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Abstract

State minimization is a fundamental problem in automata theory. The problem is also

of great importance in the study of fuzzy automata. However, most work in the literature

considered only state reduction of fuzzy automata, whereas the state minimization prob-

lem is almost untouched for fuzzy automata. Thus in this paper we focus on the latter

problem. Formally, the decision version of the minimization problem of fuzzy automata

is as follows:

• Given a fuzzy automaton A and a natural number k, that is, a pair 〈A, k〉, is there

a k-state fuzzy automaton equivalent to A?

We prove for the first time that the above problem is decidable for fuzzy automata

over totally ordered lattices. To this end, we first give the concept of systems of fuzzy

polynomial equations and then present a procedure to solve these systems. Afterwards,

we apply the solvability of a system of fuzzy polynomial equations to the minimization

problem mentioned above, obtaining the decidability. Finally, we point out that the above

problem is at least as hard as PSAPCE-complete.

Index Terms: Fuzzy automata; Minimization; Decidability.

1. Introduction

Fuzzy finite automata were introduced by Wee [1] and Santos [2, 3] in the late 1960s.

Subsequently, the fundamentals of fuzzy language theory were established by Lee and Zadeh

[4], and by Thomason and Marinos [5]. For early surveys of the theory of fuzzy finite-state

machines we can refer to [6, 7, 8]. Malik and Mordeson et al have systematically established

the theory of algebraic fuzzy finite automata [9, 10], and the corresponding concept of fuzzy

languages was introduced in [9, 10, 11]. The idea of fuzzy finite automata valued in some

∗lilvzh@mail.sysu.edu.cn (L. Li).
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abstract sets may go back to Wechler’s work [12]. Notably, fuzzy finite automata have many

significant applications such as in learning systems [13], pattern recognition [6, 10], data base

theory [6, 10], discrete event systems [14, 15], and neural networks [6, 7, 10, 16, 17]. To

date, there are still lots of important contributions to fuzzy finite automata in the academic

community, but the minimization problem of fuzzy finite automata has still not been solved

and remains open.

The purpose of this paper is to study the minimization problem of fuzzy finite automata,

simply fuzzy automata. Minimizing a fuzzy automaton means finding a fuzzy automaton that

has minimal number of states among the set of all fuzzy automata equivalent to the given

one. Since fuzzy automata are generalizations of nondeterministic finite automata (NFAs),

we first briefly recall the history of minimizing NFAs and related problems, which is helpful

for us to understand the corresponding problems of fuzzy automata.

The study of the minimization problem for finite automata dates back to the early be-

ginnings of automata theory. Although the problem’s fundamental nature is sufficient to

justify its study, the problem is of practical relevance, because regular languages are used

in many applications, and one may like to represent the languages succinctly. As we know,

deterministic finite automata (DFAs) and nondeterministic finite automata (NFAs) are two

important representations of regular languages. It is well known that there exists an efficient

algorithm running in time O(n log n) for minimizing any given n-state DFA [18]. The idea of

the algorithm is to merge indistinguishable states of the given automaton, obtaining a unique

reduced DFA which is the minimal one we find. However in the case of NFAs, the reduced

automaton obtained by merging indistinguishable states is not always minimal. Therefore,

one has to find other methods for minimizing NFAs.

It is obvious that there are only finite number of NFAs which have fewer states than the

given automaton. As a result, we can always resort to an exhaustive procedure to find a

minimal equivalent NFA. But this procedure is too lengthy to be practical. For that reason,

many attempts have been made to search for more efficient algorithms for the minimiza-

tion problem of NFAs. The first non-exhaustive search algorithm for minimizing NFAs was

proposed by Kameda and Weiner [19] in 1970. In 1992, Sengoku [20] proposed another algo-

rithm which was claimed to be more effective. However, both of the two algorithms are not

of polynomial-time complexity, which is contrary to the deterministic case. Indeed, the min-

imization problem of NFAs was proven to be computationally hard (PSPACE-complete) by

Jiang and Ravikumar [21] in 1993. Nevertheless this hardness did not prevent investigators

from considering this problem any furthermore (e.g. [22, 23, 24, 25]). In addition, although

the problem is known to be PSPACE-complete, one may propose algorithms of not too high

complexities to compute relatively good approximations.

