4$ in the compatibility graph $G=(V, E)$ for (N, v). For some sufficiently large integer L, say $L=\sum a_{i}$, we give each edge of C weight L, $K+1$ or $L+\frac{1}{2}$. We assume that in the corresponding directed compatibility graph $\bar{G}=(V, A)$,

Let e and \bar{e} be two edges of maximum distance from each other on C. Assign weights $w_{e}=L$ and $w_{\bar{e}}=L+1$ to these edges, where $L>0$ is large, say, $L=\sum a_{i}$. Weights w_{e} and $w_{\bar{e}}$ are assumed to be split equally to their corresponding two opposite arcs. Removing e and \bar{e} splits C into two paths P_{1} and P_{2} of length $2 a_{i}+1$ each. The edge weights on these two paths alternate between L and $L+1$ except for their last edge, which has weight $L+\frac{1}{2}$. More precisely, P_{1} starts with an edge (say, incident to e) of weight $L+1$ and continues alternating between edges of weight $L+1$ and L until its last edge (incident to \bar{e}) gets weight $L+\frac{1}{2}$ (instead of $L+1$). Similarly, P_{2} starts with an edge of weight L, incident to e, and alternates between weights $L+1$ and L until the last edge gets weight $L+\frac{1}{2}$ (instead of L). See Figure 8 for the case where $a_{i}=5$.

Fig. 8. $C=C_{i}$ for $a_{i}=5$ with edges e and \bar{e} in the middle.

We let U_{1} and U_{2} denote the vertex sets of P_{1} and P_{2}, respectively. For L suitably large, C has exactly two maximum weight matchings, namely its two complementary perfect matchings M and M^{\prime}, where M is the perfect matching that matches both e and \bar{e} and M^{\prime} is the complement of M. We compute:

$$
u_{1}(M)=\frac{1}{2} L+\frac{1}{2}(L+1)+a_{i} L=L\left(a_{i}+1\right)+\frac{1}{2}
$$

and

$$
u_{2}(M)=\frac{1}{2} L+\frac{1}{2}(L+1)+a_{i}(L+1)=L\left(a_{i}+1\right)+\frac{1}{2}+a_{i}
$$

while $u_{1}\left(M^{\prime}\right)=L\left(a_{i}+1\right)+\frac{1}{2}+a_{i}$, and $u_{2}\left(M^{\prime}\right)=L\left(a_{i}+1\right)+\frac{1}{2}$.
Recall that we have k such components C_{i}, each with two complementary maximum weight (perfect) matchings. So in the graph G consisting of these k components C_{i} we have 2^{k} maximum weight matchings, obtained by picking one of the two complementary M and \bar{M} in each C_{i}. Let V_{1} be the union of all the U_{1} s in each C_{i} and V_{2} be the union of all the U_{2} s. Consider the allocation x with

$$
x_{1}=x_{2}=L\left(\sum a_{i}+1\right)+\frac{1}{2} \sum a_{i}+k / 2
$$

and assume these can be realized by a suitable maximum weight matching. Let $I \subseteq\{1, \ldots, k\}$ be the set of indices i such that the matching picks M in C_{i}. With respect to this matching, V_{1} has utility $L \sum\left(a_{i}+1\right)+k / 2+\sum_{I} a_{i}$. Such a matching exists if and only if $\left(a_{1}, \ldots, a_{k}\right)$ is a yes-instance of Partition. This completes the reduction.

Each component C_{i} of the graph we construct has a description of length $O\left(\log \left(k a_{\max }\right)\right)$, where $a_{\max }$ denotes the maximum a_{i}; note that L is bounded by $\log \left(k a_{\max }\right)$ and the length of C_{i} is bounded by a_{i}. Hence, allowing compact descriptions, the weighted graph we constructed has size $O\left(k \log \left(k a_{\max }\right)\right)$, which is polynomial in the size of $\left(a_{1}, \ldots, a_{k}\right)$.

Finally, we prove Theorem 9
Theorem 9 (restated). Exact Perfect Matching and the problem of finding a minimal maximum weight matching for a (3-sparse) perfect directed partitioned matching game (with $n=2$) and target allocation x are polynomially equivalent.

