
ar
X

iv
:2

30
1.

13
18

1v
1

 [
cs

.G
T

]
 3

0
Ja

n
20

23

Partitioned Matching Games for International

Kidney Exchange ⋆

Márton Benedek1,2, Péter Biró1,2, Walter Kern3, Dömötör Pálvölgyi4, and Daniel Paulusma5

1 KRTK, Budapest, Hungary {peter.biro,marton.benedek}@krtk.hu
2 Corvinus University of Budapest, Budapest, Hungary

3 University of Twente, Enschede, The Netherlands w.kern@utwente.nl
4 MTA-ELTE Lendület, Budapest, Hungary domotorp@gmail.com

5 Durham University, Durham, UK daniel.paulusma@durham.ac.uk

Abstract. We introduce partitioned matching games as a suitable model for international
kidney exchange programmes, where in each round the total number of available kidney
transplants needs to be distributed amongst the participating countries in a “fair” way. A
partitioned matching game (N, v) is defined on a graph G = (V, E) with an edge weighting
w and a partition V = V1 ∪ · · · ∪ Vn. The player set is N = {1, . . . , n}, and player p ∈ N

owns the vertices in Vp. The value v(S) of a coalition S ⊆ N is the maximum weight of a
matching in the subgraph of G induced by the vertices owned by the players in S. If |Vp| = 1
for all p ∈ N , then we obtain the classical matching game. Let c = max{|Vp| | 1 ≤ p ≤ n} be
the width of (N, v). We prove that checking core non-emptiness is polynomial-time solvable
if c ≤ 2 but co-NP-hard if c ≤ 3. We do this via pinpointing a relationship with the known
class of b-matching games and completing the complexity classification on testing core non-
emptiness for b-matching games. With respect to our application, we prove a number of
complexity results on choosing, out of possibly many optimal solutions, one that leads to a
kidney transplant distribution that is as close as possible to some prescribed fair distribution.

Keywords. partitioned matching game; b-matching games; complexity classification; inter-
national kidney exchange.

1 Introduction

We consider two generalizations of a classical class of games in cooperative game theory, namely
matching games, which in turn generalize the well-known class of assignment games. One of the
two generalizations of matching games is the known class of b-matching games. The other one,
the class of partitioned matching games, is a new class of cooperative games introduced in this
paper. We show how these two generalizations are related to each other and justify the new class
of cooperative games by an emerging real-world application: international kidney exchange [12,37].
Partitioned matching games implicitly played a role in international kidney exchange through the
work of [7,23] and have recently been used as a basis for simulations in [6]. The goal of this paper
is to provide a strong theoretical basis for partitioned matching games by proving a number of
computational complexity results on computing core allocations and finding allocations close to
prescribed “fair” (core) allocations. We start with introducing the necessary basic terminology.

⋆ Some results in this paper appeared in the proceedings of AAMAS 2019 [9] and AAMAS 2022 [6]. We
dedicate this paper to the memory of Walter Kern, who passed away in 2021. Benedek was supported
by the National Research, Development and Innovation Office of Hungary (OTKA Grant No. K138945).
Biró was supported by the Hungarian Scientific Research Fund (OTKA, Grant No. K143858) and by
the Hungarian Academy of Sciences (Momentum Grant No. LP2021-2).

http://arxiv.org/abs/2301.13181v1

2 M. Benedek et al.

1

2

3

4

5

6

2

2

3
1

1

3

2

2

Fig. 1. An example [5] of a matching game (N, v) on a graph G = (V,E), so N = V . Note that v(N) = 7
and that the core of (N, v) is nonempty, e.g. the allocation x = (1

2
, 3

2
, 3

2
, 1, 2, 1

2
) belongs to the core.

1.1 Basic Terminology

A (cooperative) game is a pair (N, v), where N is a set of n players (agents) and v : 2N → R
is a value function with v(∅) = 0. A subset S ⊆ N is a coalition and the set N is the grand
coalition. For many natural games, it holds that v(N) ≥ v(S1) + · · · + v(Sr) for every possible
partition (S1, . . . , Sr) of N . Hence, the central problem is how to keep the grand coalition N stable
by distributing v(N) amongst the players of N in a “fair” way. Such distributions of v(N) are also
called allocations. That is, an allocation for a game (N, v) is a vector x ∈ RN with x(N) = v(N);
here, we write x(S) =

∑

p∈S xp for a subset S ⊆ N . A solution concept prescribes a set of fair
allocations for a game (N, v), where the notion of fairness depends on context.

One of the best-known solution concepts, the core of a game consists of all allocations x ∈ RN

satisfying x(S) ≥ v(S) for each S ⊆ N . Core allocations are highly desirable, as they offer no
incentive for a subset S of players to leave N and form a coalition on their own. So core allocations
ensure that the grand coalition N is stable. However, the core may be empty. Moreover, the
following three problems may be computationally hard for a class of cooperative games (assuming
a “compact” description of the input game, which is often, and also in our paper, a graph with an
edge weighting):

P1. determine if a given allocation x belongs to the core, or find a coalition S with x(S) < v(S),
P2. determine if the core is non-empty, and
P3. find an allocation in the core (if it is non-empty).

If P1 is polynomial-time solvable for some class of games, then so are P2 and P3 using the ellipsoid
method [20,22]. As the core of a game might be empty, other solution concepts are also considered.
Well-known examples of other solution concepts are the Shapley value and nucleolus (which are
both computationally hard to compute).

The input games we consider are defined on an undirected graphG = (V,E) with a positive edge
weighting w : E → R+; here, V is a set of vertices and E is a set of edges between pairs of distinct
vertices. Such a game is said to be uniform (or simple) if w ≡ 1. For a subset S ⊆ V , we let G[S]
denote the subgraph of G induced by S, that is, G[S] = (S, {uv ∈ E | u, v ∈ S}) is the graph
obtained from G after deleting all the vertices outside S. A graph is bipartite if its vertex set can
be partitioned into two sets A and B such that every edge joins a vertex in A to a vertex in B. A
matching M is a set of edges in a graph G such that no two edges of M have a common end-vertex.

A matching game defined on a graph G = (V,E) with a positive edge weighting w : E → R+ is
the game (N, v) where N = V and the value v(S) of a coalition S is equal to the maximum weight
w(M) =

∑

e∈M w(e) over all matchings M of G[S]; see Figure 1 for an example. Matching games
defined on bipartite graphs are commonly known as assignment games.

Partitioned Matching Games for International Kidney Exchange 3

Let G = (V,E) be a graph with a vertex function b : V → N+, which we call a capacity function.
A b-matching of G is a subset M ⊆ E such that each vertex p ∈ V is incident to at most b(p) edges
in M . Let w : E → R+ be an edge weighting of G. A b-matching game defined on (G, b, w) is the
game (N, v) where N = V and the value v(S) of a coalition S is the maximum weight w(M) over
all b-matchings M of G[S]. Note that if b ≡ 1, then we obtain a matching game. If G is bipartite,
then we speak of a b-assignment game.

In this paper we introduce the notion of a partitioned matching game. Let G = (V,E) be
a graph with an edge weighting w : E → R+. Let V = (V1, . . . , Vn) be a partition of V . A
partitioned matching game defined on (G,w,V) is the game (N, v) where N = {1, . . . , n} and the
value v(S) of a coalition S is the maximum weight w(M) over all matchings M of G[

⋃

p∈S Vp]. Let
c = max{|Vp| | 1 ≤ p ≤ n} be the width of (N, v). Note that if Vp = {p} for every p ∈ N , then we
obtain a matching game.

We observe that if (N, v) is a b-matching game or a partitioned matching game, then v(N) ≥
v(S1)+ · · ·+ v(Sr) for every possible partition (S1, . . . , Sr) of N . Hence, studying problems P1–P3
for both b-matching games and partitioned matching games is meaningful.

Before presenting our new results on P1–P3 for b-matching games and partitioned matching
games in Section 1.3, we first survey the known results on P1–P3 for b-assignment games and
b-matching games, including results for b ≡ 1, in Section 1.2. Afterwards, we describe the setting
of international kidney exchange as an application of partitioned matching games in Section 1.4.

1.2 Known Results for P1–P3 for Matching Games and Their Variants

It follows from results of Koopmans and Beckmann [27] and Shapley and Shubik [32] that the core
of every assignment game is non-empty. In fact, this holds even for b-assignments for any capacity
function b, as shown by Sotomayor [33]. However, the core of a matching game might be empty (for
example, if G is a triangle with w ≡ 1). Problem P1 is linear-time solvable for matching games: the
problem is equivalent to verifying whether for an allocation x, it holds that xp + xq ≥ w(pq) for
every edge pq ∈ E. Hence, problems P2 and P3 are polynomial-time solvable for matching games
(and thus also for assignment games). We refer to [10,16] for some alternative polynomial-time
algorithms for solving P2 and P3 on matching games.

Sotomayor [33] proved that P3 is polynomial-time solvable for b-assignment games. However,
Biró et al. [11] proved that P1 is co-NP-complete even for uniform 3-assignment games. They also
showed that for b ≤ 2, P1 (and so, P2 and P3) is polynomial-time solvable for b-matching games.

Table 1 summarizes the known results for problems P1–P3 for matching games and their vari-
ants (in this table we have also included our new results, which we explain below in detail). In
Section 5 we discuss future work. There, we also mention some results for other solution concepts.
For an in-depth discussion on complexity aspects of solution concepts for matching games and
their variants, we refer to the recent survey of Benedek et al. [5].

1.3 New Results for P1–P3 for the Two Generalizations of Matching Games

We start with the known generalization of matching games, namely the b-matching games. In
Section 2 we prove the following result, solving the only case left open in [11] (see also Table 1).

Theorem 1. P2 and P3 are co-NP-hard for uniform b-matching games if b ≤ 3.

For a capacity function b : V → N+, we let b∗ denote the maximum b(p)-value over all p ∈ V . In
Section 2 we also prove the following two theorems, which together show that there exists a close
relationship between b-matching games and partitioned matching games, our new generalization
of matching games.

Theorem 2. P1–P3 can be reduced in polynomial time from b-matching games to partitioned
matching games of width c = b∗, preserving uniformity.

4 M. Benedek et al.

problem P1 problem P2 problem P3

assignment games poly yes poly

matching games poly poly poly

b-assignment games: if b ≤ 2 poly yes poly
if b ≤ 3 coNPc yes poly

b-matching games: if b ≤ 2 poly poly poly
if b ≤ 3 coNPc coNPh coNPh

partitioned matching games: if c ≤ 2 poly poly poly

if c ≤ 3 coNPc coNPh coNPh

Table 1. Complexity dichotomies for the core (P1–P3), with the following short-hand notations, yes: all
instances are yes-instances; poly: polynomial-time; coNPc: co-NP-complete; and coNPh: co-NP-hard. The
new results of this paper are put in bold. The seven hardness results in the table hold even if w ≡ 1.

Theorem 3. P1–P3 can be reduced in polynomial time from partitioned matching games of width c
to b-matching games for some capacity function b with b∗ ≤ c.

Combining Theorems 1–3 with the aforementioned results of Biró et al. [11], which state that
P1–P3 are polynomial-time solvable for b-matching games if b ≤ 2 and that P1 is co-NP-complete
even for uniform b-assignment games if b ≤ 3, leads to the following dichotomy (see also Table 1).

Corollary 1. For c ≤ 2, P1–P3 are polynomial-time solvable for partitioned matching games
with width c, whereas for c ≤ 3, P1 is co-NP-complete, and P2–P3 are co-NP-hard for uniform
partitioned matching games.