A closely related problem to minimization is the state reduction problem which does

not aim at a minimal NFA, but find “reasonably” small NFAs that can be constructed
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efficiently. To this end, Ilie and Yu [26] (see also [27]) first proposed the method of reducing

the size of NFAs by using equivalence relations (right invariant equivalence and left invariant

equivalence). This work leaded to a series of further work on this topic (e.g. [28, 29, 30,

31, 32]). The basic idea of the method is to merge indistinguishable states, which resembles

the minimization algorithm for DFAs, but is more complicated. Note that right invariant

equivalence was also studied from another aspect by Calude et al. [33] under the name well-

behaved equivalence. In fact, right invariant equivalence shares the same idea with a central

concept in theoretical computer science—“bisimulation equivalence” which originates from

concurrency theory and modal logic but now is a rich concept appearing in various areas of

theoretical computer science such as formal verification, model checking, etc.

Fuzzy finite automata, simply fuzzy automata, are generalizations of NFAs, and the men-

tioned problems concerning minimization and reduction of states are also present in work

with fuzzy automata. Reduction of number of states of fuzzy automata was studied in

[34, 35, 36, 37, 39, 38, 40], and the algorithms given there were also based on the idea of

merging indistinguishable states. Although these algorithms were claimed to be minimiza-

tion algorithms, the term “minimization” in the mentioned references does not mean state

minimization in our sense, since it does not mean the usual construction of the minimal one

in the set of all fuzzy automata recognizing a given fuzzy language, but just the procedure of

merging indistinguishable states. Therefore, these are just state reduction algorithms. Very

recently, Ćirić et al [41] made new progress on reduction of fuzzy automata. Specifically, they

extended the concept of equivalence on NFAs to fuzzy equivalences on fuzzy automata. Then

they studied state reduction of fuzzy automata by means of fuzzy equivalences, which paral-

lels the work of Ilie and Yu [26] on NFAs. In all previous papers dealing with reduction of

fuzzy automata (cf. [34, 35, 36, 37, 39, 38, 40]) only reductions by means of crisp equivalence

were investigated, whereas Ćirić et al [41] showed that better reductions can be achieved by

employing fuzzy equivalence.

From the above introduction, one can find that so far much attention has been paid

to reduction of fuzzy automata, but another important problem is almost untouched—the

minimization problem. Obviously, the minimization problem looks more difficult than the

state reduction problem, similar to the situations in the NFA case. However, this should

not become the reason for one not trying to address the minimization problem. Indeed, in

this paper we are going to attempt to consider this problem and hope this would inspire

some further discussion. Formally, the decision version of the minimization problem of fuzzy

automata is described as follows:

• Given a fuzzy automaton A and a natural number k, that is, a pair 〈A, k〉, is there a

k-state fuzzy automaton equivalent to A?

Note that fuzzy automata can be defined over different underlying structures of truth
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values. A general model is the one defined over complete residuated lattices proposed by Qiu

[42, 43]. In this paper, fuzzy automata are restricted to be over totally ordered lattices. We

prove that the above problem is decidable for this model. The result will be based, on one

side, on the decidability of the equivalence problem of fuzzy automata and, on the other side,

on the solvability of a system of fuzzy polynomial equations. The former base is an active

problem having received much attention and can be addressed successfully. The later one is a

new problem and involves a new concept—systems of fuzzy polynomial equations. A system

of fuzzy polynomial equations resembles the usual notion of a system of polynomial equations

on the real-number field. However, the ideas for solving the two types of systems are greatly

different. Therefore, in this paper we will first present a procedure to solve systems of fuzzy

polynomial equations, and afterwards apply the result to address the minimization problem

of fuzzy automata, obtaining the decidability result.

The reminder of this paper is organized as follows. In Section 2 some preliminary knowl-

edge is given. In Section 3 we give the concept of systems of fuzzy polynomial equations and

present a procedure to solve these systems, establishing a crucial base for the minimization

problem. In Section 4 we give a condition for two fuzzy automata being equivalent, obtaining

another base for the above problem. Section 5 is a main part of this paper where we prove

that the minimization problem of fuzzy automata is decidable and furthermore we point out

that it is at least as hard as PSPACE-complete. Finally, some conclusions are made in Section

6.

2. Preliminaries

In this paper L = (L,∧,∨, 0, 1) means a lattice with the least element 0 and the greatest

element 1, where L is a poset with the partial order relation ≤, and for any x, y ∈ L, x ∨ y

and x ∧ y denote the least upper bound and the greatest lower bound of {x, y}, respectively.

L is said to be totally ordered, if L is a totally ordered set. From now on we assume that L

is a totally ordered lattice.

