
ar
X

iv
:2

30
2.

10
67

0v
1

 [
cs

.F
L

]
 2

1
Fe

b
20

23

The Word Problem for Finitary

Automaton Groups

Maximilian Kotowsky

Insitut für Formale Methoden der Informatik (FMI)
Universität Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany

Jan Philipp Wächter ∗

Dipartimento di Matematica
Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133 Milano, Italy

February 22, 2023

A finitary automaton group is a group generated by an invertible, determin-
istic finite-state letter-to-letter transducer whose only cycles are self-loops at
an identity state. We show that, for this presentation of finite groups, the uni-
form word problem is coNP-complete. Here, the input consists of a finitary
automaton together with a finite state sequence and the question is whether
the sequence acts trivially on all input words. Additionally, we also show that
the respective compressed word problem, where the state sequence is given as
a straight-line program, is PSpace-complete. In both cases, we give a direct
reduction from the satisfiablity problem for (quantified) boolean formulae.
Keywords. Automaton Group, Word Problem, Finitary, Activity.

∗The second author is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) – 492814705.

1

http://arxiv.org/abs/2302.10670v1
https://orcid.org/0000-0002-7801-6569

1 Introduction

There a many connections between groups and automata (see e. g. [22]). In this article,
we are mostly concerned with automaton groups, where the term automaton usually
refers to an invertible, deterministic finite-state letter-to-letter transducer. In such an
automaton, every state q induces a function mapping an input word u to the output
word obtained by stating in q and following the path labeled by u in the input. Since
the automaton is invertible, every such function is a bijection and the closure under
composition of these functions (and their inverses) forms a group. This is the group
generated by the automaton and any group arising in this way is an automaton group.
Not every group is an automaton group but the class of automaton groups contains some
very interesting examples (see e. g. [4]). The probably most famous one is Grigochuk’s
group, which – among other interesting properties – was the historically first group of
intermediate growth (i. e. the numbers of elements that can be written as a word of length
at most n over the generators grows slower than any exponential function but faster than
any polynomial; see [12] for an introduction to this topic).

These interesting examples also led to an investigation of the algorithmic properties
of automaton groups, where the presentation using automata is an alternative to the
classical one using (typically finitely many) generators and relations. It turns out that
this presentation is still quite powerful as many decision problems remain undecidable.
For example, it is known that there is an automaton group with an undecidable conjugacy
problem [24] (given two group elements, check whether they are conjugate) and one with
an undecidable order problem [11, 3] (given a group element, check whether it has finite
order). Decidability of the finiteness problem for automaton groups (given an automaton,
check whether its generated group is finite) is still an open problem but the corresponding
problem for semigroup has been shown to be undecidable [10].

The word problem (given a group element, check whether it is the neutral element),
however, seems to have a special role for automaton groups. It is well known to be
decidable and a guess and check approach also yields that the problem can be solved in
non-deterministic linear space, even in the uniform case (where the generating automaton
is also part of the input) [23, 9]. Regarding lower bounds, Armin Weiß and the second
author proved that there is an automaton group with a PSpace-complete word problem
[25].

In this work, we will apply similar ideas to investigate the complexity of the word
problem for the lowest level of the activity hierarchy for automaton groups introduced
by Sidki [21]. This hierarchy classifies automaton groups based on the structure of the
cycles in the generating automaton. At the lowest level, which belongs to the class of
finitary automata and finitary automaton groups, the only cycles are the self-loops at an
identity state (i. e. a state where the output word is always the same as the input word).
It turns out that this class coincides with the class of (all) finite groups.

On the next level, the class of bounded automata and bounded automaton groups,
every path in the automaton may contain at most one cycle (not counting the self-loops
at a possible identity state). This class still seems “finite enough” for many problems to
be decidable. For example, the finiteness problem [7] as well as the order problem [8] are

2

decidable and there are positive results on the conjugacy problem [8]; the word problem
of a bounded automaton group can be solved in deterministic logarithmic space [19, 2]
and its complement is an ET0L language [6].

