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Host Community Respecting Refugee Housing
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We propose a novel model for refugee housing respecting the preferences of the accepting community and refugees themselves. In

particular, we are given a topology representing the local community, a set of inhabitants occupying some vertices of the topology,

and a set of refugees that should be housed on the empty vertices of the graph. Both the inhabitants and the refugees have preferences

over the structure of their neighbourhood.

We are specifically interested in the problem of finding housing such that the preferences of every individual are met; using game-

theoretical words, we are looking for housing that is stable with respect to some well-defined notion of stability. We investigate

conditions under which the existence of equilibria is guaranteed and study the computational complexity of finding such a stable

outcome. As the problem is NP-hard even in very simple settings, we employ the parameterised complexity framework to give a

finer-grained view of the problem’s complexity with respect to natural parameters and structural restrictions of the given topology.

CCS Concepts: • Mathematics of computing→ Graph theory; • Theory of computation→ Parameterized complexity and exact

algorithms; Algorithmic game theory and mechanism design.

Additional KeyWords and Phrases: Refugee Housing, Social Choice, Computational Complexity, Stability Concepts, Fixed-parameter

tractability

1 INTRODUCTION

According to the last report of the United Nations High Commissioner for Refugees (UNHCR), there were 89.3 million

forcibly displaced persons at the end of 2021 [69]. It is the highest number since the aftermath of World War II and it

is for sure that these numbers will even grow. In May 2022, UNHCR announced that a tragic milestone of 100 million

displaced persons was reached. They identified the war in Ukraine as the leading cause of the dramatic growth in

the last year [60]. Russian aggression not only forced many Ukrainians to leave their homes, but even caused food

insecurity and related population movement in many parts of the world, since Ukraine is among the fifth largest

wheat exporters in the world [13].

It should be mentioned that political and armed conflicts are not the only causes of forced displacement [69]. One

of the most common reasons for fleeing is due to natural disasters. To name just a few, in August 2022, massive floods

across Pakistan affected at least two-thirds of the districts and displaced at least 33 million people [56, 57]; the numbers

are not yet final. At the same time, a devastating drought in Somalia caused the internal displacement of at least 755,000

people [69]. Furthermore, it is expected that, due to climate change, extremes of the climate will become even more

common in the near future [39].

Arguably, the best prevention against the phenomenon of forced displacement is not allowing it to appear at all;

however, the aforementioned numbers clearly show that these efforts are not very successful. Therefore, in practise,

three main solutions are assumed [45]. Voluntary repatriation is the most desirable but not very successful option. In

many situations, repatriation is not even possible due to ongoing conflicts or a completely devastated environment.

Resettlement and integration in the country of origin or abroad are more common. These two solutions require consid-

erable effort from both the newcomers and the host community sides.
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The very problematic part of forced displacement is the fact that 38% of all refugees1 are hosted in only five coun-

tries [69]. And these are only the absolute numbers. For example, in Lebanon, every one in four people is a refugee [62].

The redistribution of refugees seems to be a natural solution to this imbalance; however, not all countries are willing

to accept all people. One such example can be the Czech Republic, which refuses to accept any Syrian refugees during

the 2015 European migrant crisis, currently hosting the largest number of Ukrainian refugees per capita [70].

Even with working and widely accepted redistributing policies, there is still a need to provide housing in specific

cities and communities. From the good examples of such integration strategies [63] it follows that one of the most

important characteristics is that members of the accepting community do not feel threatened by newcomers.

Inspired by this, we propose a novel computational model for refugee housing. Our ultimate goal is to find an

assignment of displaced persons into empty houses of a community such that this assignment corresponds to the

preferences of the inhabitants about the structure of their neighbourhoods and, at the same time, our model also takes

into consideration the preferences of the refugees themselves, as refugees dissatisfied with their neighbourhood have

a strong intention to leave the community. More precisely, in our model, we are given a topology of the community,

which is an undirected graph, a set of inhabitants together with their assignment to the vertices of the topology

and preferences over the shape of their neighbourhood, and a set of refugees with the same requirements on the

neighbourhood shape. We want to find a housing of refugees in the empty vertices of the topology such that the

housing satisfies a certain criterion, such as stability.

Refugee redistribution has gained the attention of mathematicians and computer scientists very recently. The formal

model for capturing refugee resettlement is double-sided matching [3, 7, 28, 29]. That is, on the input we are given a

set of locations with multidimensional constraints and a set of refugees with multidimensional features. An example

of a constraint can be the number of refugees the locality can accept on one side and the size of family on the refugee

side. The question then is whether there exists a matching between localities and refugees respecting all constraints.

According to us, this formulation of the refugees resettlement problemmore concerns the global perspective of refugee

redistributing, not the local housing problem, as we do in our paper. Aziz et al. [7] study mostly the complexity of

finding stable matching with respect to different notions of stability, and it turns out that for most of the stability

notions finding a stable matching is computationally intractable (NP-hard, in fact). Kuckuck et al. [51] later refined the

model of Aziz et al. [7] in terms of hedonic games.

Our Contribution. Partly continuing the line of research in refugee resettlement, we introduce a novel model focused

on the local housing of new refugees. Previous models [3, 7, 29] can be seen and used as a very effective model on

the (inter-) national level to distribute refugees to certain locations, such as states or cities2. However, our model can

be assumed as the second level of refugee redistribution; once refugees are allocated to some community, we want to

house them in a way that respects preferences of both inhabitants and refugees.

In particular, we introduce three variants of refugee housing, each targeting a certain perspective of this problem.

Our simplest model, introduced in Section 3, completely eliminates the preferences of refugees and studies only the

stability of the housing with respect to the preferences of the inhabitants. We call this variant anonymous housing.

Since refugees are assumed to be indistinguishable, inhabitants have preferences over the number of refugees in their

neighbourhood.

1From the strict sociological point-of-view, not all forcibly displaced persons are classified as refugees. Slightly abusing the notation, we will use the
term refugee and displaced person interchangeably.
2In fact, the American resettlement agency HIAS use the matching software AnnieTM Moore which was later improved by Ahani et al. [3].
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As stated above, the most successful refugee integration projects have the following property in common; they try

to make both inhabitants and refugees as satisfied as possible by various activities to ensure that both groups get to

know each other. We believe that our hedonicmodel, where the preferences of both inhabitants and refugees are based

on the identity of particular members of the second group, supports and leads to more stable and acceptable housing.

This model is formally defined and studied in Section 4.

The two introduced models have some disadvantages. The first is disrespectful to the refugees’ preferences, while

the second is not very realistic, as it is hard to make all inhabitants familiar with all refugees and the other way around.

Therefore, our last model can be seen as a compromise between these two extremes. In the diversity setting, introduced

in Section 5, all agents (union of inhabitants and refugees) are partitioned into : types, and preferences are over the

fractions of agents of each type in the neighbourhood of each agent. Another advantage of this approach is that it

nicely captures also the settings where we already have number of integrated refugees and the newcomers want to

have some of them in the neighbourhood, or the case of an internally displaced person.

In all the aforementioned variants of the refugee housing problem, agents have dichotomous preferences; that is,

they approve some set of alternatives and do not distinguish between them. It can be seen as if the neighbourhood of

some agent does not comply with his approval set, he would rather leave the local community, which is very undesired

behaviour on both sides.

For all assumed variants, we show that an equilibrium is not guaranteed to exist even in very simple instances.

Thus, we study the computational complexity of finding an equilibrium or deciding that no equilibrium exists. To

this end, we provide polynomial-time algorithms and complementary NP-hardness results. In order to paint a more

comprehensive picture of the computational tractability of the aforementioned problems, we employ a finer-grained

framework of parameterised complexity to give tractable algorithms for, e. g., instances where the number of refugees

or the number of inhabitants is small, or for certain structural restrictions of the topology.Additionally, we complement

many of our algorithmic results with conditional lower-bounds matching the running-time of these algorithms.

Related Work. Our model is influenced by a game-theoretic reformulation of the famous Schelling’s model [64, 65]

of residential segregation introduced by Agarwal et al. [2]. Here, we are given a simple undirected graph � and a set

of selfish agents partitioned into : types. Every agent wants to maximise the fraction of agents of her own type in her

neighbourhood. The goal is then to assign agents to the vertices of� so that no agent can improve her utility by either

jumping to an unoccupied vertex or swapping positions with another agent. Follow-up works include those that study

the problem from the perspective of computational complexity [33, 50] and equilibrium existence guarantees [16, 17,

47].