A fuzzy subset of a set A over L, or simply a fuzzy subset of A, is any mapping from A

into L. An n×m fuzzy matrix over L is given by A = [aij ]n×m where aij ∈ L. Ln×m denotes

the set of all n × m fuzzy matrices over L. Let A ∈ Ln×m and B ∈ Lm×l. Their product,

denoted by A ◦B, is defined by

(A ◦B)ij =

m
∨

k=1

aik ∧ bkj (1)

where 1 ≤ i ≤ n, 1 ≤ j ≤ l. For two fuzzy matrices A and B, their direct sum is A ⊕ B =
(

A O

O B

)

where O denotes a matrix with all elements being the least element 0.
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Given a, b ∈ L satisfying a ≤ b, [a, b] = {x ∈ L : a ≤ x ≤ b} is called an interval of L.

By this, we may identify L with the interval [0, 1]1. An n-dimensional interval vector is an

n-tuple X = (X1, · · · ,Xn) where Xi ⊆ L. Given two n-dimensional interval vectors X and

Y, their intersection is defined by X ∩ Y = (X1 ∩ Y1, · · · ,Xn ∩ Yn). Let S1 and S2 be two

sets of interval vectors with the same dimension. The product of S1 and S2 is defined by

S1 ⋆ S2 = {X ∩ Y : X ∈ S1,Y ∈ S2}. (2)

Note that two nonempty sets S1 and S2 may produce a product set with (∅, ∅, · · · , ∅) as its

unique element where ∅ denotes the empty set. It holds that |S1 ⋆ S2| ≤ |S1|.|S2| where |S|

denotes the cardinality of set S.

3. Solving the systems of fuzzy polynomial equations

A fuzzy monomial over L = (L,∧,∨, 0, 1) is a finite expression M = a∧x1 ∧x2 ∧ · · · ∧xk

where k ≥ 0, a ∈ L, x1, · · · , xk are variables with values in L. When k = 0, it means a

constant. If the coefficient a is the greatest element 1, the monomial is then simply written

by x1∧x2∧· · ·∧xk. A fuzzy polynomial over L is an expression of the form M1∨M2∨· · ·∨Mk

where k ≥ 1 and M1, · · · ,Mk are monomials over L. It is usually denoted by P =
∨k

i=1 Mi.

A system of fuzzy polynomial (in)equations (SFPI) is of the form



















P1 ⊲⊳ a1
...

Pm ⊲⊳ am

(3)

where ⊲⊳∈ {=,≤,≥, <,>}, Pi’s are polynomials and ai ∈ L for i = 1, · · · ,m. If ⊲⊳ is

always chosen to be “=”, then (3) is called a system of fuzzy polynomial equations (SFPE).

Suppose the system involves n variables (x1, · · · , xn). X0 = (x01, · · · , x
0
n) is called a point

solution of (3), if (3) holds when (x1, · · · , xn) is assigned with X0. If (3) has a point

solution, then it is said to be solvable. Otherwise, it is unsolvable. An n-dimensional interval

vector X = (X1, · · · ,Xn) where Xi ⊆ L is called an interval solution of (3), if each n-tuple

(x01, · · · , x
0
n) with x0i ∈ Xi is a point solution of (3) and (X1, · · · ,Xn) is maximum2 with

respect to this property.

Remark 1. First we mention that a special case of the above discussion that each monomial

M involves only one variable was considered in [44]. Secondly, in the above definitions if

1One should not confuse the interval with the real unit interval [0, 1]. In this paper 0 and 1 respectively

stand for the least element and the greatest element of a lattice.
2Note that the inclusion “⊆” is a partial order on 2L, and it can be extended up to be a partial order on

the set of interval vectors.
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∨ and ∧ are respectively replaced with the usual addition “+” and the multiplication “.”,

and L is replaced with the real number field R, then P is the usual polynomial and (3)

is a system of polynomial (in)equations. Note that deciding the solvability of a system of

polynomial (in)equations is a very important problem which has wide applications. A more

general problem is the decision problem for the existential theory of the reals which is the

problem of deciding if the set {x ∈ R
n : P (x)} is non-empty, where P (x) is a predicate which

is a boolean combination of atomic predicates either of the form fi(x) ≥ 0 or fj(x) > 0, f ’s

being real polynomials (with rational coefficients). It is known that this problem can be decided

in PSPACE [45, 46] and it has been applied to the complexity analysis on the reachability of

Recursive Markov Chains [47] and on the minimization problem of quantum and probabilistic

automata [48].

Now we consider the decision problem of SFPI, that is:

• Is it decidable whether a given system like (3) is solvable or not?

In the following we consider a special case that the relation operator ⊲⊳ in (3) is always chosen

to be “=” and all polynomials take 1 as coefficients. We will show that the above problem is

decidable in this case. Afterwards, we apply the result to the minimization problem of fuzzy

automata. Hereafter our aim is to determine whether the following system is solvable or not:



















P1 = a1
...