1.4 An Application of Partitioned Matching Games

As a strong motivation for introducing partitioned matching games, we consider international kid-
ney exchange programmes. We explain these programmes below but note that partitioned matching
games can also be used to model other economic settings where multi-organizations control pools
of clients [19].

The most effective treatment for kidney patients is transplantation. The best long-term outcome
is to use living donors. A patient may have a willing donor, but the donor’s kidney will often be
rejected by the patient’s body if donor and patient are medically incompatible. Therefore, in the
last 30 years, an increasing number of countries have started to run a (national) Kidney Exchange
Programme (KEP) [8]. In such a programme, a patient and their incompatible donor are placed
in a pool with other patient-donor pairs. If donor d of patient p is compatible with patient p′ and
simultaneously, donor d′ of p′ is compatible with p, then the pairs (p, d) and (p′, d′) are said to be
compatible and a (2-way) exchange between (p, d) and (p′, d′) can take place. That is, the kidney
of donor d can be given to patient p′, and the kidney of donor d′ can be given to patient p.

KEPs operate in regular rounds, each time with an updated pool where some patient-donor
pairs may have left and new ones may have entered. Naturally, the goal of a KEP is to help in each
round as many patients as possible. For this goal, we construct for each round, the corresponding
(undirected) compatibility graph G as follows. First, we introduce a vertex ipd for each patient-
donor pair (p, d) in the pool. Next, we add an edge between two vertices i and j if and only if the
corresponding patient-donor pairs are compatible. We give each edge ij of G a weight w(ij) to
express the utility of an exchange between i and j; we set w ≡ 1 if we do not want to distinguish
between the utilities of any two exchanges.

It now remains to find a maximum weight matching of G, as such a matching corresponds to an
optimal set of exchanges or, if we had set w ≡ 1, to a largest set of exchanges in the patient-donor
pool. As we can find a maximum weight matching of a graph in polynomial time, we can find an
optimal solution for each round of a KEP in polynomial time.

Partitioned Matching Games for International Kidney Exchange 5

i2

i1

j2

j1

i3

1

1

1

3
2

2

11

5

i2

i1

j2

j1

i3

2

4

2

Fig. 2. Left: a directed computability graph G = (V,A) with a positive edge weighting w for a certain
round of an international KEP; note that G has a directed 4-vertex cycle, so in the corresponding KEP even
a 4-way exchange could take place. Right: the corresponding undirected compatibility graph G = (V,E)
(which is used when only 2-way exchanges are allowed).

We can generalize 2-way exchanges by defining the directed compatibility graph G = (V,A), in
which V consists of the patient-donor pairs and A consists of every arc (i, j) such that the donor
of pair i is compatible with the patient of pair j. Each arc (i, j) ∈ A may have an associated
weight wij expressing the utility of a kidney transplant involving the donor of i and the patient
of j; note that wij 6= wji is possible, should both arcs (i, j) and (j, i) exist in G. For ℓ ≥ 2, an ℓ-way
exchange corresponds to a directed ℓ-vertex cycle in a directed computability graph. It involves ℓ
distinct patient-donor pairs (p1, d1), . . . , (pℓ, dℓ), where for i ∈ {1, . . . , ℓ − 1}, donor di donates to
patient pi+1 and donor dℓ donates to patient p1. We refer to Figure 2 for an example. The same
figure also illustrates how we can obtain an undirected compatibility graph G = (V,E) from a
directed compatibility graph G = (V,A): we add an edge ij to E if and only if both (i, j) and (j, i)
are arcs in A and in that case we set

w(ij) = wij + wji.

Allowing ℓ-way exchanges for some ℓ > 2 leads to possibly more patients being treated. However,
Abraham, Blum and Sandholm [1] proved that already for ℓ = 3 it becomes NP-hard to find an
optimal solution for a round. We therefore set ℓ = 21, just like some related papers [14,15,35],
which we discuss later.

Nowadays, several countries are starting an international Kidney Exchange Programme (IKEP)
by merging the pools of their national KEPs; for example, Austria with the Czech Republic [12];
Denmark with Norway and Sweden; and Italy with Portugal and Spain [37]. This may lead to more
patients being helped. However, apart from a number of ethical and legal issues, which are beyond
the scope of this paper, we now have an additional issue that must be addressed. Namely, in order
to ensure full participation of the countries in the IKEP, it is crucial that proposed solutions will be
accepted by each of the participating countries. Otherwise countries may decide to leave the IKEP
at some point. So, in order for an IKEP to be successful, we need to ensure that the programme
is stable on the long term. This is a highly non-trivial issue, as we can illustrate even with the
following small example.

Example 1. Let G be a compatibility graph with vertices i1, i2, j and edges i1i2 and i2j with
weights 1− ǫ and 1 respectively, for some small ǫ. The weight 1− ǫ may have been obtained after
desensitization, which we explain below. Let V1 = {i1, i2} and V2 = {j}. The optimum solution
is an exchange between i2 and j with weight 1. However, the solution consisting of the exchange
between i1 and i2 (with weight 1− ǫ) is better for V1, as then both patients in the pairs i1 and i2
receive a kidney, and with more or less the same chance of success. ⋄

1 Some countries allow ℓ = 3 or ℓ = 4, but in practice choosing ℓ = 2 is not uncommon due to lower risk
levels (kidney transplants in a cycle must take place simultaneously) [8].

6 M. Benedek et al.

To ensure stability, Carvalho and Lodi [14] used a 2-round system with 2-way exchanges only: in
the first round each country selects an internal matching, and in the second round a maximum
matching is selected for the international exchanges. They gave a polynomial-time algorithm for
computing a Nash-equilibrium that maximizes the total number of transplants, improving the
previously known result of [15] for two countries. Sun et al. [35] also considered 2-way exchanges
only. They defined so-called selection ratios using various lower and upper target numbers of kidney
transplants for each country. In their setting, a solution is considered to be fair if the minimal ratio
across all countries is maximized. They also required a solution to be a maximum matching and
individually rational. They gave theoretical results specifying which models admit solutions with
all three properties and they provided polynomial-time algorithms for computing such solutions,
if they exist.

In contrast to [14,15,35], we model an IKEP as follows. Consider a directed compatibility graph
G = (V,A) with a positive arc weighting w. Let V = V1∪· · ·∪Vn be a partition of V . Let G = (V,E)
be the corresponding undirected compatibility graph. If w ≡ 1, then we model a round of an IKEP
of a set N of n countries as a partitioned matching game (N, v) defined on (G,w) with partition V .
Else, we consider the directed partitioned matching game (N, v) on (G,w) with partition V ; so
for each S ⊆ N , we have that v(S) =

∑

p∈S

∑

i,j:ij∈M,j∈Vp
wij , where M is a maximum weight

matching in G[S]. We define the following set:

M = {M |M is a maximum weight matching of G}.

Note that M is the set of maximum matchings of G if w ≡ 1 on G. We note also that M may
consist of only a few matchings, or even a unique matching. The latter is highly likely when weights
w(ij) take many different values at random [28]. However, in our context, this will not be the case.
Compatibility graphs will usually have only a small number of different weights. The reason is
that to overcome certain blood and antigen incompatibilities, patients can undergo one or more
desensitization treatments to match with their willing donor or some other potential donor. After
full desensitization the chance on a successful kidney transplant is almost the same as in the case
of full compatibility. Allowing desensitization results in compatibility graphs with weights either
1 (when no desensitization was needed) or 1− ǫ (after applying desensitization) [3]. Hence, in our
application,M is likely to have exponential size.

Our approach is based on a credit-based system that was first introduced by Klimentova et
al. [23]. In each round, we maximize the total welfare, that is, we choose some matching M from
the setM for that round. In addition, we specify a target allocation x. A target allocation prescribes
exactly which share of v(N) each country ideally should receive in a certain round. However, if we
use M ∈M, then the allocated share of v(N) for country p is

up(M) =
∑

i,j:ij∈M,j∈Vp

wij .

Note that
∑

p∈N up(M) = w(M) = v(N). The aim is now to choose a matching M ∈ M with
up(M) “as close as possible” to xp for each country p. The difference xp−up(M) will then be taken
as (positive or negative) credits for country p to the next round. In the next round we repeat the
same steps after updating the underlying partitioned matching game (N, v).

For setting the target allocations, we start with choosing, for the round under consideration, a
“fair” initial (kidney) allocation y that is prescribed by some solution concept for the underlying
directed partitioned matching game (N, v) for that round, so y(N) = v(N) holds. Then, for each
country p, we change yp into p’s target xp = yp + cp, where cp are the credits for country p from
the previous round (we set c ≡ 0 for the first round). The initial allocation y could correspond to
a core allocation of the game (N, v). We give more specific examples later.

We now define what we mean with being “as close as possible” to the target allocation. For
country p, we say that |xp − up(M)| is the deviation of country p from its target xp in a certain

Partitioned Matching Games for International Kidney Exchange 7

round. We may want to select a minimal matching from M, which is a matching M ∈ M that
minimizes

max
p∈N
{|xp − up(M)|}

over all matchings ofM. As a more refined selection, we may want to select a matching fromM
that is even lexicographically minimal. That is, let

d(M) = (|xp1
− up1

(M)|, . . . , |xpn
− upn

(M)|)

be the vector obtained by reordering the components |xp − up(M)| non-increasingly. We now say
that M is lexicographically minimal for x if d(M) is lexicographically minimal over all matchings
M ∈ M. Note that every lexicographically minimal matching in M is minimal, but the reverse
might not be true.

From now on, if w ≡ 1 on G, we consider the actual number of incoming kidneys that country p
will receive in a certain round if M is used. That is, we let for every p ∈ N , up(M) be equal to

sp(M) = |{j ∈ Vp| ∃i ∈ V : ij ∈M}|.

We say that the vector (s1(M), . . . , sn(M)) is the actual allocation for a certain round. Note that
s1(M) + · · ·+ sn(M) = 2v(N) for every M ∈ M, so formally we should consider up = 1

2sp instead
of sp. However, for our proofs it does not matter. Moreover, by defining sp as above we have a more
natural definition in terms of actual numbers of kidneys. This is a natural utility function, both
due to its simplicity and because in practice the weights w(e) are sparsely spread, as we explained
above.

Example 2. Consider the directed compatibility graph G = (V,A) with the edge weighting w from
Figure 2. Let V1 = {i1, i2, i3} and V2 = {j1, j2}. It holds thatM = {M1,M2}, where M1 = {i2j2}
and M2 = {i1i2, j1j2}. Note that v(N) = w(M1) = w(M2) = 4. We have that u1(M1) = 3 and
u2(M1) = 1, whereas u1(M2) = u2(M2) = 2. We now set w ≡ 1 and consider the corresponding
undirected compatibility graph G = (V,E), which is also displayed in Figure 2. It now holds that
M = {M2}. Note that v(N) = |M2| = 2. We have s1(M2) = s2(M2) = 2, so s1(M2) + s2(M2) =
2v(N), as we count “incoming” kidneys if w ≡ 1 on G. ⋄

Recall that the aim of this paper is to provide a theoretical basis for our understanding of par-
titioned matching games. We refer to a number of recent papers [6,7,23] for experimental results
on international kidney exchange that were obtained from simulations using uniform partitioned
matching games. As initial allocations, Benedek et al. [6] used two “hard-to-compute” solution
concepts, namely the Shapley value and nucleolus, and two easy-to-compute solution concepts, the
benefit value and contribution value. They found that almost all initial and actual allocations in
their simulations were core allocations, with the Shapley value yielding the best results. The latter
finding was in line with the findings of [7] and [23]. In both [7] and [23], 3-way exchanges were
allowed at the expense of a significant lower number of countries than the study of [6].