Proof. First suppose that we can solve Exact Perfect Matching in polynomial time. Let (N, v) be a perfect directed partitioned matching game defined on (\bar{G}, w) with partition (V_{1}, V_{2}). Recall that we denote the underlying undirected graph corresponding to $\bar{G}=(V, A)$ by $G=(V, E)$. Let $\left(x_{1}, x_{2}\right)$ be an allocation. As G has a perfect matching by definition, we find that $x_{1}+x_{2}=|E|$. We need to check if there exists a matching $M \in \mathcal{M}$ (which will be perfect) with $u_{1}(M) \in I_{1}=$ $\left[x_{1}-\delta, x_{1}+\delta\right]$ and $u_{2}(M) \in I_{2}=\left[x_{2}-\delta, x_{2}+\delta\right]$ for some given $\delta \geq 0$.

Colour all edges of G with one end-vertex in V_{1} and the other one in V_{2} red. This gives us the set R. Colour all remaining edges blue, that is, let $B=E \backslash R$. We check for $k=1, \ldots,|R|$ whether there exists a perfect matching of G with exactly k red edges. This takes polynomial time by our assumption on Exact Perfect Matching. Each time we find a solution M we let ℓ_{i} be the number of (blue) edges with both end-vertices in V_{i} for $i=1,2$, and we check whether $\frac{2}{3} k+\ell_{1}$ belongs to I_{1} and $\frac{1}{3} k+\ell_{2}$ belongs to I_{2} (note that if k is fixed, then ℓ_{1} and ℓ_{2} are fixed as well).
Now suppose that we can find in polynomial time a minimal maximum weight matching for a perfect directed partitioned matching game and target allocation x. Let $G=(V, E)$ be an undirected graph with a partition (R, B) of E into red and blue edges forming, together with an integer $k \geq 0$, an instance of Exact Perfect Matching.

We subdivide each edge of G twice, that is, we replace each edge $e=i j$ with vertices i^{\prime}, j^{\prime} and edges $i i^{\prime}, i^{\prime} j^{\prime}, j^{\prime} j$. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the resulting graph, so $V^{\prime} \backslash V$ is the set of the $2|E|$ new vertices, which we call subdivision vertices. Any perfect matching M in G translates into a unique perfect matching M^{\prime} in G^{\prime}, and vice versa, Namely, for every $i j \in E$, we have $i j \in M$ if and only if $i i^{\prime}, j^{\prime} j \in M^{\prime}$, and also $i j \notin M$ if and only if $i^{\prime} j^{\prime} \in M^{\prime}$. We call M^{\prime} the transform of M. We let V_{1}^{\prime} be the set of the subdivision vertices on red edges in G, and we let $V_{2}^{\prime}=V^{\prime} \backslash V_{1}^{\prime}$. We let R^{\prime} denote the edges with one end-vertex in V_{1}^{\prime} and the other end-vertex in V_{2}^{\prime}. Then the transform M^{\prime} of a perfect matching M with exactly k edges in R has $2 k$ edges in R^{\prime}, and vice versa. To solve the latter problem, we define a perfect partitioned matching game corresponding to G^{\prime} and $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ and we choose $(2 k, 3|E|-2 k)$ as allocation. We now check if there exists a matching $M \in \mathcal{M}^{\prime}$ (the
set of perfect matchings of G^{\prime}) such that $u_{1}(M)=2 k$ and $u_{2}(M)=3|E|-2 k$. By our assumption we can do this in polynomial time.

5 Conclusions

We introduced a new class of cooperative games: partitioned matching games. We showed how we can use partitioned matching games to model international kidney exchange programmes. These programmes are seen as the next step in the medical field of organ transplantations [1237. We provided the theoretical basis for this application by proving a number of computational complexity results for partitioned matching games.

We found two sets of results. One set of results was about ensuring stability of the international collaboration. The aim was to choose in each round of the international programme a kidney transplant distribution as close as possible to some prescribed fair distribution for that round. Roughly speaking, we proved that this problem can be solved efficiently when transplant weights are equal, but otherwise the problem becomes quickly computationally hard. We pose the following two open problems; recall that for the second one we showed some partial results in Theorems 8 and (9).