The second main inspiration for our model is the Hedonic Seat Arrangement problem and its variants recently

introduced by Bodlaender et al. [18]. Here, the goal is to find an assignment of agents with preferences to the vertices of

the underlying topology. The desired assignment should then meet specific criteria such as different forms of stability,

maximising social welfare, or being envy-free. In our model, compared toHedonic Seat Arrangement of Bodlaender

et al. [18], inhabitants already occupy some vertices of the topology and we have to assign refugees to the remaining

(empty) vertices in a desirable way.

Next, the problem of house allocation [1] or housing market [67] has been extensively studied in the area of mecha-

nism design. Here, each agent owns a house and the objective is to find a socially efficient outcome using reallocations

of objects. Later, You et al. [72] introduced house allocation over social networks that follows current trend in mech-

anism design initiated by Li et al. [53], where each individual can only communicate with his neighbours. As stated
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before, the house allocation is studied mainly from the viewpoint of mechanism design and as such is far from our

model.

Finally, hedonic games [21, 22, 32] are a well-studied class of coalition formation games where the goal is to partition

agents into coalitions and where the utility of every agent depends on the identity of other agents in his coalition. In

anonymous games [12, 21], the agents have preferences over the sizes of their coalition. The most recent variants

of hedonic games are the so-called hedonic diversity games [19, 23] where agents are partitioned into : types and

preferences are over the ratios of each type in the coalition. The main difference between our model and (all variants

of) hedonic games is that in the latter model all coalitions are pairwise disjoint; however, in our case, each agent has

his own neighbourhood overlapping with neighbourhoods of other agents.

2 PRELIMINARIES

Let N denote the set of positive integers. Given two positive integers 9, 9 ′ ∈ N, with 9 ≤ 9 ′, we call the set [ 9, 9 ′] =

{ 9, . . . , 9 ′} an interval, and let [ 9] = [1, 9] and [ 9]0 = [ 9] ∪ {0}. Let ( be a set. By 2( we denote the set of all subsets of

( and, given : ≤ |( |, we denote by
((
:

)
the set of all subsets of ( of size : .

Let ' = {A1, . . . , A<} be a non-empty set of refugees and � = {81, . . . , 8ℓ } be a set of inhabitants. The set of all agents is

defined as # = '∪ � . A topology is a simple undirected graph� = (+ , �), where |+ | ≥ |# |. For a vertex E , we denote by

# (E) the set of its neighbours, formally # (E) = {D | {D, E} ∈ �}. The size of the neighbourhood of a vertex E is called

its degree and is defined as deg(E) = |# (E) |. The closed neighbourhood of vertex E is defined as # [E] = # (E) ∪ {E}. In

this work, we follow the basic graph-theoretical terminology [30].

An inhabitants assignment is an injective function ] : � → + .

A set of vertices occupied by the inhabitants is denoted +� and, given an inhabitant 8 ∈ � , we denote the set of unoc-

cupied vertices in his neighbourhood *8 = # (] (8)) \+� . The set of all vertices that are not occupied by inhabitants is

denoted+* = + \+� .

The goal of every variant of our problem is to find a mapping of refugees to vertices that are not occupied by

inhabitants. Formally, housing is an injective mapping c : ' → +* . A set of vertices occupied by refugees with respect

to housing c is denoted +c = {c (A ) | A ∈ '}. We denote by Π�,] the set of all possible housings, and we drop the

subscript whenever � and ] are clear from the context.

Parameterised Complexity. We study the problem in the framework of parameterised complexity [26, 31, 61]. Here,

we investigate the complexity of the problem not only with respect to an input size =, but even assuming some addi-

tional parameter : . The goal is to find a parameter which is small and the “hardness” can be confined to this parameter.

The most favourable outcome is an algorithm with running time 5 (:) ·=O(1) , where 5 is any computable function. We

call this algorithm fixed-parameter tractable and the complexity class containing all problems that admit algorithms

with such running time is called FPT.

Not all combinations of parameters yield to fixed-parameter tractable algorithms. A less favourable outcome is

an algorithm running in = 5 (:) time, where 5 is any computable function. Parameterised problems admitting such

algorithms belong to complexity class XP. To exclude the existence of a fixed-parameter tractable algorithm, one can

show that the parameterised problem isW[t]-hard for some C ≥ 1. This can be done via a parameterised reduction from

any problem known to beW[t]-hard.

It could also be the case that a parameterised problem is NP-hard even for a fixed value of : ; we call such problems

para-NP-hard and, assuming P ≠ NP, such problems do not admit XP algorithms.
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Our running-time lower-bounds are based on the well-known Exponential Time Hypothesis (ETH) of Impagliazzo

and Paturi [43]; see also Impagliazzo et al. [44] and the survey of Lokshtanov et al. [54]. This conjecture states that,

roughly speaking, there is no algorithm solving 3-SAT in time sub-exponential in the number of variables.

Structural Parameters. Let � = (+ , �) be a graph. A set � ⊆ + is vertex cover of� if� \� is an edgeless graph. The

vertex cover number vc(�) is the minimum size vertex cover in � .

The tree-depth of a graph � = (+ , �), denoted td(�), is defined as follows. It is 1 if � has only a single vertex,

1 +minE∈+ td(� − E) if� is connected, and otherwise it is the maximum tree-depth of connected components of� .

Definition 2.1 (Tree decomposition). A tree decomposition of a graph � = (+ , �) is a triple T = (), V, A ), where ) is a

tree rooted at node A and V : + () ) → 2+ is a mapping that satisfies:

(1)
⋃

G ∈+ () ) V (G) = + ;

(2) For every {D, E} ∈ � there exists a node G ∈ + () ), such that D, E ∈ V (G);

(3) For every D ∈ + the nodes {G ∈ + () ) | D ∈ V (G)} form a connected subtree of ) .

To distinguish between the vertices of a tree decomposition and the vertices of the underlying graph, we use the

term node for the vertices of a given tree decomposition.

The width of a tree decomposition T is maxG ∈+ () ) |V (G) | − 1. The tree-width of a graph � , denoted tw(�), is the

minimum width of a tree decomposition of� over all such decompositions.

3 ANONYMOUS REFUGEES

In our simplest model of refugee housing, we assume refugees to be non-strategic and concern only the preferences

of inhabitants. In this sense, the refugees are, from the viewpoint of inhabitants, anonymous, and the preferences only

takes into account the number of refugees in the neighbourhood of each inhabitant. Similar preferences have already

been studied in different problems such as anonymous hedonic games [11, 12, 21].

We formally capture this setting in the computational problem called the Anonymous Refugees Housing problem

(ARH for short). A preference of every inhabitant 8 ∈ � is a set �8 ⊆ [deg(] (8))]0 of the approved numbers of refugees

in the neighbourhood. Our goal is to decide whether there is a housing c : ' → +* that respects the preferences of all

inhabitants.

Definition 3.1. A housing c : ' → +* is called inhabitant-respecting if for every 8 ∈ � we have |# (] (8)) ∩+c | ∈ �8 .

If the approval set �8 for an inhabitant 8 ∈ � consists of consecutive numbers, we say that the inhabitant 8 approves

an interval.

Example 3.2. Let the topology be a cycle with four vertices. There are two inhabitants assigned to neighbouring

vertices. One of these inhabitants, call herℎ1, has approval set�ℎ1 = {0, 1}, and the second one, sayℎ2, is not approving

any refugees in his neighbourhood, that is,�ℎ2 = {0}.We have ' = {A }. The only valid housing is next to the inhabitant

ℎ1 as housing A in the neighbourhood of ℎ2 clearly does not respect his preference. Also note that in this particular

example, all the inhabitants approve intervals.

As our first result, we observe that even in a very simple settings, it is not guaranteed that any inhabitant-respecting

refugees housing exists.
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Proposition 3.3. There is an instance of the ARH problem with no inhabitant-respecting refugees housing even if all

inhabitants approve intervals.