In line with our research aim we prove, apart from the results in Section 1.3, a number of
computational complexity results for computing (lexicographically) minimal maximum (weight)
matchings. The first of these results, the main result of Section 1.4, is a polynomial-time algorithm
that was used for the simulations in [6]. For the proof of this result we refer to Section 3.

Theorem 4. It is possible to find a lexicographically minimal maximum matching for a uniform
partitioned matching game (N, v) and target allocation x in polynomial time.

In the nonuniform case, we can show the following positive but weaker result than Theorem 4. It
only holds for directed partitioned matching games of width 1. Its proof can be found in Section 3
as well.

8 M. Benedek et al.

Theorem 5. It is possible to find a lexicographically minimal maximum weight matching for a
directed partitioned matching game (N, v) of width 1 and target allocation x in polynomial time.

Our remaining results, all proven in Section 4, are all hardness results. They show that the situation
quickly becomes computationally more difficult when weights are involved, even if we only want
to find minimal maximum weight matchings and the input is restricted in some way. For example,
in the first of these hardness results we set the number of countries n equal to 2.

Theorem 6. It is NP-hard to find a minimal maximum weight matching for a directed partitioned
matching game (N, v) with n = 2 and target allocation x.

Recall that the setting of sparsely spread edge weights is highly relevant in our context. Hence, we
consider this situation more carefully. We say that a directed partitioned matching game (N, v),
defined on a graph G with positive edge weighting w and partition V of V , is d-sparse if w takes
on only d distinct values. Note that if d = 1, we obtain a uniform game (possibly after rescaling w)
and in that case we can apply Theorem 4. If d = 2, then we already obtain computational hardness,
as shown in our next result.

Theorem 7. It is NP-hard to find a minimal maximum weight matching for a 2-sparse directed
partitioned matching game (N, v) and target allocation x.

As will be clear from its proof, both the width c and the number of countries n in the hardness
construction of Theorem 7 is arbitrarily large. If c and n are constant, the partitioned matching
game has constant size. Hence, it is natural to consider sparse directed partitioned matching games
(N, v) for which either c or n is a constant. We were not able to solve either of these two cases,
but we can show two partial results for the case where n is a constant.

By a “compact description” of a game defined on a graph we mean a logarithmic description of the
graph (if possible). For example, a cycle of length k can be described by its length, which results
in input size O(log k) rather than k. If we assume that we have such a compact description of a
directed partitioned matching game, then having a constant number of countries does not make
the problem easier, as our next result shows.

Theorem 8. It is NP-hard to find a minimal maximum weight matching for a 3-sparse compact
directed partitioned matching game (N, v) with n = 2 and target allocation x.

We now make a connection to the Exact Perfect Matching problem introduced by Papadim-
itriou and Yannakakis [29] forty years ago. This problem has as input an undirected graph G whose
edge set is partitioned into a set R of red edges and a set B of blue edges. The question is whether
G has a perfect matching with exactly k red edges for some given integer k. The complexity status
of Exact Perfect Matching is a longstanding open problem, and so far only partial results
were shown (see, for example, [21]).

We consider directed partitioned matching games (N, v) even with n = 2. As before, we let
G = (V,A) be the underlying directed compatibility graph with a positive arc weighting w and
with partition (V1, V2) of V . For every 2-cycle iji with i ∈ V1 and j ∈ V2, we set wij = 1

3 and

wji =
2
3 . For every other 2-cycle iji in G (so where i, j ∈ V1 or i, j ∈ V2) we set wij = wji =

1
2 . Note

that w ≡ 1 in the corresponding undirected compatibility graph G = (V,E) for the weighting w
given by w(ij) = wij +wji for every edge ij ∈ E.2 We also assume that G has a perfect matching.
Hence, as w ≡ 1 in G, the set M consists of all perfect matchings of G. We say that (N, v) is
perfect. So, by definition, perfect partitioned matching games (N, v) are 3-sparse and have n = 2.
We show the following result.

2 The exact values of wij and wji = 1− wij do not matter as long as they differ from 1

2
on arcs between

V1 and V2. The case where w ≡ 1

2
in G corresponds to a partitioned matching game on an (undirected)

uniform compatibility graph G, so Theorem 4 would hold.

Partitioned Matching Games for International Kidney Exchange 9

Theorem 9. Exact Perfect Matching and the problem of finding a minimal maximum weight
matching for a (3-sparse) perfect directed partitioned matching game (with n = 2) and target
allocation x are polynomially equivalent.

In Section 5 we finish our paper with a discussion on future work.

2 The Proofs of Theorems 1–3

In this section we prove Theorems 1–3. A b-matching M in a graph G with capacity function b
covers a vertex u if M contains an edge incident to u, whereas M saturates u if M contains b(u)
edges incident to u. We identify M with the subgraph of G induced by M (that is, the subgraph
of G consisting of all edges in M and all vertices covered by M). We speak about (connected)
components of M . For instance, for b = 1, every edge e ∈M is a component.

We start with Theorem 1, which we restate below.

Theorem 1 (restated). P2 and P3 are co-NP-hard for uniform b-matching games if b ≤ 3.

Proof. The proof is by reduction from a variant of the 3-Regular Subgraph problem. This
problem is to decide if a given graph has a 3-regular subgraph (a graph is 3-regular if every vertex
has degree 3). This problem is NP-complete even for bipartite graphs [34]. We define the Nearly

3-Regular Subgraph problem. This problem is to decide whether a (non-bipartite) graph G has
an nearly 3-regular subgraph, that is, a subgraph in which all vertices have degree 3 except for one
vertex that must be of degree 2.

The Nearly 3-Regular Subgraph problem is also NP-complete. Namely, we can reduce
from 3-Regular Subgraph restricted to bipartite graphs. Given a bipartite graph (U ∪V,E), we
construct the non-bipartite graph G consisting of |E| disjoint copies of (U ∪V,E) where in the copy
corresponding to e ∈ E the edge e is subdivided by a new vertex ve (that is, we replace e by ve and
make ve adjacent to the two end-vertices of e). Now, (U ∪ V,E) has a 3-regular subgraph if and
only if G has a nearly 3-regular subgraph. Indeed, if there is a 3-regular subgraph in (U ∪ V,E)
that contains the edge e, there will be a nearly 3-regular subgraph in G whose degree 2 vertex is ve.
Conversely, if there is a nearly 3-regular subgraph in G, it must contain a vertex ve for some e;
otherwise the subgraph would be bipartite, but an almost 3-regular graph cannot be bipartite.

As mentioned, we reduce from Nearly 3-Regular Subgraph for non-bipartite graphs. Given
an instance G = (V,E) of the latter, we construct a graph G with vertex capacities b(i) ≤ 3 and
edge weights w = 1 as follows (see also Figure 3).

– Give each v ∈ V capacity b(v) = 3.
– Make each v ∈ V adjacent to new vertices av,1, av,2, av,3 with b(av,1) = b(av,2) = b(av,3) = 2.
– Make each av,j part of a triangle with two new vertices cv,j and dv,j with b(cv,j) = b(dv,j) = 2.
– For each v ∈ V add a new vertex av with b(av) = 3 and make av adjacent to av,1, av,2, av,3.
– For each v ∈ V add a new vertex cv with b(cv) = 3 and make cv adjacent to cv,1, cv,2, cv,3.
– For each v ∈ V add a new vertex dv with b(dv) = 3 and make dv adjacent to dv,1, dv,2, dv,3.
– Make a new vertex r called the root node r with b(r) = 1 adjacent to every v ∈ V .

We next describe a maximum b-matching in G, as indicated, in part, in Figure 3 as well. Let M
consist of all edges vav,j plus all edges of the form cv,jdv,j plus all edges incident to av, cv and dv.
As M saturates all vertices except r, we find that M is a maximum b-matching. Hence,

v(N) = |M | = 3|V |+ 3|V |+ 9|V | = 15|V |.

We let (N, v) be the b-matching game defined on (G,w). To show the theorem it remains to
prove the following claim.

Claim: G has a nearly 3-regular subgraph if and only if (N, v) has an empty core.

First suppose G contains no nearly 3-regular subgraph. We define a vector x as follows.

10 M. Benedek et al.

v

av,1 av,2 av,3

cv,1 dv,1 cv,2 dv,2 cv,3 dv,3

Fig. 3. A vertex v ∈ V with the three pendant triangles (av, cv, dv). Thick edges are edges in M .

– Set x ≡ 3
2 on the vertices of V .

– Set x ≡ 1 on all triangle vertices av,j , cv,j , dv,j .

– Set x ≡ 3
2 on all vertices av, cv, dv.

– Set xr = 0.

Note that x(N) = 3
2 |V |+ 9|V |+ 3 · 32 |V | = 15|V | = v(N). Hence, x is an allocation.

We claim that x is even a core allocation. For a contradiction, suppose x(S) < v(S) for some
S ⊆ N ; we say that S is a blocking coalition. Let MS be a maximum b-matching in G[S], so
x(S) < |MS |. We assume that S is a minimal blocking coalition (with respect to set inclusion).

As xi equals half the capacity of each vertex i except r, we find that for every S∗ ⊆ N \ {r},
we have x(S∗) ≥ v(S∗). Hence, S contains r. By the same reason, MS must saturate all vertices of
S (as otherwise x(S) ≥ |MS| = v(S) would hold). So, in particular MS contains some edge rv0 for
some v0 ∈ V . As MS saturates all vertices of S, v0 must be matched by MS to two more vertices
(other than r).

Assume first that all v ∈ S ∩ V \ {v0} are either matched “down” to av,1, av,2, av,3 by three
matching edges in MS or matched “up” by three matching edges belonging to E. Let v ∈ V ∩S be
matched down to its three triangles. Let A be the component of M containing v. Note that V (A)
is a subset of the union of {v, av, cv, dv} and the set of vertices of the three triangles for v. Hence,
as all vertices in A are saturated by MS and each vertex except r gets exactly half of its capacity,
we find that x(A) ≥ v(V (A)). So, S \ V (A) is a smaller blocking set, contradicting the minimality
of S. Thus, all vertices v ∈ S ∩ V with v 6= v0 must be matched “up”. If also v0 is matched “up”
by two edges in MS ∩ E, then (S ∩ V,MS) is a nearly 3-regular subgraph of G, a contradiction.

From the above, we are left to deal with the case where there exists a vertex v ∈ S ∩ V that is,
say, matched down by some edge e = vav,1 ∈ MS but, say, e′ = vav,3 /∈ MS . We distinguish the
following three cases:

Case 1. av, cv, dv ∈ S.
Since all these are saturated by MS, we have all av,j , cv,j , dv,j ∈ S. Thus av,3, cv,3, dv,3 ∈ S and
each of these is already matched to av, cv, dv, respectively. Since vav,3 /∈ MS , at most two of
av,3, cv,3, dv,3 can be saturated by MS , a contradiction.

Case 2. av, cv ∈ S, dv /∈ S.
Again we find that av,1, av,2, av,3 ∈ S and cv,1, cv,2, cv,3 ∈ S. Moreover, each of these is already
matched by some edge in MS to av or cv. In addition, av,1 is matched to v, so av,1 is “already”
saturated. Hence, in order to saturate also cv,1, MS must contain cv,1dv,1. Hence, dv,1 ∈ S and MS

cannot saturate it (as dv /∈ S), a contradiction.

Case 3. av ∈ S, cv, dv /∈ S.
Here, we conclude that av,1, av,2, av,3 ∈ S. Since vav,3 /∈ MS, av,3 can only be saturated if, say,
av,3cv,3 ∈ MS and hence cv,3 ∈ S. The latter can only be saturated by cv,3dv,3 ∈ MS. Hence,
dv,3 ∈ S and dv,3 cannot be saturated (since av,3av and av,3cv,3 are in MS), a contradiction.