Pm = am

(4)

where all polynomials Pi’s take 1 as coefficients.

First we consider the case of one equation with a monomial, i.e.

x1 ∧ x2 ∧ · · · ∧ xn = a. (5)

It is easy to see that a solution of this equation has the property that one xi equals a and all

others are not less than a. More formally, the equation has n interval solutions as follows

([a, a], [a, 1], [a, 1], · · · , [a, 1]),

([a, 1], [a, a], [a, 1], · · · , [a, 1]),
...

([a, 1], [a, 1], · · · , [a, 1], [a, a])

(6)

where the interval [a, a] stands for the point a. Similarly, the solution of the inequality

x1 ∧ x2 ∧ · · · ∧ xn ≤ a (7)
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has the property that one xi is no more than a and all others can be assigned with arbitrary

values. Thus, the inequality has n interval solutions given by

([0, a], [0, 1], [0, 1], · · · , [0, 1]),

([0, 1], [0, a], [0, 1], · · · , [0, 1]),
...

([0, 1], [0, 1], · · · , [0, 1], [0, a]).

(8)

Next we consider an equation with a polynomial:

P = M1 ∨M2 ∨ · · · ∨Mk = a. (9)

where Mk’s are monomials. Eq. (9) is solvable if and only if one monomial Mi equals a and

others are no more than a. Therefore there are k possible cases. For example, one case is as

follows:






























M1 = a

M2 ≤ a

...

Mk ≤ a

(10)

We can search for all possible interval solutions for each equation or inequality in (10) as we

dealt with (5) and (7).

Let ni be the number of variables in Mi and let n be the total number of variables in

(10). Then ni ≤ n for i = 1, · · · , k. Here we need extend a solution on ni variables to one on

n variables. For example, the first equation in (10) has only n1 variables and thus its interval

solution is an n1-tuple X = (X1, · · · ,Xn1
) with Xi ⊆ L. Assume that all variables in (10)

are ordered by some order, for example the lexicographic order. Without loss of generality

assume that the variables involved in M1 are ordered at the head. Then the variables that

appear in (10) but not in M1 have no impact on the first equation in (10) and can be chosen

arbitrarily from L. Therefore, X can be extended to the following form

X = (X1, · · · ,Xn1
, [0, 1], · · · , [0, 1]). (11)

By this way, an interval solution for each equation or inequality of (10) will be an n-

dimensional interval vector. Let Si be the set of interval solutions of the ith formula

in (10). Then the system (10) has a set of interval solutions S = S1 ⋆ · · · ⋆ Sk with

|S| ≤ n1.n2 · · ·nk ≤ nk.

Note that the equality (9) has k cases to be verified. Therefore, the number of interval

solutions of Eq. (9) is upper bounded by knk.

Now we return to the solution of system (4). Let the ith equation have a set of interval

solutions Ti where i = 1, · · · ,m. Then the interval solution set of (4) is T = T1 ⋆ · · · ⋆ Tm.
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Assume that the system (4) involves n variables and each polynomial consists of at most

k monomials. Then we have |T | ≤ |T1| · · · |Tm| ≤ (knk)m. Consequently, we obtain the

following theorem.

Theorem 2. There exists an algorithm running in time O((knk)m) to search for all possible

solutions to a system of fuzzy polynomial equations like (4) and thus it is decidable whether

the system is solvable, where n is the number of variables, m is the number of equations, and

k is the largest number of monomials involved in an equation.

Proof. Using the procedure described above, we can exhaustively search for all possible so-

lutions of the system. The number of interval solutions is at most (knk)m. So the time is

O((knk)m). Note that the system is solvable if and only if there exists an interval solution

in the form (X1, · · · ,Xn) where Xi 6= ∅ for all i. Thus, after finding all possible interval

solutions, we check if there exists a solution satisfying the above condition. If yes, then the

system is solvable. Otherwise, it is unsolvable.

Remark 3. In the above discussion, it was assumed that a system consists of only equations

and all involved polynomials take 1 as coefficients. In fact, the above procedure can be extended

to more general cases. Firstly, it can be easily adopted to deal with systems of inequalities

and equations with 1 as coefficients. Secondly, by the similar idea, we can also deal with the

most general case—systems consist of inequalities and equations with arbitrary coefficients.

However, we will not discuss these general cases in any more detail, since they have no close

relation with our main purpose in this paper—minimization of fuzzy finite automata.

Theorem 2 has presented a procedure to search for all solutions to systems like (4).

