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Abstract

Recent works on neural network pruning advo-

cate that reducing the depth of the network is

more effective in reducing run-time memory us-

age and accelerating inference latency than re-

ducing the width of the network through channel

pruning. In this regard, some recent works pro-

pose depth compression algorithms that merge

convolution layers. However, the existing al-

gorithms have a constricted search space and

rely on human-engineered heuristics. In this pa-

per, we propose a novel depth compression al-

gorithm which targets general convolution oper-

ations. We propose a subset selection problem

that replaces inefficient activation layers with

identity functions and optimally merges consec-

utive convolution operations into shallow equiv-

alent convolution operations for efficient end-to-

end inference latency. Since the proposed sub-

set selection problem is NP-hard, we formulate

a surrogate optimization problem that can be

solved exactly via two-stage dynamic program-

ming within a few seconds. We evaluate our

methods and baselines by TensorRT for a fair in-

ference latency comparison. Our method outper-

forms the baseline method with higher accuracy

and faster inference speed in MobileNetV2 on

the ImageNet dataset. Specifically, we achieve

1.61×speed-up with only 0.62%p accuracy drop

in MobileNetV2-1.4 on the ImageNet.

1. Introduction

Deep learning with Convolutional Neural Network (CNN)

has achieved outstanding results in various fields such

as image classification, object detection, image segmenta-

tion, and generation (Tan & Le, 2019; Wang et al., 2021;

Isensee et al., 2021; Rombach et al., 2022). However, the
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success of CNNs in such fields is accompanied by the

challenge of increased complexity and inference latency.

For real-world applications, accelerating the inference la-

tency of CNNs is of great practical importance, especially

when deploying the models on edge devices with limited

resources.

To this end, a line of research called channel pruning has

been introduced to remove unnecessary channels in CNNs

to accelerate the wall-clock time in the edge device while

preserving the performance of the CNNs (Wen et al., 2016;

Tiwari et al., 2021; Shen et al., 2022). However, with the

advancement of hardware technology for parallel computa-

tion, channel pruning which reduces the width of neural net-

works has become less effective than removing entire lay-

ers in terms of latency (Jordao et al., 2020; Chen & Zhao,

2018; Xu et al., 2020; Fu et al., 2022).

In contrast, layer pruning, which prunes entire layers, has

been proposed to reduce the depth of neural networks.

Layer pruning also significantly reduces the run-time mem-

ory usage and achieves effective speed-up in many edge de-

vices compared to channel pruning (Xu et al., 2020). How-

ever, layer pruning is more aggressive than channel pruning

in terms of reducing the number of parameters and FLOPs,

thereby resulting in a more severe accuracy drop compared

to channel pruning methods. Instead of naively removing

an entire layer, Fu et al. (2022) present a depth compres-

sion algorithm called DepthShrinker which integrates lay-

ers by replacing inefficient consecutive depth-wise convolu-

tion and point-wise convolution with an efficient dense con-

volution operation in MobileNetV2 (Sandler et al., 2018).

This compression algorithm results in depth reduction with

low run-time memory usage and fast inference latency sim-

ilar to layer pruning. However, the depth compression algo-

rithm does not suffer from a commensurate accuracy drop.

Although DepthShrinker has shown promising results in re-

ducing the depth of the network while preserving the per-

formance, the method is limited to constricted search space

as it only considers merging within the Inverted Residual

Block (Fu et al., 2022; Sandler et al., 2018). Furthermore,

the method relies on human-engineered heuristics for layer

merging which is unlikely to scale to other architectures.

To this end, we introduce a novel optimization-based frame-

http://arxiv.org/abs/2301.12187v1
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Figure 1. Illustration of depth compression for a five-layer CNN,
ì

ì5

l=1
σl ◦ fθl . The original network is on the default setting when

A = S = {1, 2, 3, 4} (above). When A = {3} and S = {2, 3}, the activation layer not in A is replaced with identity functions (middle).

Then, the network is merged into the shallow network which functions identically (below).

work for general convolution merging framework that is not

restricted to the design of the network and does not rely on

manually designed heuristics. We formulate a depth com-

pression optimization problem that replaces inefficient acti-

vation layers with identity functions and optimally merges

consecutive convolution operations for optimal latency.

Our optimization problem is NP-Hard and its objective re-

quires a prohibitively exhaustive training of the neural net-

work. Thus, we formulate a surrogate optimization prob-

lem by approximating the objective as the linear sum of

the accuracy change induced by each network block. The

surrogate optimization problem can be exactly optimized

via dynamic programming on a given network architec-

ture with a given latency. Furthermore, we evaluate the

latency of the network with TensorRT for a fair compari-

son (Vanholder, 2016). Our experiments show that the pro-

posed method outperforms the baseline method in both the

accuracy and the inference latency in MobileNetV2 on Im-

ageNet dataset.

2. Related Works

Channel Pruning Channel pruning originally aims to

reduce computation FLOPs by removing less important

channels (Li et al., 2017; He et al., 2019; 2018a; Liu et al.,

2019; He et al., 2018b; You et al., 2019; Hu et al., 2016).

Specifically, Aflalo et al. (2020) formulate a knapsack prob-

lem for channel pruning with an explicit FLOPs con-

straint. For practitioners, however, end-to-end inference

wall-clock time is the most important metric. In light of

this, Shen et al. (2022) build a latency lookup table and

proposes a knapsack problem for channel pruning with a

latency constraint.

Network Morphism Our work is partially inspired by

network morphism which morphs a trained parent network

into a child network that functions identically (Chen et al.,

2016; Wei et al., 2016). Here, the child network is larger

than the parent network and is finetuned after morphing.

Instead, we aim to find the parent network where some ac-

tivation layers are removed, thereby morphing the parent

network into the child network which has a faster inference

time and functions almost identically to the parent network.

Depth Reduction There are two lines of research that

reduce the depth of neural networks: layer-pruning and

depth compression. In layer pruning, Jordao et al. (2020)

and Chen & Zhao (2018) evaluate the importance of lay-

ers by the amount of discriminative information in each

feature map. In depth compression, DepthShrinker points

out the inefficiency of depth-wise convolutions during in-

ference in the edge device and proposes a depth compres-

sion algorithm that replaces inefficient consecutive depth-

wise convolution and point-wise convolution inside the In-

verted Residual Block with an efficient dense convolution

(Fu et al., 2022; Howard et al., 2017; Sandler et al., 2018).

We generalize depth compression space to cover any gen-

eral convolution operations. Also, while DepthShrinker re-

quires full training of the network during the search phase

to identify the unnecessary activations, our method em-

ploys importance evaluation which can be efficiently com-

puted in an embarrasingly parallel fashion. Furthermore,

we propose a novel two-stage dynamic programming al-

gorithm which simultaneously finds the optimal set of se-

lected activation layers and the optimal set of layers to be

merged in a few seconds.

TensorRT Choosing the appropriate implementation of

the network to measure the inference latency is crucial for

a fair comparison. For instance, a batch normalization (BN)
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module can be fused into the preceding convolution layer

without compromising accuracy and accelerating the infer-

ence latency. In this regard, we utilize TensorRT to opti-

mize trained network architectures with various techniques

such as BN fusion, precision calibration and dynamic mem-

ory management (Vanholder, 2016).