Partitioned Matching Games for International Kidney Exchange 11

Case 4. av /∈ S.
Since av,1 is in S, it must be saturated, and as av /∈ S, either av,1cv,1 or av,1dv,1 ∈ MS. By
symmetry, suppose that av,1cv,1 ∈MS. Then cv,1 is in S and must be saturated, so either cv,1cv ∈
MS or cv,1dv,1 ∈MS. In the first case cv ∈ S and dv /∈ S (as dv,1 /∈ S) and in the second case cv /∈ S
and dv ∈ S (as dv,1 can only be saturated by dv,1dv). In both cases we get a contradiction when
considering the third triangle, as follows. If cv ∈ S and dv /∈ S, then we have cvcv,3 ∈ MS . Thus
cv,3 is in S and must be saturated, so must be matched to either av,3 or dv,3. In the former case
av,3 must be matched to dv,3 and the latter remains unsaturated, a contradiction. In the second
case, dv,3 must be saturated by matching it to av,3 and then again, the latter remains unsaturated.
The case dv ∈ S and cv /∈ S is similar. From dv ∈ S we conclude that dvdv,3 ∈MS . Thus dv,3 ∈ S
and hence, dv,3 must be matched to either av,3 or cv,3. In the first case, av,3 must be matched to
cv,3 (as v and av are not available) and cv,3 remains unsaturated. In the second case, cv,3 must be
matched to av,3 and again, av,3 remains unsaturated, a contradiction.

Conversely, suppose that G′ be a nearly 3-regular subgraph in G. We claim that (N, v) has an
empty core. For a contradiction, suppose that (N, v) has a core allocation x. Fix any v ∈ V and let
Sac := {av, cv, av,j , cv,j | j = 1, 2, 3}. As Sac allows a saturating matching Mac of size |Mac| = 9,
we find that x(Sac) ≥ 9. Similarly, x(Scd) ≥ 9 and x(Sad) ≥ 9 for Scd and Sad defined analogously.
Adding all three inequalities and dividing by 2 yields

x(Sv) ≥
27

2
for Sv := Sac ∪ Scd ∪ Sad.

We now recall the maximum b-matching M that we displayed, in part, in Figure 3. As M is
maximum and x is a core allocation, it holds that x(A) = v(A) for every component A of M ,
and moreover, xr = 0. The set Sv ∪ {v} is covered exactly by two components of M . Hence,
x(Sv ∪ {v}) = 3 + 12 = 15. As we also have that x(Sv) ≥

27
2 , this implies that xv ≤

3
2 . As v was

chosen arbitrarily, the inequality holds for every vertex of V .

Now, let v0 be the unique vertex that has degree 2 in G′, and recall that by definition all other
vertices of G′ have degree 3 in G′. Consider the coalition V (G′)∪ {r}. The edge set E(G′)∪ {rv0}
matches each vertex in S up to its capacity, while x assigns only half this value to each vertex in S
and zero to r. Hence, x(S) < v(S), contradicting to our assumption that x is in the core. ⊓⊔

1

2

[2]

3

4

5 [3]

6

2

2

3

1

1

3

2

2

1

V2

3

4

V5

6

V1

{36, 63}

Fig. 4. Left: a b-matching game (N, v) with six players, where b ≡ 1 apart from b(2) = 2 and b(5) = 3, so
b∗ = 3. Note that v(N) = 10 (take M = {12, 35, 45, 56}). Right: the reduction to the partitioned matching
game (N, v). Note that |N | = 14 and c = b∗ (example taken from [5].)

12 M. Benedek et al.

We will now prove Theorem 2. In order to do this we first explain our reduction. Let (N, v) be
a b-matching game defined on a graph G = (V,E) with a positive capacity function b and a
positive edge weighting w. We construct a graph G = (V ,E) with a positive edge weighting w and
partition V of V by applying the construction of Tutte [36]:

– Replace each vertex i ∈ V with capacity b(i) by a set Vi of b(i) vertices i
1, . . . , ib(i).

– Replace each edge ij ∈ E by an edge ijji where ij and ji are new vertices, such that ij is
adjacent to i1, . . . , ib(i), while ji is adjacent to j1, . . . , jb(j). Let Eij = {ij, ji}.

– Let V consist of all the vertices in the sets Vi and the sets Eij , and let E consist of all the
edges defined above.

– Give every edge ijji, iji
h (h ∈ {1, . . . , b(i)}), jijh (h ∈ {1, . . . , b(j)}) weight w(ij) to obtain

the weighting w.
– Let V consist of all the sets Vi and Eij .

We denote the partitioned matching game defined on (G,w) with partition V by (N, v). See Figure 4
for an example. We let b∗ be the maximum b(i)-value for the vertex capacity function b. Note
that, by construction, we have that c = b∗ and that uniformity is preserved. We use the above
construction to prove Theorem 2, which we restate below.

Theorem 2 (restated). P1–P3 can be reduced in polynomial time from b-matching games to
partitioned matching games of width c = b∗, preserving uniformity.

Proof. Let (N, v) be a b-matching game defined on a graph G = (V,E) with a positive capacity
function b and a positive edge weighting w. We construct in polynomial time the pair (G,w) and
partition V to obtain the partitioned matching game (N, v). Recall that the players of N are of
the form Vi and Eij , and they are in 1 − 1 correspondence with V = N and E, respectively, so
below we sometimes will identify the players of N with V ∪E.

The idea is that any b-matching M in G can be represented by a corresponding matching
M ⊆ E in G as follows. For each edge ij in G we do as follows. If ij ∈ M , then we match ij to
some copy of i in G and, similarly, ji to some copy of j; note that, by definition, enough copies
of i and j are available. If ij /∈ M , then we match ij and ji to each other in G. We refer to the
resulting matching M in G as a transform of M (different transforms differ by the choice of copies
of vertex i that are “matched” to j). Note that M has size |E|+ |M | and weight w(E) + w(M).

We first reduce P1. Let x be an allocation of (N, v). We define a vector x onN by setting x(Vi) := xi

for every i ∈ N and x(Eij) = w(ij) for every ij ∈ E. We claim that x ∈ core(N, v) if and only if
x ∈ core(N, v).

First suppose that x ∈ core(N, v). Assume that M is a maximum weight b-matching in G (so
v(N) = w(M)). The transform M of M is a maximum weight matching in G, so

v(N) = w(M) = w(E) + w(M) = x(N).

Thus x is an allocation. To check the core constraints, consider a coalition S ⊆ N . Let Ŝ ⊆ V be
the union of all vertices of all sets Eij and Vi that belong as a player to S, that is,

Ŝ =
⋃

{Vi |Vi ∈ S} ∪
⋃

{ij, ji | Eij ∈ S}.

Then v(S) is the weight of a maximum weight matching in G[Ŝ]. The latter is obtained as a
transform of a maximum weight b-matching M in the subgraph GS = G[VS], where VS ⊆ V
consists of every vertex i ∈ V with Vi ∈ S. As x ∈ core(N, v), we have x(VS) ≥ v(VS) = w(M).
Hence,

x(S) = w(E(GS)) + x(VS) ≥ w(E(GS)) + w(M) = v(S).

We conclude that x ∈ core(N, v).

Partitioned Matching Games for International Kidney Exchange 13

Now suppose that x ∈ core(N, v). Then we can use the same arguments in reverse order to
prove that x ∈ core(N, v).

To reduce P2 and P3, it suffices to show that core(N, v) is non-empty if and only if core(N, v) is
non-empty. Above we already showed that if core(N, v) is non-empty, then core(N, v) is non-empty.
Hence, assume core(N, v) = ∅. Then, by the Bondareva-Shapley Theorem [13,31], there is a function
λ : 2N \ {∅} → [0, 1] with for every i ∈ N ,

∑

S∋i λ(S) = 1 such that
∑

S 6=∅ λ(S)v(S) > v(N). For
every non-empty coalition S ⊆ N , we define the set

S :=
⋃

{Vi | i ∈ S} ∪
⋃

{Eij | i, j ∈ S}.

We now define a function λ : 2N \ {∅} → [0, 1] as follows. We set λ(S) := λ(S) for every S ⊆ N .
For every Eij ∈ N , we set

λ(Eij) := 1−
∑

S:Eij⊆S

λ(S) = 1−
∑

S:ij∈E(S)

λ(S).

Finally, set λ(S∗) := 0 for all other S∗ ⊆ N \{∅}. By construction, we have
∑

S∗⊆N,Vi∈S∗ λ(S∗) = 1

for every Vi ∈ N and
∑

S∗⊆N,Eij∈S∗ λ(S∗) = 1 for every Eij ∈ N . Now, in order to show that

core(N, v) is empty, we must prove that

∑

∅6=S∗⊆N

λ(S∗)v(S∗) > v(N).

Let MS denote a maximum weight b-matching on G[S], and let MS be a transform of MS, which
is a maximum weight matching in G[S] with weight w(MS) = w(MS) + w(E(G[S])). So, we have

v(S) = w(MS) = w(MS) + w(E(G[S])) = v(S) + w(E(G[S])).

Hence, it follows that

∑

∅6=S∗⊆N λ(S∗)v(S∗)

=
∑

∅6=S⊆N λ(S)v(S) +
∑

ij∈E(G) λ(Eij)v(Eij)

=
∑

∅6=S⊆N λ(S)(v(S) + w(E[S])) +
∑

ij∈E(G) λ(Eij)w(ij)

=
∑

∅6=S⊆N λ(S)v(S) +
∑

ij∈E(G)

∑

S:ij∈E(S) λ(S)w(ij) +
∑

ij∈E(G) λ(Eij)w(ij)

=
∑

∅6=S⊆N λ(S)v(S) +
∑

ij∈E(G)

[

∑

S:ij∈E(S) λ(S) + λ(Eij)
]

w(ij)

=
∑

∅6=S⊆N λ(S)v(S) + w(E)

> v(N) + w(E)

= v(N).

This completes the proof of Theorem 2. ⊓⊔

As the final result in this section, we will prove Theorem 3. Again, we first explain the reduction.
Let (N, v) be a partitioned matching game of width c defined on a graph G = (V,E) with a positive
edge weighting w and with a partition (V1, . . . , Vn) of V . We assume that c ≥ 2, as otherwise we
obtain a matching game. Construct a graph G = (N,E) with a positive vertex capacity function b
and a positive edge weighting w as follows.

14 M. Benedek et al.

– Put the vertices of V into N and the edges of E into E.
– For each Vi, add a new vertex ri to N that is adjacent to all vertices of Vi and to no other

vertices in G.
– Let w be the extension of w to E by giving each new edge weight 2v(N).
– In V , give every u ∈ V capacity b(u) = 2 and every ri capacity b(ri) = |Vi|.

1

2

3

4

5

6

V1

V2

V3

2

2

3
1

1 3

2

2

r1[3] 1 [2]

2

[2]

3

[2]

4

[2]

5[2]

r2 [2]

r3[1] 6 [2]

2

2
3

1

1 3

2
2

14

14

14

14

14

14

Fig. 5. Left: a partitioned matching game (N, v) with three players and width c = 3. Note that v(N) = 7.
Right: the reduction to the b-matching game (N, v). Note that |N | = 9 and that for every i ∈ N , b(i) ≤ c

(example taken from [5]).

We denote the b-matching game defined on (G, b, w) by (N, v). See Figure 5 for an example and
note that, by construction, we have b ≤ c. We are now ready to prove Theorem 3, which we restate
below.

Theorem 3 (restated). P1–P3 can be reduced in polynomial time from partitioned matching
games of width c to b-matching games for some capacity function b with b∗ ≤ c.