To prove Proposition 3.3, assume an instance with one inhabitant 8 and two refugees A1 and A2. Let the topology

be  3, the inhabitant 8 be assigned to an arbitrary vertex, and let �8 = {0}. There are exactly two possible refugees

housings and in any of them the inhabitant 8 has two neighbouring refugees; therefore, there is no inhabitant-respecting

housing.

In the previous example, we used the fact that the inhabitant 8 does not approve any refugees in his neighbourhood.

We call such inhabitants intolerant. Despite the fact that the instance does not have an inhabitant-respecting housing

even if �8 = {1}, we observe that intolerant inhabitants can be safely removed.

Proposition 3.4. Let I = (�, � , ', ], (�8)8 ∈� ) be an instance of the ARH problem, 9 ∈ � be an inhabitant with� 9 = {0},

and � 9 = {] ( 9)} ∪* 9 . I admits an inhabitant-respecting housing iff the instance I ′
= (� \ � 9 , � \ { 9}, ', ], (�8)8 ∈�\{ 9 })

admits an inhabitant-respecting housing.

Proof. Let I be a yes-instance, let 9 ∈ � be an inhabitant with � 9 = {0}, and let c be an inhabitant-respecting

refugees housing. Since c is an inhabitant-respecting housing, there is no refugee in the neighbourhood of 9 , so c is a

solution even for I ′.

In the opposite direction, let I ′ be a yes-instance and c ′ be an inhabitant-respecting housing in I′. As c ′ houses

all refugees to+ ′
= + \ {# (] ( 9))} the c ′ is also a solution for I. �

Due to the definition of approval sets, inhabitants without unoccupied neighbourhood are necessarily assumed

intolerant and therefore can be safely removed by Proposition 3.4. Hence, we assume only instances without intolerant

inhabitants where every inhabitant has at least one unoccupied vertex in her neighbourhood.

Proposition 3.5. Let I = (�, � , ', ], (�8)8 ∈� ) be an instance of the ARH problem and {D, E} ∈ � (�) be an edge such

that either D, E ∈ +� or D, E ∈ +* . Then I admits an inhabitant-respecting housing iff the instance I ′
= ((+ (�), � (�) \

{{D, E}}), � , ', ], (�8)8 ∈� ) admits an inhabitant-respecting housing.

Proposition 3.5 directly implies that all graphs assumed in this section are naturally bipartite.

Theorem 3.6. Every instance of the ARH problem where the topology is a graph of maximum degree 2 can be solved

in polynomial-time.

Proof. Our algorithm is based on the dynamic programming approach combined with the gradual elimination of

inhabitants’ approval sets and exhaustive application of Proposition 3.4. Observe that graph of maximum degree 2 is

a collection of paths and cycles [30]. We first introduce an algorithm that solves the problem on paths and then show

how to improve the algorithm to solve cycles.

Let the topology be a path % = E1E2 . . . E: , : ≥ 3, and suppose that the vertex E1 is occupied by an inhabitant 8 ∈ � .

We distinguish two cases based on �8 and show how the algorithm proceed. If �8 = {1}, then we have to house a

refugee on E2. However, this adds one refugee in the neighbourhood of the inhabitant 9 occupying the vertex E3. To

capture this, we decrease the value of all elements in � 9 . If there are any negative numbers in � 9 after this operation,

we remove all of them from the list. Then we delete E1 and E2 from % , decrease |' | by one, and solve the problem for

% ′ = E3 . . . E: . If �8 = {0, 1}, we have to try both possibilities. That is, we run the algorithm once with �8 = {0} and

once with �8 = {1}. If any run of the algorithm finds a solution, we also have a solution for the original instance.
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The described algorithm is exponential in the worst case. To improve the running time, we tabularise the computed

partial solutions. Our dynamic programming table �% has three dimensions: the first for an inhabitant, the second

for an actual value of |' |, and the third for a shape of approval set. The stored value is either yes or no depending on

whether the combination of indices yields to a inhabitant-respecting housing. There are O(=) inhabitants, the value of

|' | is also in O(=), and there are at most 2 different approval sets possible for each inhabitant on the path. Therefore,

the size of the table is at most O(=2), which is also the running time of our algorithm.

If the vertex E1 is unoccupied, we can add the dummy vertex E0 as a neighbour of E1, make it occupied by an

inhabitant with approval set {0, 1} and run the preceding algorithm.

For cycles, we identify, based on approval sets, the best vertex to break this cycle and turning it into a path. In

particular, if there is an inhabitant with the approval set {2}, we delete this vertex together with his two neighbours

and obtain a path. In all other cases, we try all (at most three) ways of resolving his neighbourhood. To do so, we run

an algorithm similar to the one from the beginning of this proof. �

Unfortunately, as the following theorem states, the bounded-degree condition from Theorem 3.6 cannot be relaxed

any more.

Theorem 3.7. TheARH problem isNP-complete even if the topology is a graph of maximumdegree 3 and all inhabitants

approve intervals.

Proof. Given a housing c , it is easy to verify in polynomial timewhether c is inhabitant-respecting by enumerating

all inhabitants and comparing their neighbourhood with approval lists. Thus, ARH is indeed in NP.

ForNP-hardness, we present a polynomial-time reduction from a variant of the 2-Balanced 3-SAT problemwhich is

known to beNP-complete [15, 38, 68]. In this variant of 3-SAT, we are given a propositional formulai with = variables

G1, . . . , G= and< clauses �1, . . . ,�< such that each clause contains at most 3 literals and every variable appears in at

most 4 clauses – at most twice as a positive literal and at most twice as a negative literal. Later in this paper, we will

refer to this reduction as basic reduction.

We construct an equivalent instance I of ARH as follows. We represent every variable G8 by a single variable gadget

-8 that is a path C8E8 58 . The vertex E8 is occupied by an inhabitant with approval set {1}. All other vertices are empty

and we call the vertex C8 the C-port and the vertex 58 the 5 -port. Every clause � 9 is represented by a single vertex 2 9

occupied by an inhabitant ℎ 9 who approves the interval [1, |� 9 |] and is connected to the C-port of the variable gadget

-8 if the variable G8 occurs as a positive literal in � 9 and to the 5 -port of -8 if G8 occurs as a negative literal in � 9 ,

respectively. To complete the reduction, we set |' | = =.

For the correctness of the construction, leti be a satisfiable 2-Balanced 3-SAT formula and U be a truth assignment.

For every variable G8 , we house a refugee at E18 if U (G8 ) = 1 and at E38 if U (G8 ) = 0, respectively. This housing is clearly a

solution of I as every inhabitant assigned to the variable gadget is clearly satisfied, every inhabitant ℎ 9 is also satisfied

since U is a satisfying assignment, and we housed 1 refugee for every variable gadget.

In the opposite direction, observe that there is exactly one refugee assigned to every variable gadget and, thus, in

every assignment c there is no variable gadget -8 such that the C-port and the 5 -port are occupied at the same time.

Hence, we can set U (G8 ) equal to 1 if and only if the C-port is occupied by a refugee. Clearly, U is a truth assignment as

c has to satisfy each inhabitant occupying clause vertex.

By definition, every clause contains at most 3 literals, and thus the degree of every vertex 2 9 , 9 ∈ [<], is at most 3.

For every variable gadget -8 , 8 ∈ [=], the vertex E28 has degree 2 and both C-port and 5 -port have degree at most 3 –

7



ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

?1

[1, 3]

?2

[1, 2]

?3

[1, 4]

?4

[1, 3]

?5

[1, 3]

Fig. 1. An illustration of the construction used in the proof of Theorem 3.8.

they are adjacent to E28 and at most two vertices representing clauses. Hence, the bounded-degree condition holds and

the construction can be clearly done in polynomial time, finishing the proof. �

Since the above results clearly show that the problem is very hard even in simple settings, we turn our attention to

the parameterised complexity of theARH problem. In particular,we study the problem’s complexity from the viewpoint

of natural parameters, such as the number of refugees, the number of inhabitants, the number of empty vertices, and

various structural parameters restricting the shape of the topology.

Theorem 3.8. The ARH problem isW[2]-hard parameterised by the number of refugees |' | even if all inhabitants ap-

prove intervals. Moreover, unless ETH fails, there is no algorithm that solves ARH in 5 ( |' |) ·=> ( |' |) time for any computable

function 5 .