3. Preliminary

Consider a L-layer CNN which consists of alternating con-

volution layer fθl and activation layer σl with the layer

index l ∈ [L]. Each convolution layer is parametrized

by convolution kernel parameter θl ∈ R
Cl−1×Cl×Kl×Kl ,

where Cl−1, Cl,Kl represent the number of input chan-

nels, the number of output channels, and the kernel size,

respectively. The CNN can be represented as a com-

posite function
ì

ìL

l=1
σl ◦ fθl : RH0×W0×K0×K0 →

R
HL×WL×KL×KL , where Hl,Wl are the height and width

of l-th feature map and
ì

ì

denotes an iterated function

composition. We set the last activation layer (σL) to iden-

tity function (id).

Note, any consecutive convolution operations can be re-

placed by an equivalent convolution operation with a larger

kernel due to the associative property. We denote this pro-

cess as merging. For example, consider two consecutive

convolutional layers, fθ1 and fθ2 , applied to an input im-

age X (i.e. fθ2(fθ1(X))). This can also be computed using

an equivalent merged convolutional layer fθ2⊛θ1 where ⊛

denotes convolution with proper padding. Further merging

details can be found in Appendix D.

4. Method

We first formulate an optimal subset selection problem for

depth compression under a given latency constraint. Subse-

quently, we propose a surrogate objective for the objective

in the optimal subset selection problem and formulate a cor-

responding surrogate optimization problem, which can be

exactly solved via two-stage dynamic programming (DP).

4.1. Optimal Subset Selection Problem for Depth

Compression

Any neighboring convolutional layers can be merged into

an equivalent convolutional layer, often resulting in a la-

tency speed-up from the depth compression of the CNN. In

this regard, we aim to optimize the replacement of a subset

of activation layers with id in order to reduce the latency of

the resulting network while preserving its performance.

However, merging every consecutive series of convolu-

tional layers into a single large layer may not be the optimal

merge in terms of latency. In certain cases, it is possible

that merging certain convolutional layers has a detrimental

effect on the latency of a network. To illustrate, consider

merging two consecutive 1 × 1 convolutional layers, with

the first layer having 100 input channels and 1 output chan-

nel and the second layer having 1 input channel and 100
output channels. Then the merged convolutional layer re-

sults in a 1 × 1 convolution with 100 input channels and

100 output channels. This merge significantly increases the

latency of a merged convolutional layer, thereby canceling

out any benefits gained from the depth compression.

To address this, we propose two ordered set variables, A
and S to be simultaneously optimized. A indicates the

layer indices where the activation layer is kept intact and

not replaced with an identity function, and S indicates the

layer indices where we do not merge. It is important to

note that S includes A, since the activation layers that are

not id can not be merged. Figure 1 illustrates how network

is merged according to S and A. Our goal is to optimize

for the ordered set A and S in order to reduce the latency

of the resulting network while preserving its performance.

Thus, our objective can be formulated as follows:

maximize
A⊆S⊆[L−1]

max
θ

Acc

(
L

ì

ì

l=1

(1A(l)σl + (1− 1A(l)) id) ◦ fθl

)

(1a)

subject to

T





|S|+1
ì

ì

i=1

(1A(si)σsi + (1− 1A(si)) id) ◦ fθ̂i



 < T0

(1b)

θ̂i =
si

⊛
l=si−1+1

θl, ∀i ∈ [|S|+ 1] and s|S|+1 = L, s0 = 0,

where (si)
|S|
i=1 denotes the elements of S and Acc(·) and

T (·) denote the accuracy and latency of the network, re-

spectively. The objective in Equation (1a) describes the

accuracy of the network where the activation layer is re-

placed by id if the layer index is not in A. The constraint

in Equation (1b) describes the latency constraint of the net-

work, which is merged according to S. Note, the networks

in Equation (1a) and Equation (1b) function identically.

We can simplify the constraint in Equation (1b) by express-

ing the total latency of the network as the sum of the la-

tency of each merged convolution layer as each layer is se-

quentially connected. Additionally, we ignore the latency

from each activation layer since the latency incurred by ac-

tivation layers is negligible1. Then, the total latency of the

merged network in the constraint can be simplified as fol-

lows:

1Deactivating 50 ReLUs in MobileNetV2 results in less than
a 1% change in end-to-end inference time on RTX 2080 Ti.
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T





|S|+1
ì

ì

i=1

(1A(si)σl + (1 − 1A(si)) id) ◦ f
θ̂i





≈

|S|+1
∑

i=1

T
(

(1A(si)σl + (1 − 1A(si)) id) ◦ f
θ̂i

)

≈

|S|+1
∑

i=1

T
(

f
θ̂i

)

.

As a shorthand, we denote T (fθ′) where θ′ = ⊛
j

l=i+1 θl
as T [i, j]. Note that fθ′ is the merged convolution oper-

ation equivalent to
ìj

l=i+1
fθl . Thus, the latency con-

straint, Equation (1b), can be compactly expressed as
∑

si−1,si∈{0}∪S∪{L} T [si−1, si] < T0.

4.2. Formulation with the Surrogate Objective

Directly optimizing Equation (1) requires training of the

whole network for all combinations of A and S which

is NP-hard. Therefore, we propose a surrogate objective

for the objective in Equation (1a). Through this approach,

Equation (1) can be reformulated into an optimal subset se-

lection problem which can be exactly solved via DP.

The network in Equation (1a) can be equivalently repre-

sented as
ì

ì|A|+1

j=1
σaj
◦
(

ì

ìaj

l=aj−1+1
fθl

)

where a0 =

0, a|A|+1 = L, and (aj)
|A|
j=1 denote the elements of A in

the ascending order. We can observe that A partitions the

network into contiguous network blocks,
ì

ìai

l=ai−1+1
fθl .

Therefore, Equation (1a) can be reformulated as the accu-

racy change from the original network as follows:

maximize
A⊆S⊆[L−1]

max
θ

Acc





|A|+1
ì

ì

j=1

σaj ◦





aj
ì

ì

l=aj−1+1

fθl









−max
θ

Acc

(
L

ì

ì

l=1

σl ◦ fθl

)

, (2)

where maxθ Acc

(
ì

ìL

l=1
σl ◦ fθl

)

is the accuracy of the

original network which is a constant.

Each contiguous block results in an accuracy change from

the original network. However, the exact estimation of the

accuracy change resulting from all possible combinations

of contiguous network blocks remains impractical due to

the exponential number of possible combinations of con-

tiguous network blocks and the requirement of training the

neural network for each one. Therefore, we propose the

sum of the accuracy change caused by each contiguous net-

work block,
ì

ìai

l=ai−1+1
fθl as a proxy for the accuracy

change resulting from contiguous network blocks in Equa-

tion (2).