We will be interested in the finitary level. As we have discussed, studying the word
problem of these groups is the same as studying the word problem of arbitrary finite
groups. It is well known that a group is finite if and only if its word problem (i. e. the
formal language of words over the generators representing the neutral element) is regular.
While this does not settle the precise complexity for the individual groups entirely, we
will approach this setting from a different perspective. We will consider the uniform
word problem, where the group is part of the input in a suitable presentation. Typical
such presentations include, for example, the classical one with generators and relations,
Caley graphs and tables or presenting the elements as matrices or permutations. Our
presentation of choice is that of using an automaton (in the way described above). Here,
we will show that the uniform word problem is coNP-complete by giving a direct re-
duction from the satisfiability problem for boolean formulae. Then, we will show that
the uniform compressed word problem, where the input state sequence is not given di-
rectly but only compressed in the form of a context-free grammar (or, more precisely, a
straight-line program), is PSpace-complete and, thus, exponentially harder (under com-
mon complexity theoretic assumptions). This reflects a similar (potentially) exponential
gap in the general case [25]. We prove this latter result by giving a direct reduction from
the satisfiability problem for quantified boolean formulae. This approach of simulating
logical formulae in automata is similar to the techniques used in [25] and we hope that
the general idea can be extended to further settings, for example, to obtain lower bound
results for further levels of the activity hierarchy. The underlying idea is to use certain
commutators for simulating logical conjunctions. This is often attributed to Barrington,
who showed [1] that non-solvable finite groups have ALogTime-complete word problems
(see [2] for more results in that direction). However, there are also similar ideas predating
Barrington [16, 17, 18, 14].

2 Preliminaries

Logic. For this paper, we will require some basic knowledge about propositional and
first-order logic. We use ⊥ to denote a false truth value and ⊤ to denote the truth value
true. We let B = {⊥,⊤} and may evaluate the truth value A(ϕ) of a formula ϕ over the
variables X under an assignment A : X → B in the usual way. If this evaluates to ⊤, we
say that A satisfies ϕ and ϕ is satisfiable if it is satisfied by some assignment. A literal
is either a variable x or the negation ¬x of a variable. In the first case, the literal is
positive and, in the second case, it is negative. A clause is a disjunction

∨n
i=1 Li of literals

Li. A conjunction
∧K

k=1Ck of clauses Ck is a formula in conjunctive normal form. If all
the clauses contain exactly 3 distinct literals, we say that the formula is in 3-conjunctive
normal form.

3

Words and Group Operations. An alphabet is a non-empty, finite set Σ. A finite
sequence w = a1 . . . aℓ of elements a1, . . . , aℓ ∈ Σ is a word and its length is |w| = ℓ. The
unique word of length 0 is denoted by ε and the set of all words over Σ is Σ∗, which forms
a monoid whose operation is the concatenation of words (and whose neutral element is
ε).

We will often work with words in the context of generating a group. In this case,
we assume that, for an alphabet Q, we have a disjoint copy Q−1 = {q−1 | q ∈ Q}
of formal inverse letters. For the set of words over such positive and negative letters,
we write Q±∗ = (Q ∪ Q−1)∗ and we may extend the notation q−1 to words by letting
(q1 . . . qℓ)

−1 = q−1
ℓ . . . q−1

1 where we additionally also use the convention (q−1)−1 = q.
We say a group G is generated by Q if there is a monoid homomorphism π : Q±∗ → G
with π(q−1) = π(q)−1. In this context, we write p = q in G for π(p) = π(q) (where
p, q ∈ Q±∗) and also p = g in G if π(p) = g. So, for example, we write p = 1 in G if
π(p) is the neutral element of the group G, which we usually denote by 1.

In addition to taking the inverse, we lift further group operations to words. In analogy
to the conjugation gk = k−1gk of some group element g ∈ G by another one k ∈ G, we
also write qp for the word qp = p−1qp (where p, q ∈ Q±∗). Note that this notation is
compatible with the conjugation as we have π(qp) = π(q)π(p). We also do the same for
the commutator [h, g] = h−1g−1hg of two group elements g, h ∈ G and write [q,p] for the
word [q,p] = q−1p−1qp. Again, this is compatible with the projection π: π ([q,p]) =
[π(q), π(p)].

Automata and Automaton Groups. In the context of this paper, an automaton is a
finite state letter-to-letter transducer. Formally, an automaton T is a triple (Q,Σ, δ)
where Q is a finite, non-empty set of states, Σ is the (input and output) alphabet of T
and δ ⊆ Q × Σ × Σ × Q is the transition relation. In this context, we usually write
p qa/b for the tuple (p, a, b, q) ∈ Q × Σ × Σ × Q. This is a transition starting in p,
ending in q with input a and output b.