However, if we only want to determine whether the system is solvable or not, but not to

search for all solutions, then we can present a simpler procedure for that. Let V denote the

set consisting of distinct elements from {a1, · · · , am}. Then we get the following result.

Theorem 4. The system (4) is solvable if and only if there exists X0 ∈ Vn such that X0 is

a point solution of (4) where n is the number of variables involved in the system.

Proof. First the “if” part is ready. Thus we focus on the “only if” part. Suppose that

the system (4) is solvable. Then it necessarily has an interval solution (X1, · · · ,Xn) where

Xi 6= ∅ for all i. More specifically, since every interval Xi is the intersection of intervals

like the ones given in (6) and (8), every interval Xi is finally among the following forms

[a, b], [0, c], [d, 1], [0, 1] where a, b, c, d ∈ V. Thus, we get a point solution (x01, · · · , x
0
n) where

each x0i is given by

xi =























a or b, if Xi = [a, b];

c, if Xi = [0, c];

d, if Xi = [d, 1];

y ∈ V, if Xi = [0, 1]

(12)
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where y is an arbitrary value from V. It is obvious that (x01, · · · , x
0
n) ∈ Vn. Hence, we have

completed the proof.

Having in mind Theorem 4 we propose the following algorithm (Algorithm I) for estab-

lishing the solvability of systems like (4).

Input: a system like (4) with n variables

output: give a solution or return “unsolvable”

Step 1:

find the set V from {a1, · · · , am}.

Step 2:

While (take an element X0 from Vn) do

If (X0 is a solution of (4)) return X0

Step 3:

return “unsolvable”

Algorithm I: determine whether a system of fuzzy polynomial equations like (4) is solvable.

In Section 5, we will apply the above results to address the minimization problem of fuzzy

automata.

4. Equivalence of fuzzy automata

Below we first give the definition of fuzzy automata and then present a condition for

two fuzzy automata being equivalent which is an indispensable base for the minimization

problem. Some notations used in the sequel are firstly explained here. Let Σ∗ denote the free

monoid over the alphabet Σ, and let λ ∈ Σ∗ be the empty word. For x ∈ Σ∗, |x| denotes its

length. Let Σ≤k = {x ∈ Σ∗ : |x| ≤ k}.

Definition 5. A fuzzy finite automaton over L = (L,∧,∨, 0, 1), simply fuzzy automaton, is

a five-tuple A = (S,Σ, π, δ, η) where S is a finite state set, Σ is a finite alphabet, π is a fuzzy

subset of S, called the fuzzy set of initial states, δ : S × Σ × S → L is a fuzzy subset of

S × Σ × S, called the fuzzy transition function, η is a fuzzy subset of S, called the fuzzy set

of terminal states.

We can interpret δ(s, σ, s′) as the degree to which an input letter σ ∈ Σ causes a transition

from a state s ∈ S into a state s′ ∈ S. The mapping δ can be extended up to a mapping

δ∗ : S × Σ∗ × S → L as follows:

δ∗(s, λ, s′) =

{

1, if s = s′,

0, otherwise
(13)
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where s, s′ ∈ S, and

δ∗(s, xσ, s′) =
∨

t∈S

δ∗(s, x, t) ∧ δ(t, σ, s′) (14)

where s, s′ ∈ S, x ∈ Σ∗ and σ ∈ Σ.

A fuzzy language in Σ∗ over L, or briefly a fuzzy language, is a fuzzy subset of Σ∗, i.e.,

a mapping from Σ∗ into L. F(Σ∗) stands for the set of all fuzzy languages in Σ∗. A fuzzy

automaton A = (S,Σ, π, δ, η) recognizes a fuzzy language f ∈ F(Σ∗) if for any x ∈ Σ∗

f(x) =
∨

s,t∈S

π(s) ∧ δ∗(s, x, t) ∧ η(t). (15)

In other words, the equality (15) means that the membership degree of the word x belonging

to the fuzzy language f is equal to the degree to which A recognizes or accepts the word x.

The unique fuzzy language recognized by a fuzzy automaton A is denoted by fA.

Let |S| = n. For each word x ∈ Σ∗, we define an n× n fuzzy matrix δx by

δx(s, s
′) = δ∗(s, x, s′) (16)

where s, s′ ∈ S. Then it is readily seen that

δx = δx1
◦ · · · ◦ δxk

(17)

for x = x1 · · · xk ∈ Σ∗. By using this notation, the equality (15) can be rewritten as

f(x) = π ◦ δx ◦ η (18)

where and hereafter we identify the fuzzy subsets π, η with a 1×n and an n×1 fuzzy matrices,

respectively.