We denote I[i, j] as the accuracy change when the activa-

tion layers between the i+1-th and j-th layers in the original

network are replaced with id. Concretely,

I [i, j] := max
θ

Acc









L
ì

ì

l=j+1

σl ◦ fθl

︸ ︷︷ ︸
j+1 toL layers

◦

j
ì

ì

l=i+1

fθl

︸ ︷︷ ︸
i+1 to j layers

◦
i

ì

ì

l=1

σl ◦ fθl

︸ ︷︷ ︸
1 to i layers









−max
θ

Acc

(
L

ì

ì

l=1

σl ◦ fθl

)

. (3)

Note that computing I[·, ·] can be efficiently done in embar-

rassingly parallel fashion. We define the surrogate objec-

tive for Equation (1a) as
∑

aj−1,aj∈{0}∪A∪{L} I[aj−1, aj ].
Then the optimization problem in Equation (1) becomes

maximize
A⊆S⊆[L−1]

∑

aj−1,aj∈{0}∪A∪{L}

I[aj−1, aj ] (4)

subject to
∑

si−1,si∈{0}∪S∪{L}

T [si−1, si] < T0.

4.3. Optimization via Dynamic Programming

We first define an ordered set for the indices to be merged

for the optimal inference time for the contiguous network

block between k+1-th layer and l-th layer as Sopt[k, l] and

the optimal inference time as Topt[k, l]. Concretely,

Topt[k, l] := min
S⊆{k+1,...,l−1}

∑

si−1,si∈{k}∪S∪{l}

T [si−1, si]

(5a)

Sopt[k, l] := argmin
S⊆{k+1,...,l−1}

∑

si−1,si∈{k}∪S∪{l}

T [si−1, si].

(5b)

For the base case, Topt[k, k] = 0 and Sopt[k, k] = ∅. Then,

Topt[k, l] and Sopt[k, l] can be computed via dynamic pro-

gramming algorithm as described in Algorithm 1.

We formulate a sub-optimization problem of Equation (4)

with respect to an intermediate layer index, l ≤ L and a

latency constraint, t > Topt[0, l]:

maximize
A⊆S⊆[l−1]

∑

aj−1,aj∈{0}∪A∪{l}

I[aj−1, aj ] (6)

subject to
∑

si−1,si∈{0}∪S∪{l}

T [si−1, si] < t.

Then, we define the optimal ordered sets A and S in the sub-

optimization problem as A[l, t] and S[l, t]. Here, A[l, t]
indicates activation layers to keep until layer l given the

latency budget t, and S[l, t] indicates layers to merge un-

til layer l given the latency budget t. Then, A[L, T0] and
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Algorithm 1 Finding Optimal Latency with DP

input T, L
Initialize Topt[k, l] ← 0, Sopt[k, l] ← ∅ for 0 ≤ k ≤ l ≤
L
for l = 1 to L do

for k = 0 to l−1 do

m← argmin
k≤m′<l

(Topt[k,m
′] + T [m′, l])

Topt[k, l]← Topt[k,m] + T [m, l]
if m /∈ {k} then

Sopt[k, l]← Sopt[k,m] ∪ {m}
end if

end for

end for

output Topt, Sopt

Algorithm 2 Solving the Surrogate Objective with DP

input T0, L, T, I
Initialize D[l, t]← 0, A[l, t]← ∅, S[l, t]← ∅ ∀t, l
Topt, Sopt ← Algorithm 1 (T, L)
for l = 1 to L do

for t = Topt[0, l] + 1 to T0 do

k ← argmax
0≤k′<l

(D[k′, t− Topt[k
′, l]] + I(k′, l))

subject to Topt[0, k
′] + Topt[k

′, l] < t
tlast ← Topt[k, l]
D[l, t]← D[k, t− tlast] + I[k, l]
A[l, t]← A[k, t− tlast] ∪ {k : k > 0}
S[l, t]← S[k, t− tlast] ∪ {k : k > 0} ∪ Sopt[k, l]

end for

end for

output A[L, T0], S[L, T0]

S[L, T0] represent the optimal set A and S of the surrogate

optimization problem, Equation (4), respectively.

For the base case, we set A[0, t] = S[0, t] = ∅. Then, we

compute the ordered sets A[l, t] and S[l, t] according to the

dynamic programming (DP) recurrence relation defined by

A[l, t] = A[k, t−Topt[k, l]] ∪ {k : k > 0} (7a)

S[l, t] = S[k, t−Topt[k, l]] ∪ {k : k > 0} ∪ Sopt[k, l], (7b)

k = argmax
0≤k′<l

∑

aj−1,aj∈{0}∪A[k′,t−Topt[k′,l]]∪{k′,l}

I [aj−1, aj ]

subject to Topt[0, k
′] + Topt[k

′, l] < t,

where k is the maximum element of A[l, t]. Therefore,

A[l, t] is an empty set when k = 0. Figure 2 illustrates

DP computation example in detail.
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Figure 2. Illustration of DP table construction based on the recur-

rence relation (Equation (7)). D[3, 21] is computed upon the so-

lutions of the previous sub-problems (D[0, 1], D[1, 7], D[2, 10]).

4.4. Theoretical Analysis

Proposition 4.1 shows that Equation (7) exactly computes

A[l, t] and S[l, t]. The detailed procedure for implementing

the DP recurrence relation can be found in Algorithm 22.

At the start of Algorithm 2, we compute the ordered set for

the indices to be merged for the optimal inference time for

the contiguous network block between k+1-th layer and l-th
layer and the optimal inference time at Algorithm 1 where

the time complexity for the DP recurrences is O(L3). In

Algorithm 2, the time complexity for the DP recurrences is

O(L2T0), thus the total time complexity is O(L3 + L2T0).

Proposition 4.1. A[l, t] and S[l, t] computed from the DP

recurrence relations, Equation (7) are the optimal sets A
and S of Equation (6), respectively.

Proof. Refer to Appendix A.

For a given set of the optimal indices where activation

layers are not replaced with identity functions, A[l, t] and

2We denote
∑

aj−1,aj∈{0}∪A[l,t]∪{l} I [aj−1, aj ] as D[l, t] in

Algorithm 2 for brevity.
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the network replaced according to A[l, t], Proposition 4.2

shows that S[l, t] is the optimal S which merges the net-

work into the optimal structure in terms of latency.

Proposition 4.2. S[l, t] computed from the DP recurrence

relations, Equation (7) is the optimal S which minimizes

the latency of the network when A[l, t] is fixed. Concretely,

S[l, t] is the optimal S of the optimization problem:

min
A[l,t]⊆S⊆[l−1]

∑

si−1,si∈{0}∪S∪{l}

T [si−1, si]. (8)

Proof. Refer to Appendix A.

5. Experimental Results

We evaluate our method on various datasets and network

architectures. We first introduce implementation details for

the overall process in the experiments. Then, we present

an evaluation of our method on various scales of networks

and datasets to demonstrate its effectiveness. Furthermore,

we conduct ablation studies on the search space of our pro-

posed method and the ordered set S.

5.1. Implementation Details

Measurement We first evaluate the latency of each con-

tiguous network block, T [i, j], individually. The latency of

the network is subject to the format which it is implemented

on. We utilize TensorRT to convert the network into its op-

timal form and measure the latency for a fair comparison.

Then, we measure the change of the accuracy incurred by

each contiguous network block, I[i, j], for Equation (3).