An automaton T = (Q,Σ, δ) is deterministic and complete if we have dp,a = |{p qa/b |
b ∈ Σ, q ∈ Q}| = 1 for all p ∈ Q and a ∈ Σ. It is additionally invertible if we also have
d′p,b = |{p qa/b | a ∈ Σ, q ∈ Q}| = 1 for all p ∈ Q and b ∈ Σ. We will call a
deterministic, complete and invertible automaton a G-automaton.

Another way of indicating that we have a transition p qa/b ∈ δ is to use the cross
diagram in Figure 1a. Multiple cross diagrams may be combined into a larger one. For
example, the cross diagram in Figure 1d indicates that we have qi,j−1 qi,j

ai−1,j/ai,j ∈ δ
for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Typically, we will omit unnecessary intermediate states
if we do not need to name them. Additionally, we also allow abbreviations in the form
of words (instead of only single letters) in the input and output and state sequences
(i. e. words over Q) on the left and the right. Note, however, that here the right-most
state of the sequence is considered to be the first state,1 which results in the abbreviated
cross diagram in Figure 1c for p = qn,0 . . . q1,0, u = a0,1 . . . a0,m, v = an,1 . . . an,m and
q = qn,m . . . q1,m.

1This makes sense as we will later on define a left action of the states on the words over Σ.

4

a

p q

b

(a) Cross diagrams

b

p−1 q−1

a

(b) Inverse cross diagrams

u

p q

v

(c) Abbreviated cross diagram

a0,1 . . . a0,m
q1,0 q1,1 . . . q1,m−1 q1,m

a1,1 a1,m...
...

...
...

an−1,1 an−1,m

qn,0 qn,1 . . . qn,m−1 qn,m
an,1 . . . an,m

(d) Multiple crosses combined in one diagram

Figure 1: Single, inverted, combined and abbreviated cross diagrams

For a deterministic and complete automaton T = (Q,Σ, δ), there exists exactly one
cross diagram of the form in Figure 1c for every q ∈ Q∗ and u ∈ Σ∗. If T is additionally
invertible (i. e. it is a G-automaton), we define that we have the cross diagram in Figure 1b
for p, q ∈ Q and a, b ∈ Σ whenever we have the cross diagram from Figure 1a. Note that
we have flipped the cross diagram along its horizontal axis and inverted the states. In
this case, the cross diagram in Figure 1c uniquely exists for all p ∈ Q±∗ and all u ∈ Σ∗

(although we now also allows states from Q−1).
This allows us to define a left action of Q±∗ on Σ∗ where the action of q ∈ Q±∗ on a

word u ∈ Σ∗ is given by q ◦ u = v where v is uniquely obtained from the cross diagram
Figure 1c (the empty state sequence acts as the identity on all words by convention).
The reader may verify that we indeed have q−1q ◦ u = u = qq−1 ◦ u with our definition
of inverting cross diagrams.

For two state sequences p, q ∈ Q±∗ of a G-automaton T = (Q,Σ, δ), we define the
relation

p =T q ⇐⇒ ∀u ∈ Σ∗ : p ◦ u = q ◦ u.

It turns out that this relation is a congruence, which allows us to consider the monoid
Q±∗/=T formed by its classes. In fact, this monoid has a group structure (where the
class of q−1 is the inverse of the class of q) and this is the group generated by T . Any
group generated by some G-automaton is called an automaton group.

We use the common graphical depiction of automata, which results in a Σ×Σ-labeled
finite directed graph. If this graph does not have any cycles except for the a/a labeled self-
loops at an identity state,2 we say that the automaton is finitary. The depth of a finitary
G-automaton is the minimal number d such that, after reading at least d many letters,

2Note that any complete finite automaton must contain a cycle and that, thus, every finitary G-auto-
maton has an identity state.

5

we are always in the identity state (regardless where we started). A group generated by a
finitary G-automaton is a finitary automaton group. Since, with a finitary G-automaton,
a state sequence may only act non-trivially on the first d letters (where d is the depth
of the generating automaton), a finitary automaton group is necessarily finite. On the
other hand, any finite group G is generated by the finitary automaton (G,G, δ) with
δ = {g 1

h/gh | g, h ∈ G}. Thus, studying finitary automaton groups is the same as
studying finite groups but we are interested in a certain way of presenting these groups.