A basic problem concerning fuzzy automata is the equivalence problem, that is, deciding

whether two given fuzzy automata recognize the same fuzzy language. Formally the definition

is given as follows.

Definition 6. Two fuzzy automata A1 and A2 are said to be k-equivalent, denoted by A1 ≈k

A2, if fA1
(x) = fA2

(x) holds for all x ∈ Σ≤k. Furthermore, they are said to be equivalent,

denoted by A1 ≈ A2, if fA1
(x) = fA2

(x) holds for all x ∈ Σ∗.

In the following, we give a condition for two fuzzy automata being equivalent.

Theorem 7. Two fuzzy automata Ai = (S(i),Σ, π(i), δ(i), η(i)) (i = 1, 2) are equivalent if and

only if they are (d(n1+n2) − 1)-equivalent, where n1 and n2 are numbers of states of A1 and

A2, respectively, and d is the cardinality of the following set:

V = {δ(1)(s, σ, t) : s, t ∈ S(1), σ ∈ Σ} ∪ {η(1)(s) : s ∈ S(1)}

∪ {δ(2)(s, σ, t) : s, t ∈ S(2), σ ∈ Σ} ∪ {η(2)(s) : s ∈ S(2)}.

10



Proof. Let M(σ) = δ
(1)
σ ⊕ δ

(2)
σ for all σ ∈ Σ, and η =

(

η(1)

η(2)

)

, being an (n1+n2)×1 matrix.

Then we have

fA1
(x) = π(1) ◦ δ(1)x ◦ η(1) = (π(1),0) ◦M(x) ◦ η, (19)

fA2
(x) = π(2) ◦ δ(2)x ◦ η(2) = (0, π(2)) ◦M(x) ◦ η (20)

where M(x) = M(x1) ◦ · · · ◦M(xk) for x = x1 · · · xk ∈ Σ∗ and 0 denotes a row vector with

all elements being 0. Let

ϕ(k) = {M(x) ◦ η : x ∈ Σ≤k}

and

ϕ = {M(x) ◦ η : x ∈ Σ∗}.

Then the following result holds.

Proposition 8. There exists an integer l ≤ dn1+n2 − 1 such that

ϕ(0) ⊂ ϕ(1) ⊂ · · · ⊂ ϕ(l) = ϕ(l + 1) = ϕ(l + 2) = · · · = ϕ

where ⊂ denotes the proper inclusion.

Proof of Proposition 8. First it is obvious that ϕ(i) ⊆ ϕ(i+1) ⊆ ϕ holds for i = 0, 1, · · · .

Note that |ϕ| ≤ dn1+n2 . Thus, there exists l ≤ |ϕ|− 1 ≤ dn1+n2 − 1 such that ϕ(l) = ϕ(l+1).

Next we prove that ϕ(l) = ϕ(l + j) holds for j = 2, 3, · · · . In fact we only need prove

ϕ(l) = ϕ(l + 2). Take υ ∈ ϕ(l + 2). We have

v = M(x) ◦ η, x ∈ Σ≤(l+2)

= M(σ) ◦M(x′) ◦ η, σ ∈ Σ, x′ ∈ Σ≤(l+1)

= M(σ) ◦ v′, v′ ∈ ϕ(l)

∈ ϕ(l + 1) = ϕ(l).

This completes the proof of Proposition 8.

By the above results we obtain

A1 ≈ A2 ⇔ fA1
(x) = fA2

(x),∀x ∈ Σ∗

⇔ (π(1),0) ◦M(x) ◦ η = (0, π(2)) ◦M(x) ◦ η,∀x ∈ Σ∗

⇔ (π(1),0) ◦ v = (0, π(2)) ◦ v,∀v ∈ ϕ

⇔ (π(1),0) ◦ v′ = (0, π(2)) ◦ v′,∀v′ ∈ ϕ(k)

⇔ fA1
(x) = fA2

(x),∀x ∈ Σ≤k

⇔ A1 ≈k A2

where k = dn1+n2 − 1. Thus we have completed the proof of Theorem 7.
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5. Minimization of fuzzy automata

The study of the minimization problem for finite automata dates back to the early begin-

nings of automata theory. This problem is of practical relevance, because regular languages

are used in many applications, and one may like to represent the languages succinctly. In the

past over forty years, fuzzy automata have received much attention. In the study of fuzzy

automata, the minimization problem is also a very important problem and worthy of serious

consideration. Note that a closely related problem to minimization is the state reduction

problem which does not aim at a minimal one, but find “reasonable” small automata which

can be efficiently constructed. As mentioned in Section 1, while much attention has been

paid to reduction of fuzzy automata, the minimization problem is almost untouched. Thus

in this section we focus on the minimization problem. Formally, the decision version of the

minimization problem of fuzzy automata, is as follows:

• Given a fuzzy automaton A and a natural number k, that is, a pair 〈A, k〉, is there a

k-state fuzzy automaton equivalent to A?