Proof. We reduce from the Dominating Set problem, which is known to beW[2]-complete [31] and, unless ETH

fails, cannot be solved in 5 (:) · => (:) time for any computable function 5 [25]. The instance I of Dominating Set

consists of a simple undirected graph � = (+ , �) and an integer : ∈ N. The goal is to decide whether there is a set

� ⊆ + of size at most : such that each vertex E ∈ + is either in � or at least one of its neighbours is in � .

We construct an equivalent instance I′ of the ARH problem as follows. We start by defining the topology. For each

vertex E ∈ + we add two vertices ℓE and ?E . The vertex ℓE represents the original vertex and is intended to be free for

refugees. The vertex ?E is occupied by an inhabitant ℎE with �ℎE = [1, |# [E] |]. This inhabitant ensures that there is

at least one refugee housed in the closed neighbourhood of ?E . The edge set of the topology � ′ is
⋃

E∈+ {{?E, ℓF} |

F ∈ #� [E]}. To complete the construction, we set |' | = : . For an overview of our construction, we refer the reader to

Figure 1.

Let I be a yes-instance and � be a dominating set of size : . For every vertex E ∈ � , we house a refugee in the

vertex ℓE . Since � was a dominating set of size : , in the closed neighbourhood of every E ∈ + in� there is at least one

vertex D ∈ � . Therefore, for every inhabitant ℎE , there is at least one refugee in his neighbourhood and I′ is indeed a

yes-instance.

In the opposite direction, let I′ be a yes-instance and c be a solution housing. We set � to {E ∈ + | c−1 (ℓE) ≠ ∅}.

Due to the definition of approved intervals of the inhabitants, it holds for every E ∈ + either E or at least one of his

neighbours is in � , as otherwise the inhabitant ℎE would not be respected.

To complete the proof, we recall that |' | = : and, hence, the presented reduction is indeed a parameterised reduction.

Moreover, assume that there is an algorithm A, that solves ARH in 5 ( |' |) · |I ′ |> ( |' |) time. Then we can reduce

an instance of the Dominating Set problem to the instance of the ARH problem, solve the reduced instance using

algorithm A and reconstruct a solution of the original instance. This is an algorithm for Dominating Set running in

5 (:) · => (:) time, which contradicts ETH. �
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We complement Theorem 3.8 with an algorithm that runs in time matching the lower-bound given in this theorem.

Proposition 3.9. The ARH problem can be solved in =O( |' |) time, where = = |+ (�) |. That is, ARH is in XP parame-

terised by the number of refugees.

Proof. Our algorithm is a simple brute-force. Let +* = + (�) \+� be the number of empty vertices and let = = |+ |.

Note that |+* | ≤ =. We try all subsets of +* of size |' | and for each such subset, we check in linear time whether the

housing is inhabitant-respecting. This gives us the total running time =O( |' |) . �

As the number of refugees is not a parameter promising tractable algorithms even if all inhabitants approve intervals,

we turn our attention to the case where the number of inhabitants is small. Our algorithm is based on integer linear

programming formulation of the problem and we use the following result of Eisenbrand and Weismantel [34].

Theorem 3.10 ([34, Theorem 2.2]). Integer linear programme AG ≤ 1, G ≥ 0, with = variables and< constraints can

be solved in

(<Δ)O(<) · | |1 | |2∞

time, where Δ is an upper-bound on all absolute values in A.

Theorem 3.11. If all inhabitants approve intervals, then the ARH problem is fixed-parameter tractable parameterised

by the number of inhabitants |� |.

Proof. We solve the ARH problem using an integer linear programming formulation of the problem. We introduce

one binary variable GE for every empty vertex E ∈ +* representing if a refugee is housed on E or not. Next, we add the

following constraints.

∀8 ∈ � :
∑

E∈#� (] (8))

GE ≥ low(8) (1)

∀8 ∈ � :
∑

E∈#� (] (8))

GE ≤ high(8) (2)

∑

E∈+*

GE = |' |, (3)

where for an inhabitant 8 ∈ � the value low(8) stands for lower-end and high(8) stands for upper-end of the approved

interval by inhabitant 8 , respectively. Equations (1) and (2) ensure that the number of refugees in the neighbourhood of

each inhabitant is in its approved interval, while Equation (3) ensures that all refugees are housed somewhere. Using

Theorem 3.10 we see that the given integer programme can be solved in time |� |O( |� |) · =O(1) , as< = 2|� | + 1, Δ = 1,

and | |1 | |∞ ≤ =. That is, ARH is in FPT parameterised by the number of inhabitants |� |. �

Note that it would be possible to provide a different ILP formulation of the problem and use the famous theorem

of Lenstra Jr. [52] to show membership in FPT, however, this would yield to an algorithm with much worse (i. e.,

doubly-exponential) running-time.

The result from Theorem 3.11 cannot be easily generalised to the case with inhabitants approving general sets.

However, we can show that if the number of intervals in each approval set is bounded, the problem is still fixed-

parameter tractable.

Theorem 3.12. The ARH problem is fixed-parameter tractable when parameterised by the combined parameter the

number of inhabitants |� | and the maximum number of disjoint intervals X in the approval sets.
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�8,9

� 9,8

"8,9

(8

( 9

)8,9

Fig. 2. An overview of the construction used in the proof of Theorem 3.13. The sets (8 , ( 9 , and )8,9 consist of unoccupied vertices,
and there are sequentially =, =, and <=2 of them in each set. The vertex �8,9 is occupied by an inhabitant with an approval set
{n8,9 ( {D, E }) ·=

2+a8 (D) | {D, E } ∈ �8,9 ∧D ∈ +8 } and the vertex� 9,8 is occupied by an inhabitant with an approval set {n8,9 ( {D, E }) ·
=2 + a9 (E) | {D, E } ∈ �8,9 ∧ E ∈ +9 }. The inhabitant occupying the vertex"8,9 approves the set {C ·=2 | C ∈ [<] }.

Proof. We start our algorithm by guessing an effective interval for every inhabitant 8 ∈ � . There are at most X |� |

such guesses and for each guess we run the integer programme from the proof of Theorem 3.11. The overall running

time of this algorithm is X |� | |� |O( |� |) · =O(1) . �

In our next result, we show that the parameter X from Theorem 3.12 cannot be dropped while keeping the problem

tractable.

Theorem 3.13. The ARH problem isW[1]-hard parameterised by the number of inhabitants |� |.

Proof. Our reduction is very similar to the one of Knop et al. [48, Theorem 3.1]. We reduce from the Multi-

coloured Cliqe problem where we are given a :-partite graph � = (+1 ∪ · · · ∪ +: , �) and the goal is to find a

complete subgraph with : vertices such that it contains a vertex from every +8 , 8 ∈ [:]. Multicoloured Cliqe is

known to be W[1]-hard with respect to : [37]. We may assume that every colour class +8 , 8 ∈ [:], is of size =. By

�8, 9 we denote the set of edges between colour classes +8 and +9 , that is, �8, 9 = {{D, E} | D ∈ +8 ∧ E ∈ +9 } and we may

assume that for every pair of distinct 8, 9 ∈ [:] we have |�8, 9 | =<.

We begin the reduction by fixing a bijection a8 : +8 → [=] for every 8 ∈ [:] and a bijection n8, 9 : �8, 9 → [<] for every

pair of distinct 8, 9 ∈ [:]. Next, for every colour class +8 we add a vertex-selection gadget (8 consisting of = vertices

and leave these vertices empty. The number of refugees housed on the vertices of (8 will correspond to a vertex in +8

that is part of the clique. Then, for every �8, 9 , 8, 9 ∈ [:], we add a set )8, 9 with< · =2 empty vertices and connect these

to the vertex "8, 9 . The vertex "8, 9 is occupied by an inhabitant with approval set {C=2 | C ∈ [<]} and we call )8, 9 an

edge-selection gadget. Similarly to the vertex selection gadget, the number of refugees assigned to )8, 9 will correspond

to the edge selected for the solution. To ensure that the choice performed in the vertex-selection gadgets and the edge-

selection gadgets is compatible, we introduce two vertices�8, 9 and� 9,8 for every �8, 9 , 8, 9 ∈ [:] and 8 ≠ 9 . The vertex�8, 9

is occupied by an inhabitant with approval set {n8, 9 (4)·=2+a8 (E) | 4 ∈ �8, 9∧E ∈ 4∧E ∈ +8 } and is adjacent to every vertex

in (8 , and the vertex � 9,8 is occupied by an inhabitant with approval set {n8, 9 (4) · =2 + a 9 (E) | 4 ∈ �8, 9 ∧ E ∈ 4 ∧ E ∈ +9 }

and is adjacent to every vertex in ( 9 . To complete the construction, we set |' | =
(:
2

)
·< · =2 + : · = and introduce the

same number of auxiliary vertices of degree 0 which are intended for the remaining refugees not assigned to vertex-

and edge-selection gadgets. For an overview of our construction, please refer to Figure 2.
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For correctness, let I = (�,:) be a yes-instance and E8 , . . . , E: , where E8 ∈ +8 , be vertices that form a clique in � .