Complexity. We need some notions from complexity theory for this paper. However,
we will not go into details about complexity theory and refer the reader to standard
text books on the topic (such as [20]) instead. Regarding complexity classes, we need
the class coNP which contains all problems whose complement can be solved in non-
deterministic polynomial time (i. e. is in NP) and the class PSpace of problems solvable
in polynomial space (where it does not matter whether we consider deterministic or non-
deterministic algorithms by Savitch’s theorem [20, Theorem 7.5]). Additionally, we need
LogSpace-computable functions (where LogSpace refers to deterministic logarithmic
space). When it comes to reductions, we will exclusively work with many-one LogSpace-
reductions. Formally, such a reduction from a problem A to a problem B is a LogSpace-
computable function f mapping instances of A to instances of B such that positive
instances are mapped to positive instances and negative instances are mapped to negative
ones. A problem A is C-hard for some complexity class C if any problem C ∈ C can
be reduced to A (using a many-one LogSpace-reduction). Typically, this is done by
reducing a problem which is already known to be C-hard to A (as many-one LogSpace-
reductions are closed under composition, see e. g. [20, Proposition 8.2]). If a C-hard
problem is also contained in C, it is C-complete.

Balanced Iterated Commutators. In addition to the normal commutator of two ele-
ments, we also need iterated commutators which we recursively split in the middle.

Definition 2.1 (compare to [25, Definition 3]). For words α, β, q1, . . . , qD ∈ Q±∗ where
D = 2d is a power of two, we define Bβ,α[qD, . . . , q1] by induction on d and let

Bβ,α[q1] = q1 and

Bβ,α[qD, . . . , q1] =
[

Bβ,α[qD, . . . , qD
2
+1]

β , Bβ,α[qD
2

, . . . , q1]
α
]

.

This also immediately yields an operation Bβ,α[gD, . . . , g1] for group elements g1, . . . , gD
using the natural evaluation in the group.

The reason for introducing balanced iterated commutators is that we may use them to
simulate a D-ary logical conjunction in groups. The idea here is that the neutral element
1 belongs to ⊥ and all other elements are considered to belong to ⊤. One direction of
the simulation then works in any group as we state in the following fact.3

3The fact can be proved using a simple induction on the structure of the balanced iterated commutators,
see [25, Fact 4].

6

Fact 2.2 (see [25, Fact 4]). Let a group G be generated by the alphabet Q and let
α, β, q1, . . . , qD ∈ Q±∗ for some D = 2d. If there is some 1 ≤ i ≤ D with qi = 1

in G, we have Bβ,α[qD, . . . , q1] = 1 in G.

The reason that we use balanced iterated commutators (instead of the usual ones of the
form

[

gD, [gD−1, . . . , g1]
]

) is that, this way, the depth remains logarithmic in the number
of entries. This allows us to compute the balanced iterated commutator from its entries
in logarithmic space.

Fact 2.3 (see [25, Lemma 7]). The balanced commutator Bβ,α[qD, . . . , q1] can be com-
puted from q1, . . . , qD ∈ Q±∗ and α, β ∈ Q±∗ in logarithmic space.

Normally, we cannot simply add balanced iterated commutators to cross diagrams and
expect the resulting diagram to still hold. However, this is possible if all the entries (and
the conjugating elements α and β) act trivially on the input word (which can be seen by
a simple induction on the structure of the balanced iterated commutators).

Fact 2.4 (see [25, Fact 8]). Let T = (Q,Σ, δ) be a G-automaton, u ∈ Σ∗, α, β, q1, . . . , qD ∈
Q±∗ with D = 2d then the cross diagrams

u

q1 q′1
u

...
...

...

u

qD q′D
u

u

α α′

u

u

β β′

u

and

imply the cross diagram

u

Bβ,α[qD, . . . , q1] Bβ′,α′ [q′D, . . . , q
′
1]

u

.

The Group A5. We have already seen in Fact 2.2 that the balanced iterated commutator
collapses to 1 (which corresponds to ⊥) if one of its entries is equal to 1 (i. e. corresponds
to ⊥). This is one of the two directions to use the commutators as logical conjunctions.
The other direction, however, does not hold for all elements of all groups. That is why
we next look at the group A5 of even permutations on the five-element set {a1, . . . , a5}.

In A5 there is a non-identity element which is its own commutator (up to suitable
conjugation).4

4Such an element exists since there are two five-cycles in A5 whose commutator is again a five-cycle
and since five-cycles are always conjugate (see [1, Lemma 1 and 3]).

7

Fact 2.5 (compare to [25, Example 5]). There are elements σ, α, β ∈ A5 with σ 6= 1 and
σ = [σβ, σα].