Proof. Recall that we assume c ≥ 2, as for c = 1 both problems are identical. Let (N, v) be a
generalized matching game defined by a graph G = (V,E) with edge weights w and partition
V = (V1, . . . , Vn). We construct in polynomial time the triple (G, b, w) to obtain the b-matching
game (N, v).

We first reduce P1. Let x be an allocation of (N, v). We define a vector x on N by setting for every
i ∈ N , x :≡ xi

|Vi|
+ v(N) on Vi and xri := v(N) · |Vi|. We claim that x ∈ core(N, v) if and only if

x ∈ core(N, v).
First suppose that x ∈ core(N, v). By construction, x(N) = v(N) + 2v(N) · |V | = v(N). To

check the core constraints, consider a coalition S ⊆ N . Let S := {i | S ∩ Vi 6= ∅}. A maximum
weight b-matching in G[S] is obtained by matching each root node ri ∈ S to all its neighbors in S
and matching the nodes in S ∩ V to each other in the best possible way. Thus

v(S) ≤ v(S) +
∑

i:ri∈S

2v(N)|S ∩ Vi|,

while

x(S) =
∑

i∈S

(
|S ∩ Vi|

|Vi|
xi + v(N)|S ∩ Vi|) +

∑

i:ri∈S

v(N)|Vi|.

Partitioned Matching Games for International Kidney Exchange 15

Hence, the core constraint x(S) ≥ v(S) holds unless S =
⋃

i∈S Vi∪{ri}. In the latter case, however,

v(S) = v(S) +
∑

i∈S 2v(N)|Vi| and x(S) = x(S) +
∑

i∈S 2v(N)|Vi|, so that the core constraint
follows from the fact that x ∈ core(N, v), and thus x(S) ≥ v(S) holds.

Now suppose that x ∈ core(N, v). Then we can use the same arguments in reverse order to
prove that x ∈ core(N, v), as follows. For every S ⊆ N , let S =

⋃

i∈S Vi ∪ {ri}. Then

v(S) +
∑

i∈S 2v(N)|Vi| = v(S)

≤ x(S)

= x(S) +
∑

i∈S 2v(N)|Vi|,

which implies that v(S) ≥ x(S) for every S ⊆ N , thus x ∈ core(N, v).

To reduce P2 and P3, it suffices to show that core(N, v) is non-empty if and only if core(N, v) is
non-empty. Above we already showed that if core(N, v) is non-empty, then core(N, v) is non-empty.
Hence, assume core(N, v) = ∅. Then, by the Bondareva-Shapley Theorem [13,31], there is a function
λ : 2N \ {∅} → [0, 1] with for every i ∈ N ,

∑

S∋i λ(S) = 1 such that
∑

S 6=∅ λ(S)v(S) > v(N). For

every S ⊆ N , we define again S =
⋃

i∈S Vi ∪ {ri}. Note that v(S) = v(S) +
∑

i∈S 2v(N)|Vi|. We

define λ(S) = λ(S) for every S ⊆ N and let λ(S∗) = 0 for every other S∗ ⊂ N . First note that
∑

S∗∋i λ(S
∗) = 1 for every i ∈ N . Furthermore, it holds that

∑

S∗⊆N λ(S∗)v(S∗) =
∑

S⊆N λ(S)v(S)

=
∑

S⊆N λ(S)
(

v(S) +
∑

i∈S 2v(N)|Vi|
)

=
∑

S⊆N λ(S)v(S) +
∑

i∈N

(
∑

S∋i λ(S)2v(N)|Vi|
)

=
∑

S⊆N λ(S)v(S) +
∑

i∈N 2v(N)|Vi|

=
∑

S⊆N λ(S)v(S) + 2v(N) · |V |

> v(N) + 2v(N) · |V |

= v(N).

Therefore core(N, v) = ∅. This completes the proof of Theorem 3. ⊓⊔

3 The Proofs of Theorems 4 and 5

In this section we give the proofs of Theorems 4 and 5. To prove Theorem 4 we need an additional
result as a lemma; a similar construction was used by Plesnik [30] to solve a constrained matching
problem. Note that in the lemma we allow arbitrary edge weightings and thus M is the set of
maximum weight matchings. Hence, the lemma is a slightly more general result than we strictly
need.

Lemma 1. Given a partitioned matching game (N, v) on a graph G = (V,E) with a positive edge
weighting w and and partition V of V , and intervals I1, . . . , In, it is possible in O(|V |3)-time to
decide if there exists a matching M ∈ M with sp(M) ∈ Ip for p = 1, . . . , n, and to find such a
matching (if it exists).

Proof. First assume that the intervals I1, . . . , In are closed. For p = 1, . . . , n, we let Ip = [ap, bp],
where we assume without loss of generality that bp ≤ |Vp|. We extend (G,w) to a weighted graph
(G,w) in linear time as follows. For p = 1, . . . , n, we add a set Bp of |Vp| − bp new vertices, each of
them joined to all vertices of Vp by edges of weight we = 0. We also introduce a set Ap of bp − ap

16 M. Benedek et al.

new vertices that are completely joined to all vertices of Vp by edges of weight we = 0. In addition,
all vertices in

⋃

p Ap are joined to each other by edges of weight we = 0. The original edges e ∈ E
in G keep their (original) weights, that is, we = we. If the total number of vertices is odd, we add
an additional vertex v and join it by zero weight edges to all vertices of

⋃

p Ap. This completes the

description of (G,w). Note that |V (G)| ≤ 2|V |.
Now, let w∗ be the maximum weight of a matching in G. Let w∗ denote the maximum weight

of a perfect matching in G. Note that we can compote w∗ and w∗, and corresponding matchings,
in O(|V |3) time [17]. To prove the lemma, it suffices to show there is a matching M ∈ M with
sp(M) ∈ [ap, bp] for p = 1, . . . , n if and only if w∗ = w∗.

“⇒:” Suppose there is a matching M ∈M with sp(M) ∈ [ap, bp] for p = 1, . . . , n. As M ∈M, we
have w(M) = w∗. As sp(M) ≤ bp, we can match all vertices of Bp to Vp by all zero weight edges.
Finally, since sp(M) ≥ ap, we can match the bp − sp(M) ≤ bp − ap remaining vertices in Vp to
vertices from Ap. Thus all vertices of Vp will be matched. If after doing this for every p ∈ {1, . . . , n},
there still exist unmatched vertices in

⋃

p Ap, then we match these to each other and, should their

number be odd, to the extra vertex v. This yields a perfect matching in G of weight w∗.

“⇐:” Suppose w∗ = w∗. Let M be a corresponding perfect matching in G of weight w∗. Let
M := M ∩E denote the corresponding matching in G. As M matches all vertices of Bp into Vp, we
know that M leaves at least |Vp|−bp vertices unmatched. Hence, sp(M) ≤ bp as required. Similarly,
since all vertices of Vp are matched by M and at most |Vp| − bp + bp− ap = |Vp| − ap vertices in Vp

can be matched to Bp ∪Ap, we find that M matches at least ap vertices in Vp. Hence, sp(M) ≥ ap,
as required.

Now suppose we are given a set of intervals I1, . . . In, some of which are open instead of closed.
Let Ip be an open interval. Recall that the s-values are sizes of subsets of matching edges and
thus are integers. Hence, we may replace Ip by the largest closed interval with integer end-points
contained in Ip if this closed interval exists. If not, then a matching M ∈M with sp(M) ∈ Ip does
not exist. ⊓⊔

Let (N, v) be a partitioned matching game with a set V of patient-donor pairs. Recall that M
denotes the set of maximum matchings in the corresponding (undirected) compatibility graph G,
and let x be an allocation. Using Lemma 1, our algorithm Lex-Min computes for a partitioned
matching game (N, v) and allocation x, values d1, . . . , dt with d1 > . . . > dt for some integer t ≥ 1,
and, as we will prove, returns a matching M ∈ M that is lexicographically minimal for x.

Lex-Min

input : a partitioned matching game (N, v) and an allocation x
output : a matching M ∈ M that is lexicographically minimal for x.

Step 1. Compute the smallest number d1 ≥ 0 such that there exists a matching M ∈ M with
|xp − sp(M)| ≤ d1 for all p ∈ N .

Step 2. Compute a minimal set N1 ⊆ N (with respect to set inclusion) such that there exists a
matching M ∈M with

|xp − sp(M)| = d1 for all p ∈ N1

|xp − sp(M)| < d1 for all p ∈ N \N1.

Step 3. Proceed in a similar way for t ≥ 1:

– while N1 ∪ · · · ∪Nt 6= N do

• t← t+ 1.

Partitioned Matching Games for International Kidney Exchange 17

• dt ← smallest d such that there exists a matching M ∈ M with

|xp − sp(M)| = dj for all p ∈ Nj , j ≤ t− 1

|xp − sp(M)| ≤ dt for all p ∈ N \ (N1 ∪ · · · ∪Nt−1).

• Nt ← inclusion minimal subset of N \ (N1 ∪ · · · ∪Nt−1) such that there exists a matching
M ∈M with

|xp − sp(M)| = dj for all p ∈ Nj, j ≤ t− 1

|xp − sp(M)| = dt for all p ∈ Nt

|xp − sp(M)| < dt for all p ∈ N \ (N1 ∪ · · · ∪Nt).

Step 4. Return a matching M ∈ M with |xp − sp(M)| = dj for all p ∈ Nj and all j ∈ {1, . . . , t}.

We say that the countries in a set N \(N1∪· · ·∪Nt−1) are unfinished and that a country is finished
when it is placed in some Nt. Note that Lex-Min terminates as soon as all countries are finished.

We are now ready to prove Theorem 4, which we restate below.

Theorem 4 (restated). It is possible to find a lexicographically minimal maximum matching for
a uniform partitioned matching game (N, v) and target allocation x in polynomial time.

Proof. To prove the theorem we will show that the Lex-Min algorithm is correct and runs in
O(n|V |3 log |V |) time for a uniform partitioned matching game (N, v) with an allocation x.

Correctness proof. We first prove the correctness of Lex-Min. Let (N, v) be a uniform partitioned
matching game on a graph G = (V,E) with partition V , and let x be an allocation. Let M be the
matching fromM that is returned by Lex-Min. We claim that M is a lexicographically minimal
matching for x. In order to prove this, let M∗ ∈ M be a lexicographically minimal matching.
Since both M and M∗ are maximum matchings, we have M∗ = M ⊕ P ⊕ C, where P and C are
sets of even alternating paths and (even) alternating cycles, respectively. We make the additional
assumption that among all the lexicographically minimal matchings in M, the matching M∗ is
chosen as closest to M in the sense that |P|+ |C| is as small as possible.

We claim that C = ∅. Otherwise, we would switch M∗ to another maximum matching along
an alternating cycle C ∈ C. This yields a new matching M∗ ⊕ C ∈ M, which is again lexico-
graphically minimal, as the switch does not affect any sp(M

∗). Moreover, M∗ ⊕ C is closer to
M , contradictioning our choice of M∗. Hence, there exists a disjoint union of paths P1, . . . , Pk

such that M∗ = M ⊕ P1 ⊕ · · · ⊕ Pk. We claim that each Pj has endpoints in different countries;
otherwise switching from M∗ to M along Pj would not affect any sp(M

∗) and so again leads to a
new lexicographically minimal matching closer to M .

Let d∗1 > d∗2 > . . . denote the different values of |xp − sp(M
∗)| and let N∗

j ⊆ N denote the
corresponding sets of players p ∈ N with |xp − sp(M

∗)| = d∗j . We prove by induction on t that

for every t, it holds that d∗t = dt and N∗
t = Nt, which implies that M∗ = M and thus M is

lexicographically minimal. Let t = 1. In Claims 1 and 2, we prove that d∗1 = d1 and N∗
1 = N1.