As the number of possible contiguous network blocks is

of the order of N2, where N is the number of activations,

we need to train O(N2) networks to obtain the accuracy

change of every contiguous network block. For efficiency,

we approximate the first term in Equation (3) using the ac-

curacy of the network trained for a few epochs after replac-

ing the activation layers between the i+1-th and j-th layers

with identity functions. Specific details on the number of

blocks for each architecture as well as the methodologies

used to normalize the importance values can be found in

the Appendix B.3.

Dynamic Programming Given the latency of each con-

tiguous network block, T [i, j], and the accuracy change

caused by each contiguous network block, I[i, j], we can

solve Equation (4) for the time constraint T0 with Algo-

rithm 2. In Algorithm 2, we assume the time constraint T0

and time index t to be integers. In practice, we multiply ev-

ery occurrence of t and T0 by a constant factor and round

the multiplied values to integer.

Table 1. Accuracy and latency of compressed architectures ap-

plied to MobileNetV2-1.0 and MobileNetV2-1.4 on ImageNet-

100 dataset. Compression methods use the latency information

of RTX 2080 Ti and the latency is measured on the same RTX

2080 Ti.

TensorRT w/o TensorRT

Network Acc (%) Lat. (ms) Lat. (ms)

MBV2-1.0 87.58 19.55 40.68

DS-A-1.0 85.60 15.01 27.71

DS-B-1.0 85.16 12.59 23.09

Ours 85.98 12.49 22.46

DS-C-1.0 84.30 11.39 20.91

Ours 84.36 10.50 18.39

DS-D-1.0 83.18 10.65 18.91

Ours 84.00 9.92 17.74

MBV2-1.4 88.88 30.47 61.83

DS-A-1.4 85.58 19.92 35.28

DS-B-1.4 84.98 19.52 31.79

Ours 86.16 18.74 31.22

DS-C-1.4 84.00 17.76 29.87

Ours 85.04 16.79 27.92

DS-D-1.4 83.02 17.77 28.09

DS-E-1.4 81.80 15.93 26.14

Ours 84.50 14.94 23.26

Finetune and Merge After obtaining the optimal or-

dered sets A and S in Equation (4), we replace the acti-

vation layers that are not present in A with identity func-

tions. Then, we apply the necessary zero padding required

for the accurate merging in accordance with S and finetune

the network until convergence. At the test time, we merge

the finetuned network following S and evaluate the latency.

During finetuning, we follow the identical training protocol

with the DepthShrinker for finetuning (Fu et al., 2022). In

detail, we finetune the network for 180 epochs using cosine

learning rate decay with the SGD optimizer. We further

adopt the label smoothing and RandAugment following the

Fu et al. (2022) when we finetune the MobileNetV2-1.4 on

ImageNet dataset (Müller et al., 2019; Cubuk et al., 2020).

Evaluation We employ RTX2080 Ti GPU when evaluat-

ing the latency of each contiguous network block. Then, we

evaluate the end-to-end inference latency of merged archi-

tectures on various GPUs including TITAN Xp, RTX2080

Ti, RTX 3090, and Tesla V100. Also, we evaluate the in-

ference latency of the networks in two distinct formats: 1)

TensorRT exported model (FP32) and 2) PyTorch model

(Vanholder, 2016; Paszke et al., 2017). To ensure a fair
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Table 2. Accuracy and latency of compressed architectures ap-

plied to MobileNetV2-1.0 on ImageNet dataset. Both compres-

sion methods use the latency information of RTX 2080 Ti and the

latency is measured on the same RTX 2080 Ti. Accuracy of the

baselines are brought from the paper (Fu et al., 2022).

TensorRT w/o TensorRT

Network Acc (%) Lat. (ms) Lat. (ms)

MBV2-1.0 72.30 19.65 40.84

DS-A-1.0 72.43 15.05 27.76

Ours 72.67 13.94 25.25

DS-B-1.0 71.54 12.60 23.11

Ours 71.90 12.36 21.95

DS-C-1.0 70.90 11.43 21.06

Ours 71.29 11.10 20.67

DS-D-1.0 69.40 10.72 19.03

Ours 70.61 10.08 16.77

comparison, we fuse the batch normalization (BN) mod-

ules with the previous convolution layers when we measure

latency in the PyTorch format, as the depth compression al-

gorithm results in a different number of BN modules.

5.2. Depth Compression Results

We apply our depth compression method to the Mo-

bileNetV2 architecture on ImageNet-100 and ImageNet

dataset, starting from the public pretrained weight

(Sandler et al., 2018; Tian et al., 2020; Russakovsky et al.,

2015).

5.2.1. IMAGENET-100

We first experiment our depth compression method on the

ImageNet-100 dataset, which is a subset of ImageNet con-

sisting of 100 classes. We bring the list of the subclasses

from Tian et al. (2020). The size of the image is pre-

processed to 224 × 224 and the dataset contains approxi-

mately 1200 images per class. We apply our depth compres-

sion method to both MobileNetV2-1.0 and MobilNetV2-

1.4 starting from the pretrained weight and compare to the

architectures proposed in DepthShrinker.

When implementing the DepthShrinker on the ImageNet-

100 dataset, we bring the architectures in DepthShrinker

and finetune from the pretrained weight after substituting

the last classifier to match the number of classes (Fu et al.,

2022). Then we measure the latency of the merged net-

work.

Table 1 summarizes the depth compression results in

MobileNetV2-1.0 and MobileNetV2-1.4. Our method con-

sistently outperforms the baseline at every compression ra-

IR
Block2

IR
Block1

48×H ×W

48×H ×W

24×H ×W

144×H ×W

144×H ×W

32×H ×W

Dw, 3×3, s=1

1×1, s=1

1×1, s=1

Dw, 3×3, s=2

1×1, s=1

MobileNetV2-1.4
...

...
<

>

48×H ×W

24×H ×W

32×H ×W

3×3, s=1

3×3, s=2

DepthShrinker
...

...

I = 2.67, T = 2.79

I=−0.25, T =0.86

I = 2.42

T = 3.65

48×H ×W

48×H ×W

32×H ×W

Dw, 3×3, s=1

3×3, s=2

Ours
...

...

I = 2.63, T = 1.63

I = 3.12, T = 1.49

I = 5.75

T = 3.12

Figure 3. Example of our method finding the network struc-

ture that DepthShrinker is unable to find. Our method has a

larger search space since it can merge across the blocks while

DepthShrinker only considers merging within the Inverted Resid-

ual Block. I [·, ·] and T [·, ·] are evaluated for MobileNetV2-1.4 on

ImageNet.

tio in MobileNetV2-1.0 and MobileNetV2-1.4. In particu-

lar, we achieve 1.19× speedup in TensorRT compiled for-

mat with 1.48%p higher accuracy compared to the baseline

(comparing DS-D-1.4 to ours). Also, we acheive 1.20×
speedup with 0.38%p higher accuracy in TensorRT com-

piled format compared to the baseline (comparing DS-A-

1.0 to ours).

Additionally, we evaluate the wall-clock inference time on

various GPU platforms other than RTX 2080 Ti. The com-

prehensive result of the latency on different GPUs can be

found in Appendix C.1. Furthermore, we reproduce the full

searching stage of DepthShrinker on top of the ImageNet-

100 dataset and compare our method against the result-

ing architecture which we also provide the results in Ap-

pendix C.1.