For every 8 ∈ [:] we assign a8 (E8) refugees to empty vertices of (8 and for each pair of distinct 8, 9 ∈ [:], we house

n8, 9 ({E8 , E: }) ·=
2 refugees on empty vertices of)8, 9 . The remaining refugees are assigned to the auxiliary vertices. The

only inhabitants occupy the vertices "8, 9 , �8, 9 , and � 9,8 . The inhabitants of "8, 9 are easily satisfied since we assign

some multiple of =2 to every )8, 9 . An inhabitant in �8, 9 is adjacent to n8, 9 ({E8 , E: }) · =
2 refugees from )8, 9 and a8 (E8)

refugees from (8 while� 9,8 is adjacent to n8, 9 ({E8 , E: }) · =
2 refugees from)8, 9 and a 9 (E 9 ) refugees from ( 9 , respectively.

This complies with their approval set.

In the opposite direction, let the equivalent ARH instance I ′ be a yes-instance and c be an inhabitant respecting

housing in I ′. Due to the inhabitants of"8, 9 , where 8, 9 ∈ [:], there is some positive multiple of =2 refugees assigned

to every )8, 9 that corresponds to some edge 4 ∈ �8, 9 in the original graph. Moreover, due to inhabitant on �8, 9 , the

number of refugees assigned to (8 corresponds to the identification of some vertex E ∈ +8 that is necessarily incident

to 4 . The same holds for� 9,8 .

It is not difficult to see that the vertices �8, 9 and � 9,8 together with "8, 9 , where 8, 9 ∈ [:] and 8 ≠ 9 , form a vertex

cover of the topology� ′ as (8 and)8, 9 for each pair of distinct 8, 9 ∈ [:] are sets of independent vertices. It follows that

vc(� ′) =
(:
2

)
+ : (: − 1) = O(:2) and thus the presented reduction is indeed a parameterised reduction, finishing the

proof. �

By careful guessing, we can prove that for the combined parameters the number of refugees and the number of

inhabitants, we may obtain fixed-parameter tractable algorithm.

Lemma 3.14. The ARH problem is fixed-parameter tractable when parameterised by the number of refugees |' | and the

number of inhabitants |� | combined.

Proof. We can guess a particular neighbourhood of every refugee, and for every such guess, verify whether it is

correct. Let �A8 ⊆ � be a neighbourhood guessed for a refugee A8 ∈ '. If there is no empty vertex E with deg(E) = |�A8 |

at the intersection of neighbourhoods of vertices in �A8 , we discard this guess. Otherwise, we house the refugee A8 on E

and continue with A8+1. If all refugees are housed, we simply check whether the housing respects the approval sets of

all inhabitants.

Overall, there are (2 |� |) |' | = 2 |� | · |' | such guesses and every guess can be verified in polynomial-time. Therefore,

the running time of our algorithm is 2 |� | · |' | · =O(1) , that is, ARH is in FPT with respect to |' | and |� | combined. �

The last assumed natural parameter is the number of empty vertices the refugees can be assigned to. Note that

|+* | ≥ |' |. This parameterisation yields, in contrast to Theorem 3.8, to a simple algorithm running in FPT time which

is, although its simplicity, optimal assuming the Exponential Time Hypothesis.

Theorem 3.15. The ARH problem can be solved in 2O( |+* |) · =O(1) time and, unless ETH fails, there is no algorithm

solving ARH in 2> ( |+* |) · =O(1) time even if all inhabitants approve intervals.

Proof. First, observe that if |+* | ≤ |' |, then the instance is trivially no-instance, as it is not possible to house all

refugees. Hence, we can enumerate all subsets of |+* | of size |' | and, for every guess, check whether all inhabitants

are satisfied with this assignment. This can be done in 2O( |+* |) ·=O(1) time, that is, ARH is in FPTwith respect to the

number of empty vertices |+* |.

For the running-time lower-bound, we recall that 3, 4-SAT cannot be solved in 2> (=+<) time unless ETH fails [43, 44].

Assume to the contrary, there is an algorithmA that solves ARH in 2> ( |+* |) · =O(1) . Then, for every 3, 4-SAT formula
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i we can use the basic reduction from Theorem 3.7, which can be clearly done in polynomial time, to the equivalent

instance I of the ARH problem, solve I in 2> ( |+* |) · =O(1) time and then reconstruct a solution for i . Overall, this

gives us an algorithm running in 2> ( |+* |) · =O(1) ⊆ 2> (=) ⊆ 2> (=+<) time for 3, 4-SAT which contradicts ETH. �

In the remainder of this section, we present complexity results concerning various structural restrictions of the

topology. Arguably, the most prominent structural parameter is the tree-width of a graph that, informally speaking,

expresses its tree-likeness, and which is usually small in real-life networks [58]. Unfortunately, we can show the fol-

lowing stronger intractability result.

Theorem 3.16. The ARH problem is W[1]-hard parameterised by the tree-depth td(�) of the topology � and, unless

ETH fails, there is no algorithm solving ARH in 5 (:) · => (:/log:) time, where : = td(�), for any function 5 .

Proof. We reduce from the Unary Bin Packing problem. Here, we are given a bin capacity �, a set of items

� = (01, . . . , 0=) and number of bins : . Our goal is to decide whether there is an assignment V of all items to bins

with respect to bin capacity. Unary Bin Packing is known to be W[1]-hard with respect to the number of bins and

cannot be solved in time 5 (:) · => (:/log:) for any function 5 [46].

Our construction of an equivalent instance I′ of the ARH problem is as follows. First, for every 8 ∈ [:] we create a

bin vertex �8 and make it occupied by an inhabitant 18 with�18 = [�]0. Note that these inhabitants approve the whole

interval from 0 to �. Next, we add items gadgets to map the items to bins. The single item gadget for some 0 9 ∈ � is a

star with 0 9 leaves and centre occupied by an inhabitant 2 9 with�2 9 = {0, 0 9 }. This ensures that in the solution either

all leaves are occupied by refugees or none of the leaves are. We add an item gadget - 8
9 for every 8 ∈ [:] and every

0 9 ∈ � and add an edge connecting bin vertex �8 with all leaves of item gadgets - 8
9 , where 8 ∈ [:] and 9 ∈ [=]. Finally,

we must ensure that every item is assigned to exactly one bag. This is ensured by a guard vertex �8 for every item

08 ∈ �. This vertex is occupied by an inhabitant 68 with �68 = {08} and is connected to all leaves of item gadgets - 9
8 ,

where 9 ∈ [:]. The number of refugees in our instance is |' | =
∑
08 ∈� 08 . For an illustration of our construction, we

refer the reader to Figure 3.

For the correctness, let I be a yes-instance of the Unary Bin Packing problem and V be a solution assignment. For

every 08 ∈ �, we house 08 refugees to the leaves of the item gadget -
V (08 )
8 . Since I is a yes-instance, every bin vertex

has at most � refugees in the neighbourhood. Moreover, each item gadget is either empty or full, in the neighbourhood

of every guard inhabitant 68 there is exactly 08 neighbouring refugees, and, finally, all refugees are housed. Thus, I ′

is also a yes-instance.