1. Are there constants c and d such that the problem of finding a minimal maximum weight matching for a d-sparse partitioned matching game (N, v) with width c and target allocation x is NP-hard?
2. Are there constants n and d such that the problem of finding a minimal maximum weight matching for a d-sparse partitioned matching game (N, v) with $|N|=n$ and target allocation x is NP-hard?

In our other set of results, we linked the core of partitioned matching games to the core of b matching games. We resolved a complexity gap for computing core allocations of b-matching games. As a consequence we can settle the computational complexity for the three core-related problems P1-P3 for partitioned matching games as well (see also Table 1).

It is also interesting to consider other solution concepts for b-matching games and partitioned matching games, such as the nucleolus. Könemann, Pashkovich and Toth [24] proved that the nucleolus of a matching game can be computed in polynomial time. In contrast, Könemann, Toth and Zhou [26] proved that computing the nucleolus is NP-hard even for uniform b-assignment games with $b \leq 3$. We refer to 425I26] for some positive results (see also [5]), but determining the complexity of computing the nucleolus is still open for the following games (see also [26]):

1. b-matching games with $b \leq 2$,
2. partitioned matching games,
3. partitioned matching games with width $c \leq 2$, and
4. partitioned matching games with width $c \leq 3$.

References

1. D. J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges. Proc. EC 2007, pages 295-304, 2007.
2. H. Aziz, P. Biró, J. Lang, J. Lesca, and J. Monnot. Efficient reallocation under additive and responsive preferences. Theoretical Computer Science, 790:1-15, 2019.
3. H. Aziz, Á. Cseh, J. P. Dickerson, and D. C. McElfresh. Optimal kidney exchange with immunosuppressants. Proc. AAAI 2021, pages 21-29, 2021.
4. M. Bateni, M. Hajiaghayi, N. Immorlica, and H. Mahini. The cooperative game theory foundations of network bargaining games. Proc. ICALP 2010, LNCS, 6198:67-78, 2010.
5. M. Benedek, P. Biró, M. Johnson, D. Paulusma, and X. Ye. The complexity of matching games: A survey. CoRR, abs/2202.06898, 2022.
6. M. Benedek, P. Biró, W. Kern, and D. Paulusma. Computing balanced solutions for large international kidney exchange schemes. Proc. AAMAS 2022, pages 82-90, 2022.
7. P. Biró, M. Gyetvai, X. Klimentova, J. P. Pedroso, W. Pettersson, and A. Viana. Compensation scheme with Shapley value for multi-country kidney exchange programmes. Proc. ECMS 2020, pages 129-136, 2020.
8. P. Biró, B. Haase-Kromwijk, T. Andersson, and et al. Building kidney exchange programmes in Europe - An overview of exchange practice and activities. Transplantation, 103:1514-1522, 2019.
9. P. Biró, W. Kern, D. Pálvölgyi, and D. Paulusma. Generalized matching games for international kidney exchange. Proc. AAMAS 2019, pages 413-421, 2019.
10. P. Biró, W. Kern, and D. Paulusma. Computing solutions for matching games. International Journal of Game Theory, 41:75-90, 2012.
11. P. Biró, W. Kern, D. Paulusma, and P. Wojuteczky. The stable fixtures problem with payments. Games and Economic Behavior, 108:245-268, 2018.
12. G. A. Böhmig, J. Fronek, A. Slavcev, G. F. Fischer, G. Berlakovich, and O. Viklicky. Czech-Austrian kidney paired donation: first european cross-border living donor kidney exchange. Transplant International, 30:638-639, 2017.
13. O. N. Bondareva. Some applications of linear programming methods to the theory of cooperative games. Problemy Kybernetiki, 10:119-139, 1963.
14. M. Carvalho and A. Lodi. A theoretical and computational equilibria analysis of a multi-player kidney exchange program. European Journal of Operational Research, 305:373-385, 2023.
15. M. Carvalho, A. Lodi, J. P. Pedroso, and A. Viana. Nash equilibria in the two-player kidney exchange game. Mathematical Programming, 161:389-417, 2017.