5.2.2. IMAGENET

We apply our depth compression method to MobileNetV2-

1.0 and MobileNetV2-1.4 on the full ImageNet dataset

(Russakovsky et al., 2015). Note that every method uses

the latency information of the RTX 2080 Ti with TensorRT

and is measured on different model formats and GPU plat-
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Table 3. Accuracy and latency of compressed architectures applied to MobileNetV2-1.4 on top of the ImageNet dataset. Both compres-

sion methods use the latency information of RTX 2080 Ti. The latency of the compressed network architecture is measured on TITAN

Xp, RTX 2080 Ti, RTX 3090, and Tesla V100. Accuracy of the baselines are brought from the paper (Fu et al., 2022).

TensorRT Latency (ms) w/o TensorRT (ms)

Network Acc (%) TITAN Xp RTX 2080 Ti RTX 3090 Tesla V100 RTX 2080 Ti

MobileNetV2-1.4 75.30 42.88 30.58 22.12 26.34 62.01

MBV2-1.4-DS-A 74.65 27.30 20.01 14.57 18.22 35.44

Ours 74.68 26.27 18.96 14.00 17.62 32.79

MBV2-1.4-DS-B 73.67 25.74 19.66 14.17 17.67 32.02

Ours 73.76 23.81 17.30 12.64 16.21 30.20

MBV2-1.4-DS-C 73.38 24.15 17.79 12.89 16.67 30.07

Ours 73.47 22.81 16.67 12.06 15.38 27.90

MBV2-1.4-DS-D 72.51 22.97 17.76 12.88 16.36 28.35

MBV2-1.4-DS-E 72.20 21.39 16.02 11.75 14.91 26.39

Ours 72.56 20.88 15.29 11.21 14.72 26.10

forms.

Table 2 demonstrates that our method consistently outper-

forms the baseline in MobileNetV2-1.0 architecture on the

ImageNet dataset. In particular, our method attains 1.08×
speedup with 0.24%p higher accuracy compared to the

baseline (comparing ours to the DS-A-1.0). We present

the comprehensive table including the latency on different

GPUs in Appendix C.2.

Table 3 shows the result of applying our method to

MobileNetV2-1.4. The result demonstrates that our

method outperforms the baseline method in every compres-

sion ratio and across all model formats and GPU platforms.

In particular, our method achieves 1.14× speedup in Ten-

sorRT compiled format with higher accuracy compared to

the baseline DepthShrinker model (comparing MBV2-1.4-

DS-B to ours). Compared to the vanilla network, our com-

pressed network achieves 1.61× speedup in TensorRT com-

piled format with 0.62%p accuracy drop when we compare

to vanilla network. We achieve a bigger speedup factor

(1.89× speedup) in PyTorch with the same accuracy.

5.3. An Illustration of the Larger Search Space

The scope of the DepthShrinker is restricted to the cases

where merging operation occurs within the Inverted Resid-

ual Block (Fu et al., 2022). On the other hand, our merging

algorithm can handle any series of convolution operations

and is agnostic to any specific block structure. For instance,

our method finds the architecture that merges across the

blocks, which DepthShrinker cannot find as shown in Fig-

ure 3. Our method allows us to merge more general series

of layers enabling us to discover a more diverse kind of

efficient structure.
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Figure 4. Latency comparison between the network that is merged

according to A and the network that is merged according to S
for different time constraint T0. A and S are the optimal so-

lutions of Equation (4) where I [·, ·] and T [·, ·] are evaluated for

MobileNetV2-1.0 on ImageNet dataset.

5.4. Ablation Study on Ordered Set to be Merged

Recall the definition of A and S: A indicates locations

where activation layer is not replaced with an identity func-

tion and S indicates indices where we do not merge. The

set S always includes A since the activation layers that are

not id cannot be merged. One could argue that we can

merge the layers with respect to A, without separately com-

puting the optimal merge pattern S. In this ablation study,

we compare the inference time of merged network accord-

ing to A and S. Figure 4 shows that the network merged

according to S is about 30% faster than the network merged

according to A. This demonstrates that jointly optimizing

over A and S simultaneously is crucial for optimal depth

compression.
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6. Conclusion

We propose an efficient depth compression algorithm to

reduce the depth of neural networks for the reduction in

run-time memory usage and fast inference latency. Our

compression target includes any general convolution op-

erations, whereas existing methods are limited to consec-

utive depth-wise convolution and point-wise convolution

within Inverted Residual Block. We propose a subset se-

lection problem which replaces inefficient activation lay-

ers with identity functions and optimally merges consec-

utive convolution operations into shallow equivalent con-

volution operations for fast end-to-end inference latency.

Since the optimal depth subset selection problem is NP-

hard, we formulate a surrogate optimization problem which

can be exactly solved via two-stage dynamic programming

within a few seconds. We evaluate our methods and base-

lines by TensorRT for a fair inference latency comparison.

Our method outperforms Depthshrinker with a higher ac-

curacy and faster inference speed in MobileNetV2 on the

ImageNet dataset. Specifically, we achieve 1.61×speed-up

with only 0.62%p accuracy drop in MobileNetV2-1.4 on

the ImageNet dataset.
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A. Proof

Proposition A.1. A[l, t],and S[l, t] computed from the DP recurrence relations, Equation (7) are the optimal sets A and

S of Equation (6), respectively.

Proof. For given (l0, t0), we suppose for all l < l0 and t < t0, (A[l, t], S[l, t]) computed from the DP recurrence, Equa-

tion (7) are the optimal (A,S) of Equation (6), respectively. When (l, t) = (l0, t0),
∑

si−1,si∈{0}∪S[l0,t0]∪{l0}

T [si−1, si] =
∑

si−1,si∈{0}∪S[k0,t0−Topt[k0,l0]]∪{k0}∪Sopt[k0,l0]∪{l0}

T [si−1, si] (by Equation (7b))

=
∑

si−1,si∈{0}∪S[k0,t0−Topt[k0,l0]]∪{k0}

T [si−1, si] +
∑

si−1,si∈{k0}∪Sopt[k0,l0]∪{l0}

T [si−1, si]

=
∑

si−1,si∈{0}∪S[k0,t0−Topt[k0,l0]]∪{k0}

T [si−1, si] + Topt[k0, l0] (by Equation (5b))

< (t0 − Topt[k0, l0]) + Topt[k0, l0] = t0,
(by the optimality assumption for k0 < l0 and t0 − Topt[k0, , l0] < t0)

where

k0 = argmax
0≤k′<l

∑

aj−1,aj∈{0}∪A[k′,t0−Topt[k′,l0]]∪{k′,l}

I[aj−1, aj ]

subject to Topt[0, k
′] + Topt[k

′, l] < t0.

Assume that (A[l0, t0], S[l0, t0]) obtained using Equation (7) are not optimal (A,S) and (A∗, S∗) are the optimal (A,S)
of Equation (6) when (l, t) = (l0, t0). Then,

∑

aj−1,aj∈{0}∪A∗∪{l0}

I[aj−1, aj ] >
∑

aj−1,aj∈{0}∪A[l0,t0]∪{l0}

I[aj−1, aj ] (9a)

∑

si−1,si∈{0}∪S∗∪{l0}

T [si−1, si] < t0, (9b)

where A∗ ⊆ S∗ ⊆ [l0 − 1].