In the opposite direction, let I ′ be a yes-instance and c be a solution housing. Due to definition of the approval sets,

every item gadget is either full or empty. In our construction, there are : copies of item gadgets for every item 08 ∈ �

and guard vertices secure that exactly one copy is full. Moreover, the bin vertices accept at most � refugees in their

neighbourhood. We recall that |' | =
∑
08 ∈� 08 . Hence, we define the solution assignment V for I as V (08) = 9 , where

9 ∈ [:] and - 9
8 is full.

Finally, we discuss the bound on the parameter value. It is not hard to see that the construction have tree-depth

O(:); By removing vertices �1, . . . , �: , we obtain = connected components �1, . . . , �= and in every �8 it is enough to

remove the vertex�8 to obtain a collection of stars, which have tree-depth at most 2. Also note that algorithm running

in 5 (: ′) · |I ′ |> (:
′/log:′) time for ARHwould yield, together with our parameterised reduction, to an algorithm running

in 5 (:) · => (:/log:) time for Unary Bin Packing, which contradicts ETH. �
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�1

[0, � ]
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1
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=
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�2

[0, � ]
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1 - 2
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· · · - 2

=

...

�:
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-:
1 -:

2 · · ·
-:
=

�1

{01 }

�2

{02 }

· · · �=

{0= }

Fig. 3. Overview of the construction used in the proof of Theorem 3.16. Every guard vertex �8 is connected to the leaves of each

element gadget - 9
8 , where 9 ∈ [: ].

It is well known, and easy to see, that the tree-width of a graph is at most its tree-depth. Hence, we directly obtain

the following result.

Corollary 3.17. The ARH problem isW[1]-hard parameterised by the tree-width tw(�) of the topology� .

It is well-known, an easy to see, that the tree-width of a graph is at most its vertex-cover number. Hence, due to

Theorem 3.19, we directly obtain the following result for tree-width.

Corollary 3.18. The ARH problem isW[1]-hard parameterised by the tree-width tw(�) of the topology� .

Many problems that are computationally hard with respect to tree-width are studied from the viewpoint of less

restricted parameters. Vertex cover number is a frequent representative of such parameters [24, 49, 55]; however, in

the ARH problem, not even this restriction of the topology leads to a tractable algorithm.

Theorem 3.19. The ARH problem isW[1]-hard parameterised by the vertex cover number vc(�) of the topology.

Proof. Although it was not stated formally, it can be seen that the construction used to prove Theorem 3.13 has not

only parameter-many inhabitants, but these agents also forms a vertex cover of the topology. Therefore, we directly

obtainW[1]-hardness for the setting with bounded vertex cover number. �

Nevertheless, if we additionally restrict the approval sets, we obtain the following algorithmic result.

Theorem 3.20. The ARH problem is fixed-parameter tractable parameterised by the vertex cover number vc(�) if all

inhabitants approve intervals.

Proof. Let " ⊆ + be a minimum size vertex cover of � and let : = |" |. It is not hard to see that, due to Propo-

sition 3.5, for each connected component �8 of � all vertices in " ∪ �8 are either empty vertices or occupied by

inhabitants. By�� we denote components with vertex cover occupied by inhabitants and by�' the components where

the vertex cover consists of empty vertices, respectively.
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First, we guess the number : ′ ≤ : of refugees assigned to components of �' . Now, we try all 2
:′ subsets and check

for each subset whether all refugees are housed and whether the housing is inhabitant-respecting in �' . At the same

time, we try to find a housing of |' | − : ′ refugees to components in �� . To do so, we can use the algorithm from

Theorem 3.11 as the number of inhabitants is at most : . Altogether, we obtain that the ARH problem is in FPT when

parameterized by the vertex cover number of the topology if all inhabitants approve intervals. �

By the same argumentation used in the proof of Theorem 3.20, we obtain the following last result of this section.

Corollary 3.21. TheARH problem is fixed-parameter tractable when parameterised by the vertex cover number vc(�)

and the maximum number of disjoint intervals X combined.

4 FULLY HEDONIC PREFERENCES

Our second model of refugee housing improves upon the previous model by introducing individual preferences of

refugees. Naturally, refugees are no longer anonymous and the identity of every particular refugee matters. The pref-

erences of the inhabitants are again dichotomous, and for every inhabitant 8 ∈ � the approval set is a subset of 2' .

Similarly, for a refugee A ∈ ', the approval set �A is a subset of 2� . Our goal is to find housing that conforms to the

preferences of both groups.

Definition 4.1. A housing c : ' → +* is called respecting if for every 8 ∈ � we have # (] (8)) ∈ �8 and for every A ∈ '

we have # (c (A )) ∈ �A .

In other words, a housing c is respecting if every inhabitant and every refugee approves its neighbourhood. We

study the problem of deciding whether there is a respecting housing in the instance with hedonic preferences under

the name Hedonic Refugees Housing (HRH for short).

Example 4.2. Let the topology be a cycle with four vertices. There are two inhabitants ℎ1 and ℎ2 assigned to neigh-

bouring vertices and two refugees A1 and A2 to house. The approval set of inhabitant ℎ1 is �ℎ1 = {{A1}, {A2}}, that is,

ℎ1 approves only one refugee in her neighbourhood regardless of the identity. The second inhabitant approves the set

�ℎ2 = {{A2, }, {A1, A2}}. In other words, the inhabitant ℎ2 is dissatisfied with having only the refugee A1 in the neigh-

bourhood; however, he is fine with neighbouring with both the refugees. For the refugees, we have �A1 = {{ℎ1}} and

�A2 = {{ℎ2}}. Housing A1 in the neighbourhood of ℎ1 and A2 in the neighbourhood of ℎ2 is clearly respecting.

Observe that, since both inhabitants and refugees have preferences only over the other set of individuals, we can

remove all edges between empty and occupied vertices, respectively. Hence, all graphs assumed in this section are

again bipartite.

Now, we show how the results from Section 3 carry over to the hedonic setting studied in this section. Our first

theorem shows that the hedonic setting is also computationally hard on graphs of constant degree. The construction

is very similar to the one used to prove Theorem 3.7.

Theorem 4.3. The HRH problem is NP-complete even if the topology is a graph of maximum degree 3.

Proof. Our reduction is very similar to the reduction used to prove Theorem 3.7. We again reduce from the 2-

Balanced 3-SAT problem where every variable appears at most twice as positive literal and at most twice as negative

literal, respectively. However, due to the different nature of the problem, we have to slightly change the variable gadget

and approval sets of agents.
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For every variable G8 ∈ i , we introduce one variable gadget -8 . The variable gadget again consists of a path %8 =

E18 E
2
8 E

3
8 that is intended to represent the assignment of a variable G8 . Together with %8 , we add a refugee A8 and an

inhabitant ℎ8 . Let �G8 = {� 91, . . . , � 94}, where 91, 92, 93, 94 ∈ [<], be a set of clauses in which the variable G8 appears.

The refugee A8 approves the set {( ∪ {ℎ8} | ( ⊆ 2�G8 } and the inhabitant ℎ8 approves the set {{A8 }}. Moreover, we set

] (ℎ8) = E
2
8 .

Every clause � 9 ∈ i is represented by a single vertex 2 9 . Let � 9 consist of variables G81G82G83 . The vertex 2 9 is

occupied by an inhabitant � 9 with approval set 2{G81 ,G82 ,G83 } \ ∅ and for every 8 ∈ {81, 82, 83} the vertex 2 9 is connected

to E18 if the variable G8 occurs as a positive literal in� 9 and to E38 if the variable G8 occurs as a negative literal in� 9 . This

finishes the construction.

For the correctness, let U be a satisfying assignment for i . For every G8 ∈ i , we house the refugee A8 to vertex E18
if U (G8 ) = 1 and to vertex E38 otherwise. Observe that this housing clearly respects each ℎ8 and, since U is satisfying,

there is at least one refugee in the neighbourhood of each � 9 , as prescribed. In the opposite direction, let c be a correct

housing for the equivalent HRH instance I′. Due to the approval sets of ℎ8 , 8 ∈ [=], every refugee A8 is housed to one

of the two positions of the variable gadget. Moreover, the approval set of inhabitant � 9 , 9 ∈ [<], which represents the

clause of the original formula, ensures that there is at least one refugee in his neighbourhood. Hence, the following

assignment

U (G8 ) =




1 if c (A8) = E18

0 otherwise

indeed satisfy i and the reduction can be done in polynomial time. �

From the proof of Theorem 4.3, we can easily distil the following general reduction from the ARH problem to the

HRH problem. Let I be an ARH instance. For every empty vertex E ∈ +* we add into '′ one refugee AE with approval

set �AE = # (E). Next, for every inhabitant 8 ∈ � we add a new inhabitant ℎ8 approving the set �ℎ8 = {
('ℎ8
0

)
| 0 ∈ �8 },

where 'ℎ8 = {AE | E ∈ # (E) ∩ +* }. To ensure that only |' | refugees are housed, we extend the construction by a

single star with |+� | − |' | leaves and occupy the centre of the star with an inhabitant � approving the set
( '′

|+� |− |' |

)
.