Claim 1 : d∗1 = d1.
Proof : As M∗ is lexicographically minimal, d∗1 ≤ d1. If d

∗
1 < d1, then d1 was not chosen as small

as possible, since M = M∗ satisfies |xp − sp(M)| ≤ d∗1 for every p ∈ N . Hence d∗1 = d1. ⋄

Claim 2 : N∗
1 = N1.

Proof : If N∗
1 (N1, then N1 is not minimal, as |xp − sp(M

∗)| ≤ d∗1 = d1 for p ∈ N∗
1 and

|xp − sp(M
∗)| < d∗1 = d1 for p ∈ N \ N∗

1 . This contradicts Step 2 of Lex-Min. Hence, N∗
1 * N1.

Let p0 ∈ N∗
1 \N1. So, |xp0

− sp0
(M∗)| = d∗1 = d1 > |xp0

− sp0
(M)|. We distinguish two cases.

18 M. Benedek et al.

Case 1. sp0
(M∗) = xp0

+ d∗1.
Then sp0

(M∗) > sp0
(M) ≥ 0, so there exists an even path, say, P1 starting in Vp0

with an M∗-edge
and ending in some Vp1

with an M -edge. Recall that the endpoints of P1 are in different countries,
hence p1 6= p0. Note that replacing M∗ by M∗⊕P1 would decrease sp0

(M∗) and increase sp1
(M∗).

Assume first that sp1
(M∗) ≥ sp1

(M). As P1 ends in Vp1
, we have sp1

(M) ≥ 1. Hence, there
exists an alternating path, say P2, that starts with an M∗-edge in Vp1

and ends with an M -edge
in some Vp2

, p2 6= p1. If p2 = p0, then M∗ ⊕ P1 ⊕ P2 would be lexicographically minimal and
closer to M , a contradiction. Hence p2 /∈ {p0, p1} and in case sp2

(M∗) ≥ sp2
(M), we may continue

to construct a sequence p0, p1, p2, ... in this way. Note that whenever we run into a cycle, that is,
when ps = pr for some r > s, then we get a contradiction by observing that M∗ ⊕ Pr+1 ⊕ · · · ⊕Ps

is also lexicographically minimal (indeed switching M∗ to M along Pr+1, . . . , Ps does not affect
any sp(M

∗)) and closer to M . Hence, eventually, our sequence p0, p1, . . . , pr must end up with
spr

(M∗) < spr
(M). We then derive that spr

(M∗⊕P1⊕ · · ·⊕Pr) ≤ spr
(M) ≤ xpr

+ d1. If pr /∈ N1,
then we even get spr

(M∗ ⊕ P1 ⊕ · · · ⊕ Pr) ≤ spr
(M) < xpr

+ d1. We now define the matching
M ′ := M∗ ⊕ P1 ⊕ · · · ⊕ Pr. Note that M ′ is a maximum matching closer to M . To obtain a
contradiction with our choice of M∗ it remains to show that M ′ is lexicographically minimal.

We first consider p = pr. We have spr
(M ′) = spr

(M∗)+1 ≥ xpr
−d1+1 > xpr

−d1. Combining
this with the upper bound found above, we obtain

xpr
− d1 < spr

(M ′) ≤ xpr
+ d1 if pr ∈ N1 (1)

xpr
− d1 < spr

(M ′) < xpr
+ d1 if pr /∈ N1.

For p = p0, we have that sp0
(M ′) = sp0

(M∗) − 1 = xp0
+ d1 − 1, where the last equality holds

because p0 ∈ N∗
1 . Hence, we found that

|sp0
(M ′)− xp0

| = d1 − 1. (2)

From (1) and (2) and the fact that |sp(M ′)− xp| = |sp(M∗)− xp| if p /∈ {p0, pr}, we conclude that
either M ′ is lexicographically minimal, which yields our contradiction, or pr ∈ N1 and spr

(M ′) =
xpr

+ d1. Assume that the latter case holds. Then we have spr
(M∗) = spr

(M ′)− 1 = xpr
+ d1 − 1.

However, then M∗ and M ′ are symmetric with respect to p0 and pr, namely, |sp0
(M∗) − xp0

| =
d1 = |spr

(M ′)− xpr
| and |spr

(M∗)− xpr
| = |d1 − 1| = |sp0

(M ′)− xp0
|. Combining these equalities

with the fact that |sp(M ′)−xp| = |sp(M∗)−xp| if p /∈ {p0, pr} implies that M ′ is lexicographically
minimal, our desired contradiction. Hence, N∗

1 \N1 = ∅. As N∗
1 * N1, we conclude that N∗

1 = N1.

Case 2. sp0
(M∗) = xp0

− d∗1.
In this case we have sp0

(M∗) < sp0
(M). Hence, there must exist an alternating path P1 that starts

in Vp0
with an M -edge and that ends in some Vp1

with an M∗-edge. Just as in Case 1, it holds
that p1 6= p0. If sp1

(M∗) ≤ sp1
(M), we may continue with an alternating path P2 starting from

Vp1
and ending in some Vp2

with p2 /∈ {p0, p1}, and continuing in this way we eventually end up
with a sequence p0, p1, . . . , pr such that spr

(M∗) > spr
(M). Then M ′ := M∗ ⊕ P1 · · · ⊕ Pr has

sp0
(M ′) = sp0

(M∗) + 1 and spr
(M ′) = spr

(M∗) − 1. By the same arguments that we used in
Case 1, we prove that M ′ is a maximum matching that is lexicographically minimal and that is
closer to M than M∗ is. This contradicts our choice of M∗, and we have proven Claim 2. ⋄

Now let t ≥ 2. Assume that d∗1 = d1, . . . , d
∗
t−1 = dt−1 and N∗

1 = N1, . . . , N
∗
t−1 = Nt−1. By using

the same arguments as in the proof of Claim 1, we find that d∗t = dt. By using the same arguments
as in the proof of Claim 2, we find that N∗

t * Nt. We will now show that N∗
t = Nt. We consider a

country p0 ∈ N∗
t \Nt and split the proof into two cases similar to Cases 1 and 2 for the case t = 1,

namely when sp0
(M∗) = xp0

+d∗1 and sp0
(M∗) = xp0

−d∗1. We will only show the first case in detail,
as the proof of the other case is similar. Hence, from now on we assume that sp0

(M∗) = xp0
+ d∗t .

We know that p0 ∈ N∗
t , so p0 /∈ N∗

1 ∪ · · · ∪N∗
t−1 = N1 ∪ · · · ∪Nt−1. Hence sp0

(M) ≤ xp0
+ dt,

and p0 /∈ Nt implies sp0
(M) < xp0

+ dt, so that sp0
(M∗) > sp0

(M). So there is an alternating

Partitioned Matching Games for International Kidney Exchange 19

path P1 starting in Vp0
with an M∗-edge and ending in some Vp1

with an M -edge. Again, we may
assume that p1 6= p0. If sp1

(M∗) ≥ sp1
(M), then there must be some alternating P2 starting in

Vp1
with an M∗-edge and leading to some Vp2

with p2 /∈ {p0, p1} and so on, until eventually we
obtain a sequence p0, p1, . . . , pr with spr

(M∗) < spr
(M).

As before, we let M ′ := M∗ ⊕ P1 · · · ⊕ Pr and note that M ′ ∈ M is closer to M than M∗

is. Hence, to obtain a contradiction, it remains to show that M ′ is lexicographically minimal. As
p0 /∈ N1 ∪ · · · ∪Nt, we find that sp0

(M ′) = sp0
(M∗)− 1 ≥ sp0

(M) > xp0
− dt. On the other hand,

sp0
(M ′) < sp0

(M∗) = xp0
+ dt. Hence

|sp0
(M ′)− xp0

| < dt. (3)

Now consider p = pr. We first rule out that pr ∈ N1 ∪ · · · ∪ Nt−1. Assume to the contrary that
pr ∈ Nj for some j ∈ {1, . . . , t − 1}. Then as lower bound we have spr

(M ′) = spr
(M∗) + 1 ≥

xpr
− dj +1 > xpr

− dj , and as upper bound, spr
(M ′) = spr

(M∗)+ 1 ≤ spr
(M) ≤ xpr

+ dj . Hence,

|spr
(M ′)− xpr

| ≤ dj . (4)

Inequality (4), together with (3) and the fact that |sp(M ′) − xi| = |sp(M∗)− xp| for p /∈ {p0, pr}
shows that M ′ is lexicographically smaller than M∗, a contradiction. We conclude that pr /∈
N1 ∪ · · · ∪Nt−1.

We now have spr
(M) ≤ xpr

+ dt if pr ∈ Nt and spr
(M) < xpr

+ dt if pr /∈ Nt. Hence, we
can repeat the arguments that we used for the case where t = 1 to obtain our contradiction. This
completes the correctness proof of Lex-Min.

Running time analysis. As xp is fixed and sp(M) is an integer between 0 and |V |/2, there are
O(|V |) values for |xp − sp(M)|. Hence, we can find dt by binary search in O(log |V |) time. This
requires O(log |V |) applications of Lemma 1, each of which taking time O(|V |3). So, finding a dt
takes O(|V |3 log |V |) time. Each time we find a dt, the number of finished countries increases by at
least one. Hence, as the number of countries is n, we find that the total running time of Lex-Min
is O(n|V |3 log |V |). ⊓⊔

We now give the proof of Theorem 5. In our proof we use exponentially increasing weights to
minimize deviations from a target solution in a lexicographic way. This is similar in nature to
techniques used in the literature for representing lexicographic preferences of agens over bundles
in many-to-one allocation problems, see, for example, [2].

Theorem 5 (restated). It is possible to find a lexicographically minimal maximum weight match-
ing for a directed partitioned matching game (N, v) of width 1 and target allocation x in polynomial
time.

Proof. Assume that our directed compatibility graph is G = (V,A), and our undirected compatibil-
ity graph is G = (V,E), where ij ∈ E if both (i, j) and (j, i) are arcs in A. Extend G to a complete
graph by adding zero-weight edges to it; note that a lexicographically minimal maximum weight
matching in the extended graph yields a lexicographically minimal maximum weight matching in
G if we forget its newly added zero-weight edges. To keep notation simple, from now on we will
assume that G is a complete graph.

Furthermore, if |V | is odd, then we add a dummy vertex v to G with target allocation xv =
0. This still does not change the structure of the lexicographically minimal maximum weight
matchings, however, now each of them can be extended to a lexicographically minimal maximum
weight perfect matching by adding some zero-weight edges to it. Because of this, from now on we
focus on this problem in a weighted complete graph with an even number of vertices.

For a target allocation x, we create an edge weighting wx of G where the weight of each edge
will be a vector from R2, that is, wx(e) = (α, β), where wx

1 (e) = α and wx
2 (e) = β are both real

20 M. Benedek et al.

numbers. We can add or subtract two vectors coordinatewise, and compare them lexicographically,
i.e., w < w′ if w1 < w′

1 or w1 = w′
1 and w2 < w′

2.
For every edge pq ∈ E, we let wx

1 (pq) = wpq +wqp. This is to ensure that the maximum weight
matching according to wx gives a maximum weight according to w.

To define wx
2 (pq), we first let δxpq = |xp − wqp| for all ordered pairs p, q ∈ V . We introduce a

vector ∆x that contains the n(n− 1) values of δx in a weakly increasing order. Let rpq denote the
(average) rank of δxpq in ∆x, meaning that if there is a tie from position k to position l in ∆x, then

each of these elements will have rank k+l
2 . Define wx

2 (pq) = −2
rpq − 2rqp for all pq ∈ E.