16. X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial optimization games. Mathematics of Operations Research, 24:751-766, 1999.
17. J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Standards Section B, 69B:125-130, 1965.
18. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NPCompleteness. H. Freeman \& Co., New York, NY, USA, 1979.
19. L. Gourvès, J. Monnot, and F. Pascual. Cooperation in multiorganization matching. Algorithmic Operations Research, 7:111-124, 2013.
20. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1:169-197, 1981.
21. R. Gurjar, A. Korwar, J. Messner, and T. Thierauf. Exact perfect matching in complete graphs. $A C M$ Transactions on Computation Theory, 9:8:1-8:20, 2017.
22. L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Doklady, 20:191-194, 1979.
23. X. Klimentova, A. Viana, J. a. P. Pedroso, and N. Santos. Fairness models for multi-agent kidney exchange programmes. Omega, 102:102333, 2021.
24. J. Könemann, K. Pashkovich, and J. Toth. Computing the nucleolus of weighted cooperative matching games in polynomial time. Mathematical Programing, 183:555-581, 2020.
25. J. Könemann and J. Toth. A general framework for computing the nucleolus via dynamic programming. Proc. SAGT 2020, LNCS, 12283:307-321, 2020.
26. J. Könemann, J. Toth, and F. Zhou. On the complexity of nucleolus computation for bipartite bmatching games. Proc. SAGT 2021, LNCS, 12885:171-185, 2021.
27. T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic activities. Econometrica, 25:53-76, 1957.
28. K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7:105-113, 1987.
29. C. H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning tree problems. Journal of the ACM, 29:285-309, 1982.
30. J. Plesník. Constrained weighted matchings and edge coverings in graphs. Discrete Applied Mathematics, 92:229-241, 1999.
31. L. S. Shapley. On balanced sets and cores. Naval Research Logistics Quarterly, 14:453-460, 1967.
32. L. S. Shapley and M. Shubik. The assignment game I: The core. International Journal of Game Theory, 1:111-130, 1972.
33. M. Sotomayor. The multiple partners game. In Equilibrium and dynamics: essays in honor of David Gale. Macmillan Press Ltd, New York, 1992.
34. I. A. Stewart. On locating cubic subgraphs in bounded-degree connected bipartite graphs. Discrete Mathematics, 163:319-324, 1997.
35. Z. Sun, T. Todo, and T. Walsh. Fair pairwise exchange among groups. Proc. IJCAI 2021, pages 419-425, 2021.
36. W. T. Tutte. A short proof of the factor theorem for finite graphs. Canadian Journal of Mathematics, 6:347-352, 1954.
37. M. O. Valentín, M. Garcia, A. N. Costa, C. Bolotinha, L. Guirado, F. Vistoli, A. Breda, P. Fiaschetti, and B. Dominguez-Gil. International cooperation for kidney exchange success. Transplantation, 103:180-181, 2019.

[^0]: * Some results in this paper appeared in the proceedings of AAMAS 2019 [9 and AAMAS 2022 6]. We dedicate this paper to the memory of Walter Kern, who passed away in 2021. Benedek was supported by the National Research, Development and Innovation Office of Hungary (OTKA Grant No. K138945). Biró was supported by the Hungarian Scientific Research Fund (OTKA, Grant No. K143858) and by the Hungarian Academy of Sciences (Momentum Grant No. LP2021-2).

[^1]: ${ }^{1}$ Some countries allow $\ell=3$ or $\ell=4$, but in practice choosing $\ell=2$ is not uncommon due to lower risk levels (kidney transplants in a cycle must take place simultaneously) 8.

[^2]: ${ }^{2}$ The exact values of $w_{i j}$ and $w_{j i}=1-w_{i j}$ do not matter as long as they differ from $\frac{1}{2}$ on arcs between V_{1} and V_{2}. The case where $w \equiv \frac{1}{2}$ in \bar{G} corresponds to a partitioned matching game on an (undirected) uniform compatibility graph G, so Theorem 4 would hold.

[^3]: ${ }^{3}$ Note that these algorithms indeed work in any ordered abelian group; see this short argument by Emil Jeřábek: https://cstheory.stackexchange.com/a/52389/419.