In this section, we prove the above problem is decidable, based on the solvability of systems

of fuzzy polynomial equations (Theorem 4) and on the condition of equivalence between fuzzy

automata (Theorem 7). Furthemore, we point out that the minimization problem is at least

as hard as PSPACE-complete.

5.1. Decidability of minimization

The main idea for addressing the minimization problem of fuzzy automata is briefly

depicted as follows:

1. First, for a given pair 〈A, k〉, define the set

S(A, k) = {A′ : A′ ≈ A, is a fuzzy automaton with k states}. (21)

2. Next, we prove that S(A, k) can be described by a system of fuzzy polynomial equations.

Then, by Theorem 4, there exists an algorithm to decide whether S(A, k) is nonempty

or not, and furthermore, if it is nonempty, a k-state fuzzy automaton A′ equivalent to

A is given.

Specifically, we have the following result.

Theorem 9. The minimization problem of fuzzy automata is decidable.
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Proof. For a given n-state fuzzy automaton A = (S,Σ, π, δ, η) and a natural number k,

define the set S(A, k) given by (21). Suppose that a k-state fuzzy automaton has the form

A′ = (S′,Σ, π′, δ′, η′) with |S′| = k. Equivalently, S(A, k) can be represented as follows:

S(A, k) = {X ∈ L2k+|Σ|k2 : P (X)} (22)

where:

• X is a vector consisting of (2k + |Σ|k2) variables which take values from L. More

specifically, X is decomposed into several parts:

– Xπ′ ,Xη′ ∈ Lk are respectively used to represent the initial state π′ and the final

state η′ of A′.

– Xδσ ∈ Lk2 for each σ ∈ Σ is used to represent a fuzzy transition matrix δσ of A′.

• P (X) is a system of fuzzy polynomial equations given by:

Xπ′ ◦Xδx ◦Xη′ = π ◦ δx ◦ η,∀x ∈ Σ∗ (23)

where Xδx = Xδx1
◦ · · · ◦Xδxm

for x = x1 · · · xm ∈ Σ∗.

It is obvious that a point X0 ∈ L2k+|Σ|k2 is a solution to the system (23) if and only if

it represents a k-state fuzzy automaton A′ equivalent to A. However, since (23) consists of

infinitely many equations, there exists no algorithmic procedure to determine whether it is

solvable. Thereby we need reduce (23) to a system of finitely many equations.

Let

V = {π(s), η(s), δσ(s, s
′) : s, s′ ∈ S, σ ∈ Σ}

and let

d = |V |+ |Σ|k2 + k.

We consider the following finite system of equations:

Xπ′ ◦Xδx ◦Xη′ = π ◦ δx ◦ η,∀x ∈ Σ∗ with |x| ≤ dn+k − 1. (24)

Indeed, we obtain the following result.

Claim 1. X0 ∈ L2k+|Σ|k2 is a solution to the system (23) if and only if it is a solution to

the system (24).

Proof. The “only if ” part is obvious. Thus we prove the “if” part. Suppose that X0 ∈

L2k+|Σ|k2 is a solution to the system (24). Assume that the number of different values involved

by {X0
η′ , η, δσ ,X

0
δσ

: σ ∈ Σ} is d′. Then we have d′ ≤ d. Now it follows from Theorem 7 that

if X0
π′ ◦X0

δx
◦X0

η′ = π ◦ δx ◦ η holds for x ∈ Σ∗ with |x| ≤ (d′)n+k − 1, then it also holds for all

x ∈ Σ∗. Remember that X0 is a solution to the system (24) and d′ ≤ d. Thus by the above

discussion X0 is also a solution to the system (23). This completes the proof of Claim 1.
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Furthermore, we can reduce the system (24) to a more simple one. Formally, we have

Claim 2. The system (24) is solvable if and only if the following system is solvable:

Xπ′ ◦Xδx ◦Xη′ = π ◦ δx ◦ η,∀x ∈ Σ∗ with |x| ≤ |V |n+k − 1. (25)

Proof. First, the “only if” part is obvious, since |V | < d. Now suppose that the system

(25) is solvable. Note that the values of the right side of (25) are necessarily to be in the

set V . Therefore, by Theorem 4, the system (25) is solvable in the set V , which means

that there exists X0 ∈ V 2k+|Σ|k2 such that X0
π′ ◦ X0

δx
◦ X0

η′ = π ◦ δx ◦ η holds for x ∈ Σ∗

with |x| ≤ |V |n+k − 1. Then, by Theorem 7, the equality holds for all x ∈ Σ∗, and thus it

necessarily holds for x ∈ Σ∗ with |x| ≤ dn+k − 1, which means that X0 is a solution to the

system (24).