A∗ is not an empty set due to Equation (9a) and
∑

aj−1,aj∈{0}∪A[l0,t0]∪{l0}

I[aj−1, aj] =
∑

aj−1,aj∈{0}∪A[k0,t0−Topt[k0,l0]]∪{k0,l0}

I[aj−1, aj ] (by Equation (7a))

≥
∑

aj−1,aj∈{0}∪A[0,t0−Topt[0,l0]]∪{0,l0}

I[aj−1, aj] (by the definition of k0)

=
∑

aj−1,aj∈{0}∪∅∪{l0}

I[aj−1, aj]]. (by the base case condition)

Then, let k∗ be the maximum value of set A∗.

We define A′ = A∗ \ {k∗}, S′
<k∗ = {s ∈ S∗ | s < k∗}, and S′

>k∗ = {s ∈ S∗ | s > k∗}. The upper bound of

T (S′
<k∗ , 0, k∗) is given as follows:

∑

si−1,si∈{0}∪S′
<k∗∪{k∗}

T [si−1, si] =
∑

si−1,si∈{0}∪S∗∪{l0}

T [si−1, si]−
∑

si−1,si∈{k∗}∪S′
>k∗∪{l0}

T [si−1, si]

≤
∑

si−1,si∈{0}∪S∗∪{l0}

T [si−1, si]− Topt[k
∗, l0] (by Equation (5a))

< t0 − Topt[k
∗, l0]. (by Equation (9b))
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Therefore, the optimality assumption of A[k∗, t0 − Topt[k
∗, l0]] in Equation (6) leads to the inequality:

∑

aj−1,aj∈{0}∪A[k∗,t0−Topt[k∗,l0]]∪{k∗}

I[aj−1, aj ] ≥
∑

aj−1,aj∈{0}∪A′∪{k∗}

I[aj−1, aj ]. (10)

Thus,

∑

aj−1,aj∈{0}∪A[l0,t0]∪{l0}

I[aj−1, aj ] =
∑

aj−1,aj∈{0}∪A[k0,t0−Topt[k0,l0]]∪{k0,l0}

I[aj−1, aj ] (by Equation (7a))

≥
∑

aj−1,aj∈{0}∪A[k∗,t0−Topt[k∗,l0]]∪{k∗,l0}

I[aj−1, aj ] (by the definition of k0)

=
∑

aj−1,aj∈{0}∪A[k∗,t0−Topt[k∗,l0]]∪{k∗}

I[aj−1, aj] + I[k∗, l0]

≥
∑

aj−1,aj∈{0}∪A′∪{k∗}

I[aj−1, aj ] + I[k∗, l0] (by Equation (10))

=
∑

aj−1,aj∈{0}∪A′∪{k∗,l0}

I[aj−1, aj] =
∑

aj−1,aj∈{0}∪A∗∪{l0}

I[aj−1, aj ].

This contradicts with Equation (9a). Therefore, our assumption that (A[l0, t0], S[l0, t0]) obtained using DP recurrence

relation are not optimal (A,S) of Equation (6) is false. Thus, (A[l, t], S[l, t]) are optimal (A,S) of Equation (6).

Proposition A.2. S[l, t] computed from the DP recurrence relations, Equation (7) is the optimal S which minimizes the

latency of the network when A[l, t] is fixed. Concretely, S[l, t] is the optimal S of the optimization problem:

min
A[l,t]⊆S⊆[l−1]

∑

si−1,si∈{0}∪S∪{l}

T [si−1, si]. (11)

Proof. When l=1, S[l, t] = ∅ which satisfies Equation (11) by Equation (7b). For given (l0, t0), we suppose for all l < l0
and t < t0, Equation (11) is satisfied. Then, we assume that S[l0, t0] obtained using Equation (7b) is not optimal S and S∗

are the optimal S of Equation (11) when (l, t) = (l0, t0). Then, A[l0, t0] ⊆ S∗ and

∑

si−1,si∈{0}∪S[l0,t0]∪{l0}

T [si−1, si] >
∑

si−1,si∈{0}∪S∗∪{l0}

T [si−1, si] (12)

We can divide two cases whether A[l0, t0] is an empty set or not.

Case1: A[l0, t0] is an empty set S[l0, t0] = Sopt[0, l0] by Equation (7b). Then, Sopt[0, l0] is the optimal S of Equa-

tion (11) when (l, t) = (l0, t0) which contradicts with our assumption that S[l0, t0] is not optimal S of Equation (11) when

(l, t) = (l0, t0).

Case2: A[l0, t0] is not an empty set Let k0 be the maximum value of set A[l0, t0]. Then, we define A′ = A∗ \ {k0},
S′
<k0

= {s ∈ S∗ | s < k0}, and S′
>k0

= {s ∈ S∗ | s > k0}. By the definition, A[k0, t0 − Topt[k0, l0]] ⊆ S′
<k0

. Then, by

the optimality assumption for k0 < l0 and t0 − Topt[k0, l0] < t0,

∑

si−1,si∈{0}∪S′
<k0

∪{k0}

T [si−1, si] ≥
∑

si−1,si∈{0}∪S[k0,t0−Topt[k0,l0]]∪{k0}

T [si−1, si]. (13)
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∑

si−1,si∈{0}∪S∗∪{l0}

T [si−1, si] =
∑

si−1,si∈{0}∪S′
<k0

∪{k0}

T [si−1, si] +
∑

si−1,si∈{k0}∪S′
>k0

∪{l0}

T [si−1, si]

≥
∑

si−1,si∈{0}∪S[k0,t0−Topt[k0,l0]]∪{k0}

T [si−1, si] +
∑

si−1,si∈{k0}∪S′
>k0

∪{l0}

T [si−1, si]

(by Equation (13))

≥
∑

si−1,si∈{0}∪S[k0,t0−Topt[k0,l0]]∪{k0}

T [si−1, si] +
∑

si−1,si∈{k0}∪Sopt∪{l0}

T [si−1, si]

(by Equation (5b))

≥
∑

si−1,si∈{0}∪S[k0,t0−Topt[k0,l0]]∪{k0}∪Sopt∪{l0}

T [si−1, si]

=
∑

si−1,si∈{0}∪S[l0,t0]∪{l0}

T [si−1, si]. (by Equation (7b))

This contradicts with Equation (12). Therefore, our assumption that S[l0, t0] obtained using DP recurrence relation is not

optimal S of Equation (11) when (l, t) = (l0, t0) is false. Thus, S[l, t] is optimal S of Equation (11).