Moreover, we have to add {�} to the approval set of every refugee AE ∈ '′. It is not difficult to see that the instances

are indeed equivalent; however, the reduction is not polynomial-time, the approval sets can be at worst exponential in

the number of empty vertices. Hence, the reduction works only in cases where the number of empty vertices is at most

logarithmic in the size of the topology. Unfortunately, this is not the case for most of our polynomial-time reductions,

however, we are able to show similar results using different techniques.

Theorem 4.4. TheHRH problem isW[1]-hard when parameterised by the combined parameter the vertex cover number

vc(�) of the topology and the number of inhabitants |� |.

Proof. We reduce from the W[1]-hard Multicoloured Cliqe problem [37]. We recall that here we are given a

:-partite graph� = (+1 ∪ · · · ∪+: , �) and the goal is to find a complete sub-graph with : vertices such that it contains

a vertex from every +8 , 8 ∈ [:].

Let� = (+1∪· · ·∪+: , �) be an instance of theMulticoloured Cliqe problem such that all colour classes+8 are of

the same size=� . We construct an equivalent instance I′ of theHRH problem as follows. For every vertex set+8 , where

8 ∈ [:], we introduce a vertex-selection gadget (8 which is a star with =� leaves. We call an arbitrary leaf a selection

leaf. This selection leaf serves for a vertex of colour 8 that should be part of the clique and is the only connection of

the vertex-selection gadget with the rest of the topology. Let {E18 , . . . , E
=�
8 } be a set of vertices in the colour class +8 .
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We introduce one refugee A
?
8 for every E

?
8 , ? ∈ [=� ] and one inhabitant B8 which is assigned to the centre 28 of (8 and

approves the set {{A18 , . . . , A
=�
8 }}. Every refugee A

?
8 approves the set {{B8 }}.

Then, for every pair of distinct colours 8, 9 ∈ [:], we introduce one additional guard vertex 68, 9 securing that there is

an edge between vertices selected in incident vertex-selection gadgets. We connect this guard vertex 68, 9 to selection

leaves of vertex-selection gadgets +8 and +9 . Moreover, we introduce an inhabitant ℎ8, 9 assigned to 68, 9 with approval

set {{A
?
8 , A

@
9 } | {E

?
8 , E

@
9 } ∈ � ∧ ?, @ ∈ [=� ]}. That is, ℎ8, 9 approves exactly those pairs of vertices from+8 and+9 that are

connected by an edge.

To be able to house any refugee to selection leaves, we have to extend their approval sets. Thus, for every refugee

A
?
8 , where 8 ∈ [:] and ? ∈ [=� ], we add to the approval set the set {B8 } ∪ {ℎ8, 9 | 9 ∈ [:] \ {8}}. This finishes the

construction.

For the correctness, let  = {E
91
1 , . . . , E

9:
:
} be a multicoloured clique in � . For every vertex-selection gadget (8 , we

house to the selection leaf the refugee A 988 and the refugees A
?
8 , where ? ∈ [=� ] \ { 98 } arbitrarily to the remaining leaves

of (8 . As vertices of  form a clique in � , there is an edge between each pair of vertices assigned to selection leaves;

hence, the housing is correct.

In the opposite direction, suppose that I′ is a yes-instance, c is a respecting housing and there is a pair of refugees

A
?
8 and A

@
9 , where 8, 9 ∈ [:] are distinct and ?,@ ∈ [=� ], assigned to selection leaves such that there is no corresponding

{E
?
8 , E

@
9 } ∈ � (�). Then {A

?
8 , A

@
9 } is not in the approval set of the inhabitant ℎ8, 9 , which is a contradiction with c being a

respecting housing.

Clearly, the removal of the vertex set {28 | 8 ∈ [:]} together with the set {68, 9 | 8, 9 ∈ [:]} leads to an edgeless

graph. As the size of both sets is polynomial in : and all inhabitants are assigned to these vertices, we obtain that the

presented reduction is indeed a parameterised reduction and the theorem follows. �

As a final result of this section, we prove that the HRH is NP-hard even for graphs of tree-width at most 3.

Theorem 4.5. The HRH problem is para-NP-hard parameterised by the tree-width tw(�) of the topology.

Proof. Our reduction is from the Channel Assignment problem which is known to be NP-hard even for graphs

of tree-width at most 3 [59]. Here, we are given an undirected graph � = (+ , �), a function ℓ : � → N, and a positive

integer _. The goal is to decide whether there exists a function 5 : + → [_] such that for every {D, E} ∈ � we have

| 5 (D) − 5 (E) | ≥ ℓ ({D, E}). It should be noted that the problem is NP-hard even if _ and max4∈� ℓ (4) are constants.

Let I = (�, ℓ, _) be a Channel Assignment instance. The topology of an equivalent HRH instance I ′ is a graph� ′

which arises from � by subdividing all edges. We call the vertex created by subdivision of the edge {D,F} ∈ � (�) of

the original graph ED,F . Next, we introduce _ refugees A1E , . . . , A
_
E for every vertex E ∈ + (�). Then, for every vertex ED,F ,

where {D,F} ∈ � (�), we introduce one inhabitant ℎD,F and assign it to ED,F . The approval set for every refugee A 8E is

{{ℎD,E} | ED,F ∈ #�′ (E)} and for every inhabitant ℎD,F it is {{A 8D , A
9
F} | |8 − 9 | ≥ ℓ ({D,F})}. In this construction, there

are _ candidates for every empty vertex, hence, we have to make sure that there is a house where to house remaining

_ − 1 candidates. To secure this, we introduce for every E ∈ + (�) star (E with _ − 1 leaves, make the centre of (E

occupied by an inhabitant 6E approving all subsets of size _ − 1 of the set {A1E , . . . , A
_
E }, and we add set {6E} to the

approval set of every refugee A 8E , 8 ∈ [_].

For the correctness, let 5 be a proper channel assignment for I. For every vertex E ∈ + (�), we house the refugee

A
5 (E)
E to E and we house all the remaining refugees A 8E , 8 ∈ [_] \ {5 (E)} arbitrarily to empty vertices of (E . Clearly,

all assigned refugees are satisfied with this housing as well as the inhabitant 6E assigned to the centre of (E . The
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same is true for inhabitants ℎD,F , as 5 is a proper channel assignment and ℎD,F accept only pairs {A 8D , A
9
F} where

|8 − 9 | ≥ ℓ ({D,F}).

In the opposite direction, let c be a correct housing. The number of refugees to house is equal to the number of

empty vertices of � ′, hence, every empty vertex is occupied. The inhabitants occupying vertices ED,F secure that for

refugees A 8D and A 9F assigned to D andF , respectively, it holds that |8 − 9 | ≤ ℓ ({D,F}), hence, we can set 5 (E) = 8 , where

A 8E = c
−1 (E).

We already claimed that the Channel Assignment problem is NP-hard even for the graphs of tree-width at most

3. As the edge subdivision do not increase tree-width, we have that � ′ is also of tree-width at most 3. Moreover, the

reduction can be done in polynomial-time. This finishes the proof. �

5 DIVERSITY PREFERENCES

In the anonymous refugee housing, we are not assuming the preferences of individual refugees. Thanks to this property,

the model is as simple as possible. The fully hedonic setting from Section 4 precisely captures preferences of both the

refugees and the inhabitants. On the other hand, the fully hedonic model is not very realistic, as it is hard to acquaint

all inhabitants with all refugees.

Hence, we introduce the thirdmodel of refugees housing, where both the inhabitants and the refugees are partitioned

into types and agents from both groups have preferences over fractions of agents of each type in their neighbourhood.