The w weight of a matching M is
∑

pq∈M wpq + wqp =
∑

pq∈M wx
1 (pq). If this latter sum is

maximized by M , we can conclude that M has maximum weight.
Similarly, let d(M) = (|xp1

−up1
(M)|, . . . , |xpn

−upn
(M)|) be the deviation vector of the perfect

matching M obtained by reordering the components |xp−up(M)| non-increasingly. If the deviation
vector of some other perfect matching M ′ is lexicographically larger than d(M), then

∑

pq∈M ′

wx
2 (pq) <

∑

pq∈M

wx
2 (pq) =

∑

p∈V,pq∈M

−2rpq .

Indeed, the first few terms in
∑

p∈V,pq∈M ′ −2rpq are the same as in
∑

p∈V,pq∈M −2
rpq , until we

reach a term that is larger in M , and by the exponential growth of 2rpq this single term is even
larger than all further terms in M ′. Thus, if

∑

pq∈M wx
pq(2) is maximized by M among some perfect

matchings, we can conclude that M is lexicographically minimal among them.
We can use this for the perfect matchings that maximize

∑

pq∈M wx
1 (pq), to conclude that

a maximum weight perfect matching according to wx is a lexicographically minimal maximum
weight perfect matching according to w. Since we can find a maximum weight perfect matching
according to wx by running the blossom algorithm of Edmonds [17] whose running time is O(n3)
(independent of the weights3), we are done. ⊓⊔

4 The Proofs of Theorems 6–9

In this section we prove Theorems 6–9. For the first three theorems we will reduce from one of
the following two problems. The problem Partition is well-known to be NP-complete [18], and
has as input a set of k integers a1, . . . , ak. The question is whether there exists a set of indices
I ⊆ {1, . . . , k} with

a(I) =
1

2

k
∑

i=1

ai.

The problem 3-Partition is to decide if we can partition a set of 3k positive integers a1, . . . , a3k
with

∑3k
p=1 ap = kc, for some integer c, into k sets that each sum up to c. In contrast to Partition,

the 3-Partition problem is even strongly NP-complete [18] (so NP-complete when encoded in
unary) even if 1

4 c < ai < 1
2c. The latter property ensures that each set in a solution has size

exactly 3.
We can now start with giving the proofs, the first one of which is the proof of Theorem 6.

Theorem 6 (restated). It is NP-hard to find a minimal maximum weight matching for a directed
partitioned matching game (N, v) with n = 2 and target allocation x.

Proof. We reduce from Partition. From an instance (a1, . . . , ak) of Partition we construct a
partitioned matching game (N, v) with n = 2. We define V1 = {v1, . . . , vk, v′1, . . . , v

′
k} and V2 =

{v′′1 , . . . , v
′′
k}. For i = 1, . . . , k we have arcs (vi, v

′
i), (v

′
i, vi), (vi, v

′′
i) and (v′′i , vi), each with weight

3 Note that these algorithms indeed work in any ordered abelian group; see this short argument by Emil
Jeřábek: https://cstheory.stackexchange.com/a/52389/419.

https://cstheory.stackexchange.com/a/52389/419

Partitioned Matching Games for International Kidney Exchange 21

v′1 v1 v′′1

a1

a1

a1

a1

v′2 v2 v′′2

a2

a2

a2

a2

v′3 v3 v′′3

a3

a3

a3

a3

V2V1

Fig. 6. The construction of the (directed) compatibility graph in the proof of Theorem 6 for k = 3.

ai. Every maximum weight matching M matches each vi with either v′i or v′′i . Matching vi with
v′i adds 2ai to u1 (and 0 to u2), while matching vi with v′′i adds ai to both u1 and u2. Note that
v(N) = 2

∑

j aj . Let x be the allocation with x1 = 3
2

∑

j aj and x2 = 1
2

∑

j aj . Then there exists a
matching M ∈ M with u1(M) = x1 and u2(M) = x2 if and only if (a1, . . . , ak) is a yes-instance of
Partition. ⊓⊔

We now prove Theorem 7.

Theorem 7 (restated). It is NP-hard to find a minimal maximum weight matching for a 2-sparse
directed partitioned matching game (N, v) and target allocation x.

Proof. We reduce from 3-Partition. From an instance (a1, . . . , a3k), such that
∑3k

p=1 ap = kc for

some integer c and 1
4c < ai <

1
2c, we construct a directed partitioned matching game (N, v) on a

(directed) compatibility graph G = (V,A) as follows (see also Fig. 7):

– We start with 3k sources. That is, for p = 1, . . . , k, we define Sp := {p, p′, p′′} and S :=
⋃

p Sp.
– We add a set of 3k sinks T := {z1, . . . , z3k}.
– We join every source to every sink by a path. That is, from each p (resp. p′ and p′′) there is a

path Ppq (resp. Pp′q and Pp′′q) to each zq of (odd) length 2aq − 1. This gives a total number of
(3k)2 pairwise internally vertex disjoint paths.

– Every two consecutive vertices on each path are joined by two opposite arcs of equal weight.
The weights on each path alternate between L and L + 1, starting and ending with opposite
arcs of weight L+ 1, where L is a sufficiently large integer, say, L > kc.

– For p = 1, . . . , k, let Vp = (
⋃

q V ((Ppq) ∪ V (Pp′q) ∪ V (Pp′′q))) \ T , and let Vk+1 = T .

Note that the edges of the underlying graph G = (V,E) have either weight 2L or 2(L + 1). As
L > kc, every maximum weight matching in G is perfect. More precisely, every maximum weight
matching M of G looks as follows. Each edge has either weight 2L or weight 2L+2. For p = 1, . . . , k
there is a path Ppq from p to some zq, a path Pp′q′ from p′ to some zq′ , and a path Pp′′q′′ from p′′

to some zq′′ that are completely matched in the sense that M ∩ Ppq is a perfect matching of Ppq,
and the same holds for P ′

pq and P ′′
pq. These paths contribute to up(M) a total gain of

(2(aq−1)+1)(L+1)+(2(aq′−1)+1)(L+1)+(2(aq′′−1)+1)(L+1) = (2(aq+aq′ +aq′′)−3)(L+1).

22 M. Benedek et al.

1

1′

1′′

2

2′

2′′

z1

z2

z3

z4

z5

z6

L+ 1

L+ 1

L

L

L+ 1

L+ 1

L

L

L+ 1

L+ 1
L+ 1

L+ 1

L

L

L+ 1

L+ 1

L+ 1

L+ 1

L

L

L+ 1

L+ 1

L

L

L+ 1

L+ 1

L

L

L+ 1

L+ 1

.

.

.

Fig. 7. The construction of the (directed) compatibility graph G = (V, A) in the proof of Theorem 7 when
k = 2, a1 = 3, a2 = 2, a6 = 4. For clarity reasons, only three paths are displayed and the other 33 paths
between sources and sinks have not been drawn.

For p = 1, . . . , k, there are also 3(k − 1) paths from {p, p′, p′′} to the remaining 3k − 3 sinks in
T \ {zq, zq′ , zq′′} that start and end with a non-matching edge (and are otherwise M -alternating).
These paths contribute to up(M) a total of

2L(
∑

r/∈{q,q′,q′′}(ar − 1)) = 2L((
∑

r ar)− (aq + aq′ + aq′′)− (3k − 3)).

This means that for p = 1, . . . , k,

up(M) = 2(aq + aq′ + aq′′) + 2L(
∑

ar)− 6L(k − 1)− 3(L+ 1).

Let x be the allocation with for p = 1, . . . , k,

xp = 2c+ 2L(
∑

ar)− 6L(k − 1)− 3(L+ 1),

and
xk+1 = 3k(L+ 1).

We now observe that there is a matchingM ∈ M with up(M) = xp for p = 1, . . . , k+1 if and only if
(a1, . . . , a3k) is a yes-instance of 3-Partition. Moreover, as 3-Partition is strongly NP-complete,
a1, . . . , a3k can be represented in unary. Thus, the size of (a1, . . . , a3k) is kc. Hence, (G,w) has
polynomial size. ⊓⊔

We continue with the proof of Theorem 8.

Theorem 8 (restated). It is NP-hard to find a minimal maximum weight matching for a 3-sparse
compact directed partitioned matching game (N, v) with n = 2 and target allocation x.

Partitioned Matching Games for International Kidney Exchange 23

Proof. We reduce again from the NP-complete Partition problem [18]. From a given instance
(a1, . . . , ak) of Partition we construct a 3-sparse compact partitioned matching game (N, v) of
width 2. We assume without loss of generality that

– k is even; else we just add ak+1 = 0;

– the size of a solution I (if it exists) is |I| = k/2; else we just add a large number to each ai;

– every ai is odd; else we just replace every ai by 2ai + 1.

The undirected compatibility graph G = (V,E) for (N, v) is a disjoint union C1 + . . . + Ck of k
cycles C1, . . . , Ck, where for i ∈ {1, . . . , k}, Ci has length 4ai + 1.

Let C = Ci be an even undirected cycle of length 4ai+4 in the compatibility graph G = (V,E)
for (N, v). For some sufficiently large integer L, say L =

∑

ai, we give each edge of C weight L,
K + 1 or L+ 1

2 . We assume that in the corresponding directed compatibility graph G = (V,A),

Let e and e be two edges of maximum distance from each other on C. Assign weights we = L
and we = L+1 to these edges, where L > 0 is large, say, L =

∑

ai. Weights we and we are assumed
to be split equally to their corresponding two opposite arcs. Removing e and e splits C into two
paths P1 and P2 of length 2ai + 1 each. The edge weights on these two paths alternate between
L and L + 1 except for their last edge, which has weight L+ 1

2 . More precisely, P1 starts with an
edge (say, incident to e) of weight L+ 1 and continues alternating between edges of weight L+ 1
and L until its last edge (incident to e) gets weight L + 1

2 (instead of L + 1). Similarly, P2 starts
with an edge of weight L, incident to e, and alternates between weights L+1 and L until the last
edge gets weight L+ 1

2 (instead of L). See Figure 8 for the case where ai = 5.

M :

L+ 1 L+ 1 L+ 1

2
L+ 1

2
L LL L L+ 1 L+ 1 L+ 1

L+ 1 L+ 1 L+ 1 L L LL L L L+ 1 L+ 1

L+ 1L

V1 V2

M ′ :

L+ 1 L+ 1 L+ 1

2
L+ 1

2
L LL L L+ 1 L+ 1 L+ 1

L+ 1 L+ 1 L+ 1 L L LL L L L+ 1 L+ 1

L+ 1L

V1 V2

Fig. 8. C = Ci for ai = 5 with edges e and e in the middle.

We let U1 and U2 denote the vertex sets of P1 and P2, respectively. For L suitably large, C has
exactly two maximum weight matchings, namely its two complementary perfect matchings M and
M ′, where M is the perfect matching that matches both e and e and M ′ is the complement of M .
We compute:

u1(M) =
1

2
L+

1

2
(L+ 1) + aiL = L(ai + 1) +

1

2

24 M. Benedek et al.

and

u2(M) =
1

2
L+

1

2
(L+ 1) + ai(L+ 1) = L(ai + 1) +

1

2
+ ai,

while u1(M
′) = L(ai + 1) + 1

2 + ai, and u2(M
′) = L(ai + 1) + 1

2 .
Recall that we have k such components Ci, each with two complementary maximum weight

(perfect) matchings. So in the graph G consisting of these k components Ci we have 2k maximum
weight matchings, obtained by picking one of the two complementary M and M in each Ci. Let V1

be the union of all the U1s in each Ci and V2 be the union of all the U2s. Consider the allocation x
with

x1 = x2 = L(
∑

ai + 1) +
1

2

∑

ai + k/2,

and assume these can be realized by a suitable maximum weight matching. Let I ⊆ {1, . . . , k} be
the set of indices i such that the matching picks M in Ci. With respect to this matching, V1 has
utility L

∑

(ai+1)+k/2+
∑

I ai. Such a matching exists if and only if (a1, . . . , ak) is a yes-instance
of Partition. This completes the reduction.