B. Measuring the Importance

Algorithm 3 Finding Optimal Importance with DP

input I
Initialize Iopt[k, l]← 0, Bopt[k, l]← ∅ for 0 ≤ k ≤ l ≤ L
for l = 1 to L do

for k = 0 to l−1 do
for (a, b) in [(0, 0), (0, 1), (1, 0), (1, 1)] do

m← argmax
k≤m′<l

(Iopt[k,m
′, a, 0] + I [m′, l, 0, b])

Iopt[k, l, a, b]← Iopt[k,m
′, a, 0] + I [m′, l, 0, b]

if m /∈ {k} then
Bopt[k, l]← Bopt[k,m] ∪ {m}

end if
end for

end for
end for

output Iopt, Bopt

Algorithm 4 Solving the Extended Surrogate Objective

input T0, L, T, I
Initialize D[l, t, a]← 0, A[l, t]← ∅, S[l, t]← ∅ ∀t, l
Topt, Sopt ← Algorithm 1 (T,L)
Iopt, Bopt ← Algorithm 3 (I)
for l = 1 to L do

for t = Topt[0, l] + 1 to T0 do
for a = 0 to 1 do

k, α← argmax
0≤k′<l

α′∈{0,1}

(D [k′, α′, t− Topt[k
′, l]] + Iopt(k

′, l, α′, a))

subject to Topt[0, k
′] + Topt[k

′, l] < t
tlast ← Topt[k, l]
D[l, t, a]← D[k, t− tlast] + Iopt[k, l, α, a]
A[l, t, a]← A[k, t− tlast, a] ∪ {k : k > 0 ∧ α = 1}
S[l, t]← S[k, t− tlast] ∪ {k : k > 0} ∪ Sopt[k, l]
B[l, t]← B[k, t− tlast] ∪ {k : k > 0} ∪Bopt[k, l]

end for
end for

end for
alast ← argmax

a∈{0,1}

(A[L, T0, a])

output A[L, T0, alast], S[L, T0], B[L, T0]

B.1. Extension of Importance and Improved Surrogate

Vanilla MobileNetV2 includes blocks which have the identity functions as activation layers at the end of the block. In light

of this, we redefine the importance of contiguous network blocks to consider whether activation layers at the boundary are

identity functions or not. To be more specific, we considered the importance of blocks only when activation layers are not

identity functions at the boundary in the main paper. Here, we also consider the importance of contiguous network blocks

when one of the activation layers at the boundary is the identity function.

For the contiguous network blocks from i+1-th layer to j-th layer, we define the discrete variables a, b ∈ {0, 1} to indicate

whether the first activation layer and the last activation layer of the contiguous network blocks are identity functions or

not, respectively. Then, we redefine the importance of contiguous network blocks from i+1-th layer to j-th layer as
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I[i, j, a, b] (a, b ∈ {0, 1}). Concretely, we redefine the importance as follows:

I[l, k, a, b] := max
θ

Acc









L
ì

ì

l=j+1

σl ◦ fθl

︸ ︷︷ ︸

j+1 toL layers

◦ (bσ + (1− b)id) ◦
j

ì

ì

l=i+1

fθl

︸ ︷︷ ︸

i+1 to j layers

◦ (aσ + (1− a)id) ◦ fθi ◦
i−1
ì

ì

l=1

σl ◦ fθl

︸ ︷︷ ︸

1 to i layers









−max
θ

Acc

(
L

ì

ì

l=1

σl ◦ fθl

)

, (14)

where σ is the activation layer that is not an identity function.

Due to the redefinition of importance, we propose an alternative surrogate for objective in Equation (1a) as follows:

I(A,B) :=
∑

bj−1,bj∈{0}∪B∪{L}

I[bj−1, bj,1A(bj−1),1A(bj)], (15)

where A ⊆ B ⊆ [L − 1]. A denotes the positions of activations and B denotes the boundary point of the contiguous

network block for objective approximation. Then, the objective extends to

maximize
A⊆B,S⊆[L−1]

∑

bj−1,bj∈{0}∪B∪{L}

I[bj−1, bj ,1A(bj−1),1A(bj)] (16)

subject to
∑

si−1,si∈{0}∪S∪{L}

T [si−1, si] < T0.

Note, Equation (16) can be exactly solved with DP algorithm as described in Algorithm 4.

B.2. Possible Combinations of Blocks

It is unscalable to consider every possible configuration of blocks in Appendix B.1. Therefore in practice, we regularize

the type of blocks we consider when we solve Equation (16) through Algorithm 4. In particular, when we implement

our algorithm in MobileNetV2, we consider the blocks without the activation only if the corresponding boundary position

doesn’t have an activation layer in the original network. If both boundary positions do not have activation layer in the

original network, we further do not consider the ones that don’t have activation at the end.

Furthermore, we only take blocks that we can merge into a single layer, thus the skip-connections in MobileNetV2 consid-

erably reduce the number of possible blocks. We also do not implement merging the series of layers that starts with stride

2 convolutional layer, because it results in significant increase in kernel size (Fu et al., 2022). In MobileNetV2, we have

171 different blocks to measure the latency (T [l, k]) and 315 different blocks to measure the importance (I[l, k, a, b]).

B.3. Calculating and Normalizing the Importance

We evaluate the importance by approximating the first term in Equation (14) with the accuracy attained after training

the network for a few epochs starting from the pretrained weight. In MobileNetV2, we approximate the first term in

Equation (14) by training it for a single epoch. If the block’s size is 1 (i.e., k − l = 1), we re-initialize the corresponding

block and measure the accuracy drop after training from the pretrained weight.

When we approximate the performance of the network trained until convergence in Equation (14) with the accuracy attained

after training it for a few epochs, we tend to calculate a lower importance value than the actual definition of the importance

value. This effect is reflected independently for each block; thus, the more block we construct the network with, the more

we underestimate the importance of the network. Therefore, it is crucial to normalize the importance values by adding an

appropriate value to each block in order to address this issue. Specially, we compute the average of the importance of the

contiguous network blocks and subtract the average from the importance of contiguous network blocks. Please refer to the

attached code for details.
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Table 4. Accuracy and latency of compressed architectures applied to MobileNetV2-1.0 and MobileNetV2-1.4 on ImageNet-100 dataset.

The latency of the compressed network architecture is measured on TITAN Xp, RTX 2080 Ti, RTX 3090, and Tesla V100.

(a) MobileNetV2-1.0

TensorRT Latency (ms) w/o TensorRT (ms)

Network Acc (%) TITAN Xp RTX 2080 Ti RTX 3090 Tesla V100 RTX 2080 Ti

MobileNetV2-1.0 87.58 27.58 19.55 14.38 17.17 40.68

MBV2-DS-A 85.60 20.14 15.01 10.51 13.38 27.71

MBV2-DS-B 85.16 18.73 12.59 9.53 11.57 23.09

Ours 85.98 17.71 12.49 9.35 11.58 22.46

MBV2-DS-C 84.30 15.96 11.39 8.51 10.36 20.91

Ours 84.36 15.32 10.50 7.88 10.14 18.39

MBV2-DS-D 83.18 14.68 10.65 7.89 10.00 18.91

Ours 84.00 13.71 9.92 7.43 9.87 17.74

(b) MobileNetV2-1.4

TensorRT Latency (ms) w/o TensorRT (ms)

Network Acc (%) TITAN Xp RTX 2080 Ti RTX 3090 Tesla V100 RTX 2080 Ti

MobileNetV2-1.4 88.88 42.66 30.47 22.01 26.19 61.83

MBV2-1.4-DS-A 85.58 27.40 19.92 14.51 17.95 35.28

MBV2-1.4-DS-B 84.98 25.67 19.52 14.15 17.77 31.79

Ours 86.16 25.44 18.74 13.44 18.03 31.22

MBV2-1.4-DS-C 84.00 23.99 17.76 12.93 16.21 29.87

Ours 85.04 23.32 16.79 11.95 15.58 27.92

MBV2-1.4-DS-D 83.02 23.00 17.77 12.81 15.87 28.09

MBV2-1.4-DS-E 81.80 21.17 15.93 11.64 14.59 26.14

Ours 84.50 19.78 14.94 10.20 13.86 23.26

C. Additional Experiments

C.1. ImageNet-100

Reproducing Search Phase of DepthShrinker We implement the search phase of the baseline method on the ImageNet-

100 dataset and compare it with our depth compression method. We reproduce the search phase of DepthShrinker on top of

the ImageNet-100 dataset and search the patterns that match the compression ratio in the original paper (Fu et al., 2022).