Such a diversity goals, where agents are partitioned into types and the preferences of agents are based on the fraction

of each type in their neighbourhood or coalition, was successfully used in many scenarios such as school choice [8–10],

public housing [14, 42], hedonic games [19, 20, 23, 27, 40], multi-attribute matching [4], or employee hiring [66].

Before we formally define the computational problem of our interest, let us introduce further notation. Let # = � ∪'

be a set of agents partitioned into: types)1, . . . ,): . For a set ( ⊆ # , we define a palette as a:-tuple
(
|)8∩( |
|( |

)

8 ∈[: ]
if |( | ≥

1 and :-tuple (0, . . . , 0) if ( = ∅. Given an agent 0 ∈ # , her approval set is a subset of the set

{(
|)8∩( |
|( |

)

8 ∈[: ]
| ( ⊆ 2#

}
.

Definition 5.1. A housing c : ' → +* is called diversity respecting if for every inhabitant 8 ∈ � the palette for the

set {ℎ ∈ � | ] (ℎ) ∈ # (] (8))} ∪ {A ∈ ' | c (A ) ∈ # (] (8))} is in �8 , and for every refugee A ∈ ' the palette for the set

{ℎ ∈ � | ] (ℎ) ∈ # (c (A ))} ∪ {A ′ ∈ ' | c (A ′) ∈ # (c (A ))} is in �A .

The Diversity Refugees Housing problem (DRH for short) then asks whether there is a diversity respecting hous-

ing c . Note that this time, we are not allowed to drop edges between two inhabitants or two refugees and, thus, the

graphs assumed in this section are no longer bipartite.

Example 5.2. Let the topology be a cycle with four vertices. There are two agents of type )1. One of these agents

is an inhabitant ℎ1 approving {(1, 0), (1/2, 1/2)} and the second one is a refugee A approving only agents of his own

type, that is, �A = {(1, 0)}. The type)2 contains one inhabitant ℎ2 approving the set {(1, 0)}. Inhabitants are assigned

such that they are neighbours. There are two possible housings for the refugee A . She can be either neighbour of ℎ1 or

ℎ2. Since she accepts only agents of her own type in the neighbourhood, the only diversity respecting housing is next

to inhabitant ℎ1.

Despite that the topology can be much complicated, we can show, using similar construction as in Theorem 3.7, that

the tractability condition based on the bounded degree cannot be surpassed even in this model.

Theorem 5.3. The DRH problem is NP-complete even if the topology is a graph of maximum degree 3.
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Proof. We reduce from the 2-Balanced 3-SAT where each variable appears at most twice positive and at most

twice negative. Let i be a 3, 4-SAT formula. In an equivalent instance I ′ of DRH, we have = + 1 types – one for every

variable and an extra one for agents representing clauses. Let )=+1 be a clause type. For every variable G8 , we create a

variable gadget which is a path E18 E
2
8 E

3
8 on 3 vertices. We also introduce two agents – one refugee A8 and one inhabitant

ℎ8 . Both of them belong to type)8 . The inhabitant ℎ8 is then assigned to the middle vertex of a path and approves (and

requires) only agents of his own type in his neighbourhood. This secure that the refugee A8 is necessarily assigned to

his variable gadget in each housing. The refugee requires in his neighbourhood an agent of his own type and at most

2 agents of clause type.

For every clause� 9 , we create one vertex 2 9 and occupy it with an inhabitant 6 9 of type )=+1. For every variable G8

which is part of� 9 , we connect 2 9 to E18 if G8 is as positive literal in� 9 , and to E38 if G8 appears as a negative literal in� 9 .

Let G81 , G82 , and G83 be three variables forming � 9 . The inhabitant 6 9 then approves to have monotype neighbourhood

with types 81, 82, or 83, and neighbourhoods where these types are represented equally – either two of them or all three.

For the correctness, let U be a satisfying assignment for i . For every variable G8 we house the only refugee of type

)8 to the vertex E18 if U (G8 ) = 1, or to the vertex E28 if U (G8 ) = 0. It is easy to see that this housing is diversity respecting

as every ℎ8 has only one neighbour of his own type and, since U is satisfying, every 6 9 , 9 ∈ [<], has at least one

neighbouring refugee. In the opposite direction, let c be a diversity respecting housing. Then every refugee is housed

to the neighbourhood of the inhabitant of their own type. For every 2 9 we have also one inhabitant 6 9 who ensures

that there is at least one refugee in the neighbourhood. Hence, we can directly derive the truth assignment U from

c . �

In Theorem 5.3 we exploit the number of types to ensure that every refugee is housed in the right house. Therefore,

the number of types was as large as the number of empty vertices. In the following result, we show that the DRH

problem is computationally hard even if the number of types is small.

Theorem 5.4. The DRH problem is NP-complete even if there are only two types of agents.

Proof. We show theNP-hardness by a reduction from the SetCover problemwhich is known to beNP-complete [41].

Here, we are given a universe * = {D1, . . . , D=}, a family F of subsets of* , and an integer : ∈ N. The goal is to decide

whether there is a sub-family C ⊆ F of size at most : such that
⋃
�∈C � = * .

Given an instance I = (* ,F , :), we construct an equivalent instance I ′ of DRH as follows. For every element

D8 ∈ * we add one vertex E8 and assign to it an inhabitant ℎ8 . The inhabitant ℎ8 is of type )1 and his approval set is

{(0, 1)}. Next, for every subset � ∈ F , we create one vertex E� that is adjacent to every E8 such that D8 ∈ � . To finalise

the construction, we add : refugees A1, . . . , A: of type)2 approving the set {(1, 0)}.

For the correctness, let I be a yes-instance and C = {�1, . . . ,�: } be a solution for I. For every 8 ∈ [:], we house

the refugee A8 on the vertex corresponding to the set �8 . In this housing, every refugee is satisfied and, since C is a

set cover, every ℎ8 ∈ � neighbours with at least one refugee. In the opposite direction, let c be a diversity respecting

housing. We add to C a set �8 ∈ C if and only if there is a refugee housed on the corresponding vertex E�8
. Suppose

that there is an element D ∈ * which is not covered by C. Then there is an inhabitant which is not neighbour of any

refugee. However, this could not be the case as c is diversity respecting. Hence, the reduction is correct and clearly

can be done in polynomial-time. �

Note that the NP-hardness proved in Theorem 5.4 can be strengthened to a single type of agents; however, we find

this situation not very natural in the context of DRH.
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Additionally, it is known that the Set Cover problem is W[2]-complete and cannot be solved in 5 (:) · => (:) time,

unless the ETH fails [26]. Therefore, from the construction used to prove Theorem 5.4, we directly obtain the following

corollary.

Corollary 5.5. The DRH problem is W[2]-hard when parameterised by the number of refugees |' | even if there are

only two types of agents and, unless ETH fails, there is no algorithm solving DRH in 5 (') ·=> (') time for any computable

function 5 .

6 CONCLUSIONS

We initiated the study of a novel model of refugee housing. The model mainly targets the situations where refugees

need to be accommodated and integrated in the local community. This distinguishes us from the previous settings of

refugee resettlement.

Our results identify some tractable and intractable cases of finding stable outcomes from the viewpoint of both

the classical computational complexity and the finer-grained framework of parameterised complexity. To this end, we

believe that other notions of stability inspired, for example, by the model of Schelling games of Agarwal et al. [2] or

by exchange-stability of Alcalde [5], should be investigated.

Natural way to tackle the intractability of problems in computational social choice is to restrict the preferences

of agents [36]. One such restriction that should be investigated, especially in the case of anonymous setting, are the

single-peaked preferences [6] that were successfully used in similar scenarios; see, e.g., [16, 23, 71] or the survey of

Elkind et al. [36]. Beside that, we are interested in the anonymous setting in which every inhabitant 8 ∈ � approves an

interval [0, D8], where D8 ≥ 0 is an inhabitant-specific upper-bound on the number of refugees in her neighbourhood.

Finally, there are many notions measuring quality of an outcome studied in the literature in both the context of

Schelling and hedonic games [2, 7, 35], and we believe that these notions should be investigated even in the context of

refugee housing. In this line, the most prominent notion is the social-welfare of an outcome.
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