The idea is now that we use σ from Fact 2.5 as an element representing ⊤. Again, using
a simple induction on the structure of balanced iterated commutators (where Fact 2.5 is
used for the inductive step), we obtain that balanced iterated commutators whose entries
are all σ (which corresponds to ⊤) also evaluate to σ (i. e. to ⊤).

Fact 2.6 (compare to [25, Example 5]). For the elements σ, α, β ∈ A5 from Fact 2.5, we
have Bβ,α[σ, . . . , σ] = σ for any number of entries in the commutator (which is a power
of two).

3 The Word Problem

The Uniform Word Problem. The uniform word problem for finitary automaton groups
is the decision problem

Input: a finitary G-automaton T = (Q,Σ, δ) and
a state sequence q ∈ Q±∗

Question: is q = 1 in G (T)?
In this section, we will show that it is coNP-complete.

Proposition 3.1. The uniform word problem for finitary automaton groups is in coNP.

Proof. We solve the complement of the problem by a guess and check approach in NP.
First, we guess a witness u on which q acts non-trivially. The length of a shortest such
witness is at most the depth of the automaton T , which, in turn, is bounded by the size
of T . Thus, the witness can be guessed in linear time.

Then, we compute ui = qi . . . q1 ◦ u for q = qℓ . . . q1 (with qi ∈ Q, 1 ≤ i ≤ ℓ) state by
state. This requires time |q| · |u| and is, thus, certainly possible in polynomial time.

Proposition 3.2. The uniform word problem for finitary automaton groups is coNP-
hard (under many-one LogSpace-reductions). This remains true if we fix a set with five
elements as the alphabet of the input automaton.

Proof. We reduce the NP-hard5 satisfiability problem for boolean formulae
Input: a boolean formula ϕ in 3-conjunctive normal form
Question: is ϕ satisfiable?

to the complement of the stated problem by using a many-one LogSpace-reduction. In
other words, we need to map (in logarithmic space) a boolean formula ϕ in 3-conjunctive
normal form over a set of variables X = {x1, . . . , xN} to a finitary G-automaton T and a
state sequence q such that q does not act as the identity if and only if ϕ is satisfiable.

As ϕ is in 3-conjunctive normal form, we may write ϕ =
∧K

k=1Ck where every clause
Ck contains exactly three distinct literals over X. Without loss of generality, we may

5This is a well-known classical NP-complete problem, see e. g. [20, Problem 9.5.5]

8

γN γN−1 . . . γ0 id
a/a a/a a/a a/γ(a)

a/a

Figure 2: Schematic depiction of the automaton part for the states {αn, βn | 0 ≤ n ≤ N}.
This part exists for γ ∈ {α, β} (where α and β refer to the elements defined in
Fact 2.5) and the dashed state refers to the already defined identity state. All
transitions exist for all a ∈ Σ.

assume that no clause contains the same variable as a positive and a negative literal (as
such clauses are satisfied by all assignments and can, thus, be dropped). In other words,
we have Ck = (¬)xn1

∨ (¬)xn2
∨ (¬)xn3

for three pairwise distinct n1, n2 and n3 with
1 ≤ n1, n2, n3 ≤ N .

As the alphabet of the automaton T , we use the set Σ = {a1, . . . , a5} with five elements.
From this set, we take two arbitrary letters and identify them with ⊥ and ⊤, respectively.
This allows us to encode an assignment A : X → B as the word 〈A〉 = A(xN) . . .A(x1) of
length N .6 Note that a word w ∈ Σ∗ of length N encodes an assignment (i. e. w = 〈A〉
for some assignment A) if and only if w ∈ {⊥,⊤}∗.

The general idea is now that we check for every clause Ck whether the first N letters
of the input form an encoding of an assignment satisfying Ck. If this is not the case (i. e.
if a letter different to ⊥ and ⊤ appears or if the encoded assignment does not satisfy Ck),
we will go into an identity state, which can be thought of as a “fail” state. Otherwise,
we end in a state corresponding to σ from Fact 2.5. Finally, we will use the balanced
commutator from Definition 2.1 to make a conjunction of all these checks.

We will give a precise definition of the automaton T = (Q,Σ, δ) by describing var-
ious parts. First, we need the mentioned identity state id ∈ Q (with the transitions
{id ida/a | a ∈ Σ} ⊆ δ).