In MobileNetV2-1.0, we sweep through the number of activated blocks among 12, 9, and 7 and denote them ‘DS-AR-

1.0’, ‘DS-BR-1.0’, and ‘DS-CR-1.0’, respectively. In MobileNetV2-1.4, we sweep through the number of activated blocks

among 11, 8, and 6 and name them ‘DS-AR-1.4’, ‘DS-BR-1.4’, and ‘DS-CR-1.4’, respectively. Table 6a and Table 6b

summarize the results of comparing our method to the reproduced result of DepthShrinker for MobileNetV2-1.0 and

MobileNetV2-1.4 on the ImageNet-100 dataset, respectively. Our method outperforms the baseline performance regardless

of the type of network and compression ratio.

Inference Time Transfer Results on Different GPUs We further present the results of measuring the end-to-end infer-

ence time of discovered networks in MobileNetV2-1.0 and MobileNetV2-1.4 on different GPU platforms. We report the

performance on TITAN Xp, RTX 2080 Ti, RTX 3090, and Tesla V100. Table 4a and Table 4b summarize the accuracy and

the latency of the compressed networks. Our method outperforms the baseline in the majority of the GPUs.
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Table 5. Accuracy and latency of compressed architectures applied to MobileNetV2-1.4 on top of the ImageNet dataset.The latency of

the compressed network architecture is measured on TITAN Xp, RTX 2080 Ti, RTX 3090, and Tesla V100.

TensorRT Latency (ms) w/o TensorRT (ms)

Network Acc (%) TITAN Xp RTX 2080 Ti RTX 3090 Tesla V100 RTX 2080 Ti

MobileNetV2-1.0 72.30 27.68 19.65 14.28 17.23 40.84

MBV2-DS-A 72.43 20.19 15.05 10.54 13.46 27.76

Ours 72.67 19.70 13.94 10.53 12.74 25.25

MBV2-DS-B 71.54 18.63 12.60 9.50 11.67 23.11

Ours 71.90 18.42 12.36 9.44 11.43 21.95

MBV2-DS-C 70.90 16.03 11.43 8.52 10.38 21.06

Ours 71.29 15.76 11.10 8.13 10.18 20.03

MBV2-DS-D 69.40 14.95 10.72 7.94 9.89 19.03

Ours 70.61 14.55 10.08 7.27 9.94 16.77

Table 6. Accuracy and latency of compressed architectures applied to MobileNetV2-1.0 and MobileNetV2-1.4 on ImageNet-100 dataset.

Both compression methods use the latency information of RTX 2080 Ti and the latency is measured on the same RTX 2080 Ti.

(a) MobileNetV2-1.0

TensorRT w/o TensorRT

Network Acc (%) Lat. (ms) Lat. (ms)

MBV2-1.0 87.58 19.55 40.68

DS-AR-1.0 85.46 13.32 24.48

Ours 85.98 12.49 22.46

DS-BR-1.0 83.92 11.86 20.96

Ours 84.36 10.50 18.39

DS-CR-1.0 83.24 10.82 17.95

Ours 84.00 9.92 17.74

(b) MobileNetV2-1.4

TensorRT w/o TensorRT

Network Acc (%) Lat. (ms) Lat. (ms)

MBV2-1.4 88.88 30.47 61.83

DS-AR-1.4 85.88 20.78 36.50

DS-BR-1.4 85.02 18.85 31.89

Ours 86.16 18.74 31.22

DS-CR-1.4 84.86 17.44 28.14

Ours 85.04 16.79 27.92

C.2. ImageNet

Inference Time Transfer Results on Different GPUs We present the results of the latency of the compressed network

on ImageNet dataset across various GPU platforms including TITAN Xp, RTX 2080 Ti, RTX 3090, and Tesla V100. Table 5

demonstrates that our method outperforms the baseline in the majority of the settings, which is consistent with the previous

results.

D. Merging Convolutional Layers in Modern CNN

We address the details to apply the merging for the convolution operations in modern CNNs with skip addition and padding.

Consider a skip addition, f(x) + x where f(·) is a network block and X is an input feature map. When f(·) is a single

convolution operation, f(x)+x can be replaced by an equivalent convolution operation (Ding et al., 2021). In light of this,

our method fuses the skip addition into f(·) only if f(x) is merged into a single convolution operation.

DepthShrinker’s scope of merging convolution operations is restricted to cases where the kernel size of at least one of the

convolution operations to be merged is 1 (Fu et al., 2022). To include more general cases of merging where the kernel

size of both convolution operations is greater than 1, we need to address the details of padding. In this paper, we limit

our considerations to zero padding for the exact merging and apply sufficient zero padding to prevent the computation

disparities at the boundaries before and after merging.
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⊛
θl+1 ⊛ θl

X(l)

θl

X(l+1)

θl+1

X(l+2)

Figure 5. Illustration comparing the output from two different types of padding applied to two consecutive 3× 3 convolution operations

with the output from a merged 5 × 5 convolution operation. The boundary of the output feature map obtained from applying zero

padding of size 1 before each 3 × 3 convolution is distinct from that of the output feature map obtained from the merged 5 × 5
convolution. Conversely, if zero padding of size 2 is applied to the first 3 × 3 convolution, the output feature map is equivalent to the

output feature map obtained from the merged 5× 5 convolution.

Consider a feature map X(l), upon which two consecutive 3 × 3 convolution operations, utilizing kernels θl and θl+1, are

applied to produce an output feature map X(l+2). The output generated by the first convolution operation utilizing kernel

θl is denoted as X(l+1). As shown in Figure 5, when zero padding of size 1 is applied prior to each of the 3×3 convolution

operations, the boundary of the output resulting from the merged 5 × 5 convolution operation, utilizing kernel θl+1 ⊛ θl
differs from that of X(l+2). Insufficient zero padding results in a computation skip at the boundary of X(l+1), which in turn

leads to a discrepancy between the computation at the boundary of X(l+2) and the output feature map of the merged 5× 5
convolution operation. Conversely, when zero padding of size 2 is applied prior to the first 3 × 3 convolution operation,

the output feature map of the two consecutive 3 × 3 convolution operations is equivalent to the output feature map of the

merged 5× 5 convolution operation.