Each component Ci of the graph we construct has a description of length O(log(kamax)),
where amax denotes the maximum ai; note that L is bounded by log(kamax) and the length of Ci

is bounded by ai. Hence, allowing compact descriptions, the weighted graph we constructed has
size O(k log(kamax)), which is polynomial in the size of (a1, . . . , ak). ⊓⊔

Finally, we prove Theorem 9.

Theorem 9 (restated). Exact Perfect Matching and the problem of finding a minimal
maximum weight matching for a (3-sparse) perfect directed partitioned matching game (with n = 2)
and target allocation x are polynomially equivalent.

Proof. First suppose that we can solve Exact Perfect Matching in polynomial time. Let (N, v)
be a perfect directed partitioned matching game defined on (G,w) with partition (V1, V2). Recall
that we denote the underlying undirected graph corresponding to G = (V,A) by G = (V,E). Let
(x1, x2) be an allocation. As G has a perfect matching by definition, we find that x1 + x2 = |E|.
We need to check if there exists a matching M ∈ M (which will be perfect) with u1(M) ∈ I1 =
[x1 − δ, x1 + δ] and u2(M) ∈ I2 = [x2 − δ, x2 + δ] for some given δ ≥ 0.

Colour all edges of G with one end-vertex in V1 and the other one in V2 red. This gives us the
set R. Colour all remaining edges blue, that is, let B = E \R. We check for k = 1, . . . , |R| whether
there exists a perfect matching of G with exactly k red edges. This takes polynomial time by our
assumption on Exact Perfect Matching. Each time we find a solution M we let ℓi be the
number of (blue) edges with both end-vertices in Vi for i = 1, 2, and we check whether 2

3k + ℓ1
belongs to I1 and 1

3k + ℓ2 belongs to I2 (note that if k is fixed, then ℓ1 and ℓ2 are fixed as well).

Now suppose that we can find in polynomial time a minimal maximum weight matching for a perfect
directed partitioned matching game and target allocation x. Let G = (V,E) be an undirected graph
with a partition (R,B) of E into red and blue edges forming, together with an integer k ≥ 0, an
instance of Exact Perfect Matching.

We subdivide each edge of G twice, that is, we replace each edge e = ij with vertices i′, j′ and
edges ii′, i′j′, j′j. Let G′ = (V ′, E′) be the resulting graph, so V ′ \ V is the set of the 2|E| new
vertices, which we call subdivision vertices. Any perfect matching M in G translates into a unique
perfect matching M ′ in G′, and vice versa, Namely, for every ij ∈ E, we have ij ∈M if and only if
ii′, j′j ∈M ′, and also ij /∈M if and only if i′j′ ∈M ′. We call M ′ the transform of M . We let V ′

1

be the set of the subdivision vertices on red edges in G, and we let V ′
2 = V ′ \ V ′

1 . We let R′ denote
the edges with one end-vertex in V ′

1 and the other end-vertex in V ′
2 . Then the transform M ′ of a

perfect matching M with exactly k edges in R has 2k edges in R′, and vice versa. To solve the
latter problem, we define a perfect partitioned matching game corresponding to G′ and (V ′

1 , V
′
2)

and we choose (2k, 3|E| − 2k) as allocation. We now check if there exists a matching M ∈M′ (the

Partitioned Matching Games for International Kidney Exchange 25

set of perfect matchings of G′) such that u1(M) = 2k and u2(M) = 3|E| − 2k. By our assumption
we can do this in polynomial time. ⊓⊔

5 Conclusions

We introduced a new class of cooperative games: partitioned matching games. We showed how we
can use partitioned matching games to model international kidney exchange programmes. These
programmes are seen as the next step in the medical field of organ transplantations [12,37]. We
provided the theoretical basis for this application by proving a number of computational complexity
results for partitioned matching games.

We found two sets of results. One set of results was about ensuring stability of the international
collaboration. The aim was to choose in each round of the international programme a kidney
transplant distribution as close as possible to some prescribed fair distribution for that round.
Roughly speaking, we proved that this problem can be solved efficiently when transplant weights
are equal, but otherwise the problem becomes quickly computationally hard. We pose the following
two open problems; recall that for the second one we showed some partial results in Theorems 8
and 9).

1. Are there constants c and d such that the problem of finding a minimal maximum weight
matching for a d-sparse partitioned matching game (N, v) with width c and target allocation x
is NP-hard?

2. Are there constants n and d such that the problem of finding a minimal maximum weight
matching for a d-sparse partitioned matching game (N, v) with |N | = n and target allocation x
is NP-hard?

In our other set of results, we linked the core of partitioned matching games to the core of b-
matching games. We resolved a complexity gap for computing core allocations of b-matching games.
As a consequence we can settle the computational complexity for the three core-related problems
P1–P3 for partitioned matching games as well (see also Table 1).

It is also interesting to consider other solution concepts for b-matching games and partitioned
matching games, such as the nucleolus. Könemann, Pashkovich and Toth [24] proved that the
nucleolus of a matching game can be computed in polynomial time. In contrast, Könemann, Toth
and Zhou [26] proved that computing the nucleolus is NP-hard even for uniform b-assignment
games with b ≤ 3. We refer to [4,25,26] for some positive results (see also [5]), but determining the
complexity of computing the nucleolus is still open for the following games (see also [26]):

1. b-matching games with b ≤ 2,
2. partitioned matching games,
3. partitioned matching games with width c ≤ 2, and
4. partitioned matching games with width c ≤ 3.

References

1. D. J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter exchange markets: enabling
nationwide kidney exchanges. Proc. EC 2007, pages 295–304, 2007.

2. H. Aziz, P. Biró, J. Lang, J. Lesca, and J. Monnot. Efficient reallocation under additive and responsive
preferences. Theoretical Computer Science, 790:1–15, 2019.

3. H. Aziz, Á. Cseh, J. P. Dickerson, and D. C. McElfresh. Optimal kidney exchange with immunosup-
pressants. Proc. AAAI 2021, pages 21–29, 2021.

4. M. Bateni, M. Hajiaghayi, N. Immorlica, and H. Mahini. The cooperative game theory foundations of
network bargaining games. Proc. ICALP 2010, LNCS, 6198:67–78, 2010.

26 M. Benedek et al.

5. M. Benedek, P. Biró, M. Johnson, D. Paulusma, and X. Ye. The complexity of matching games: A
survey. CoRR, abs/2202.06898, 2022.

6. M. Benedek, P. Biró, W. Kern, and D. Paulusma. Computing balanced solutions for large international
kidney exchange schemes. Proc. AAMAS 2022, pages 82–90, 2022.

7. P. Biró, M. Gyetvai, X. Klimentova, J. P. Pedroso, W. Pettersson, and A. Viana. Compensation scheme
with Shapley value for multi-country kidney exchange programmes. Proc. ECMS 2020, pages 129–136,
2020.

8. P. Biró, B. Haase-Kromwijk, T. Andersson, and et al. Building kidney exchange programmes in Europe
– An overview of exchange practice and activities. Transplantation, 103:1514–1522, 2019.

9. P. Biró, W. Kern, D. Pálvölgyi, and D. Paulusma. Generalized matching games for international
kidney exchange. Proc. AAMAS 2019, pages 413–421, 2019.

10. P. Biró, W. Kern, and D. Paulusma. Computing solutions for matching games. International Journal
of Game Theory, 41:75–90, 2012.

11. P. Biró, W. Kern, D. Paulusma, and P. Wojuteczky. The stable fixtures problem with payments.
Games and Economic Behavior, 108:245–268, 2018.

12. G. A. Böhmig, J. Fronek, A. Slavcev, G. F. Fischer, G. Berlakovich, and O. Viklicky. Czech-Austrian
kidney paired donation: first european cross-border living donor kidney exchange. Transplant Inter-

national, 30:638–639, 2017.
13. O. N. Bondareva. Some applications of linear programming methods to the theory of cooperative

games. Problemy Kybernetiki, 10:119–139, 1963.
14. M. Carvalho and A. Lodi. A theoretical and computational equilibria analysis of a multi-player kidney

exchange program. European Journal of Operational Research, 305:373–385, 2023.
15. M. Carvalho, A. Lodi, J. P. Pedroso, and A. Viana. Nash equilibria in the two-player kidney exchange

game. Mathematical Programming, 161:389–417, 2017.
16. X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial optimization

games. Mathematics of Operations Research, 24:751–766, 1999.
17. J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of the

National Bureau of Standards Section B, 69B:125–130, 1965.
18. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. H. Freeman & Co., New York, NY, USA, 1979.
19. L. Gourvès, J. Monnot, and F. Pascual. Cooperation in multiorganization matching. Algorithmic

Operations Research, 7:111–124, 2013.
20. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial

optimization. Combinatorica, 1:169–197, 1981.
21. R. Gurjar, A. Korwar, J. Messner, and T. Thierauf. Exact perfect matching in complete graphs. ACM

Transactions on Computation Theory, 9:8:1–8:20, 2017.
22. L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics Doklady,

20:191–194, 1979.
23. X. Klimentova, A. Viana, J. a. P. Pedroso, and N. Santos. Fairness models for multi-agent kidney

exchange programmes. Omega, 102:102333, 2021.
24. J. Könemann, K. Pashkovich, and J. Toth. Computing the nucleolus of weighted cooperative matching

games in polynomial time. Mathematical Programing, 183:555–581, 2020.
25. J. Könemann and J. Toth. A general framework for computing the nucleolus via dynamic programming.

Proc. SAGT 2020, LNCS, 12283:307–321, 2020.
26. J. Könemann, J. Toth, and F. Zhou. On the complexity of nucleolus computation for bipartite b-

matching games. Proc. SAGT 2021, LNCS, 12885:171–185, 2021.
27. T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic activities.

Econometrica, 25:53–76, 1957.
28. K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combina-

torica, 7:105–113, 1987.
29. C. H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning tree problems. Journal

of the ACM, 29:285–309, 1982.
30. J. Plesńık. Constrained weighted matchings and edge coverings in graphs. Discrete Applied Mathe-

matics, 92:229–241, 1999.
31. L. S. Shapley. On balanced sets and cores. Naval Research Logistics Quarterly, 14:453–460, 1967.
32. L. S. Shapley and M. Shubik. The assignment game I: The core. International Journal of Game

Theory, 1:111–130, 1972.

Partitioned Matching Games for International Kidney Exchange 27

33. M. Sotomayor. The multiple partners game. In Equilibrium and dynamics: essays in honor of David

Gale. Macmillan Press Ltd, New York, 1992.
34. I. A. Stewart. On locating cubic subgraphs in bounded-degree connected bipartite graphs. Discrete

Mathematics, 163:319–324, 1997.
35. Z. Sun, T. Todo, and T. Walsh. Fair pairwise exchange among groups. Proc. IJCAI 2021, pages

419–425, 2021.
36. W. T. Tutte. A short proof of the factor theorem for finite graphs. Canadian Journal of Mathematics,

6:347–352, 1954.
37. M. O. Valent́ın, M. Garcia, A. N. Costa, C. Bolotinha, L. Guirado, F. Vistoli, A. Breda, P. Fiaschetti,

and B. Dominguez-Gil. International cooperation for kidney exchange success. Transplantation,
103:180–181, 2019.

	Partitioned Matching Games for International Kidney Exchange