At length, P (X) has been reduced to be a finite one given by (25). Correspondingly,

determining whether the set S(A, k) is nonempty is equivalent to determining whether the

system (25) is solvable. The later problem can be addressed in terms of Theorem 4.

In conclusion the above procedure is refined to a minimization algorithm (Algorithm II).

This completes the proof of Theorem 9.

Input: a fuzzy automaton A and a natural number k

output: either return a fuzzy automaton A′ equivalent to A with k states or

return “empty”

Step 1:

construct the set S(A, k) given in (22) where P (x) is given by (25)

Step 2:

invoke Algorithm I to decide whether S(A, k) is nonempty

Step 3:

If S(A, k) = ∅ return “empty”; else return X0 ∈ S(A, k)

Algorithm II: the minimization algorithm

Complexity analysis. Here we take a complexity analysis of the above procedure. In the

following we assume that the two operations ∨ and ∧ can be done in constant time. For

simplicity, let c = |V |n+k − 1. The number of equations in (25) is

N = 1 + |Σ|+ |Σ|2 + · · · + |Σ|c.

To solve the system (25) we need to compute the values in the right side which can be

efficiently computed by the following two steps:

14



• first compute the set ϕ(c) = {δx ◦ η : |x| ≤ c};

• then compute the value π ◦ v for each v ∈ ϕ(c).

Note that in this first step upon computation of δx ◦ η, computation of δσ ◦ δx ◦ η requires

O(n2) operations. Thus, we compute all δx ◦ η from l = 0 to l = c where l = |x|. Then the

number of operations required is give as follows:

length number of operations

l = 0 O(1)

l = 1 O(|Σ|n2)

l = 2 O(|Σ|2n2)

· · · · · ·

l = c O(|Σ|cn2)

Thus, the number of operations required in the first step is O(Nn2). The second step requires

O(Nn) operations. Therefore the computation of the right side of (25) requires O(Nn2)

operations.

Now in order to determine whether the system (25) is solvable or not, by Theorem 4 we

need to check all X ∈ V 2k+|Σ|k2. For each X, it requires O(Nk2) operations to compute the

left side.

Therefore, the total number of operations required is

O(|V |2k+|Σ|k2Nk2) +O(Nn2).

5.2. The minimization problem is at least as hard as PSPACE-complete

In the last section we have presented a procedure to address the minimization problem

of fuzzy automata, but the complexity is not good enough. Then one may ask whether

there exists a more efficient algorithm to the minimization problem. The answer may be

yes, but at present what we are sure is that the minimization problem is at least as hard as

PSPACE-complete.

We recall that in Definition 5, a fuzzy automaton A = (S,Σ, π, δ, η) is defined on a general

totally ordered lattice L = (L,∨,∧, 0, 1). Now we consider a special case where L = {0, 1}.

In this case, A reduces to an NFA, which follows from the following observations:

• π(si) = 1 stands for si ∈ S being an initial state, and η(si) = 1 indicates si being an

accepting state.

• δ(si, σ, sj) = 1 stands for that the current state si will change to sj when the automaton

is fed with the symbol σ.
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• The language accepted by A is L = {x ∈ Σ∗ : fA(x) = 1}.

The minimization problem of NFA attracted much attention from the academic community,

for example [19, 20, 21, 22, 23, 24, 25]. It has been proved that the minimization problem of

NFA is PSPACE-complete [21]. On can refer to a survey of finite automata [49] for learning

more information. Therefore, the minimization problem of fuzzy automata is at least as hard

as PSPACE-complete.

6. Conclusions

In this paper we have proved for the first time that the minimization problem of fuzzy

automata over totally order lattices is decidable. This result depends heavily on, the solv-

ability of a system of fuzzy polynomial equations, a result established in this paper. Two

problems worthy of further consideration are listed as follows:

• Are there more efficient algorithms for the minimization problem? Although the prob-

lem is known to be at least as hard as PSPACE-complete, it is still interesting to search

for more efficient algorithms for the problem as in the case of NFAs.

• In this paper we have considered only minimizing fuzzy automata over totally ordered

lattices. In the further study, one can consider the problem for more general cases, for

example, for fuzzy automata over complete residuated lattices.
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