In order to eventually realize the balanced iterated commutator as a logical conjunction,
we also need some technical states for the elements α and β from Fact 2.5. These states
ignore the first N letters and then act as α or β on the (N + 1)-th letter. For this, we
use the states {αn, βn | 0 ≤ n ≤ N} ⊆ Q with the transitions

{αn αn−1
a/a , βn βn−1

a/a | 0 < n ≤ N, a ∈ Σ}

∪ {α0 ida/α(a) , β0 ida/β(a) | a ∈ Σ} ⊆ δ.

This results in the automaton part graphically depicted in Figure 2 (for γ ∈ {α, β}).
Note that, for γ ∈ {α, β} and all 1 ≤ n ≤ N , we have the cross diagram

w a

γn γ0 id

w γ(a)

(1)

6Note that the right-most letter here corresponds to the first variable x1. We could have done this the
other way round as well but it turns out that this numbering has some technical advantages.

9

σN σN−1 . . . σ0 id
⊥/⊥

⊤/⊤

b/b

⊥/⊥

⊤/⊤

b/b

⊥/⊥

⊤/⊤

a/γ(a)
a/a

Figure 3: The automaton part for the states {σn | 0 ≤ n ≤ N} where σ refers to the
element defined in Fact 2.5), the dashed state refers to the already defined
identity state and the transitions exist for all a ∈ Σ and b ∈ Σ \ {⊥,⊤}.

for all w ∈ Σ∗ of length n and a ∈ Σ. In particular, we have the invariant that γN acts
trivially on the first N letters of all words. Also note that this part of the automaton
does not introduce any cycles (in fact, after at most N + 1 many letters we always end
up in the identity state) and that it can be computed in logarithmic space as we only
need to count up to the value of N .

Then, we need states that check whether the first N letters are either ⊥ or ⊤ and, if
this is the case, act like σ (from Fact 2.5) on the (N + 1)-th letter. Otherwise, they will
go to the identity state as a “fail” state. For this, we use the states {σn | 0 ≤ n ≤ n} ⊆ Q
together with the transitions

{

σn σn−1
⊥/⊥ , σn σn−1

⊤/⊤ , σn idb/b | 0 < n ≤ N, b ∈ Σ \ {⊥,⊤}
}

∪
{

σ0 ida/σ(a) | a ∈ Σ
}

⊆ δ.

See Figure 3 for a graphical representation. By construction, we obtain for all 0 ≤ n ≤ N
the cross diagram

w

σn

{

σ0 if w ∈ {⊥,⊤}∗

id otherwise
w

(2)

for all w ∈ Σ∗ of length n. Recall that, for a word w ∈ Σ∗ of length N , we have w = 〈A〉
for some assignment A if and only if w ∈ {⊥,⊤}∗ (i. e. if we are in the upper case in the
above diagram). We have, in particular, that σN does not change the first N letters. Note
that this part does not introduce any cycles either and may be computed in logarithmic
space (as we again only need a counter up to N).

Most interesting are those parts of the automaton which are used to verify whether a
clause is satisfied. In order to describe these parts, consider the clause Ck = L3∨L2∨L1

for all 1 ≤ k ≤ K where Li for i ∈ {1, 2, 3} is either a positive or a negative literal of
a variable xni

. Without loss of generality, we may assume 1 ≤ n3 < n2 < n1 ≤ N and
we say that xni

appears positively in Ck if Li = xni
and it appears negatively in Ck if

Li = ¬xni
(for some i ∈ {1, 2, 3}). If a variable appears neither positively nor negatively,

we say that it does not appear in Ck.

10

ck,N . . . ck,n3
ck,n3−1

σn3−1

. . .

. . .

ck,n2

σn2

ck,n2−1

σn2−1

. . .

. . .

id

σ0

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤
/
⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊤/⊤

⊥
/
⊥

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

a/σ(a)

xn3
xn2

Figure 4: Part of the automaton for the states {ck,n | 0 < n ≤ N}. We assume xn3
to

appear positively in Ck while xn2
is assumed to appear negatively. The part for

xn1
is not drawn for space reasons. Dashed states and transitions are already

defined above. The transition on the right exists for all a ∈ Σ and missing
transitions are of the form b/b and go to id (for b ∈ Σ \ {⊥,⊤}).

Now, in order to verify whether the clause Ck is satisfied, we use the states {ck,n | 0 <
n ≤ N} ⊆ Q with the transitions

{ck,n ck,n−1
⊥/⊥ , ck,n ck,n−1

⊤/⊤ | 0 < n ≤ N,xn does not appear in Ck}

∪ {ck,n ck,n−1
⊥/⊥ , ck,n σn−1

⊤/⊤ | 0 < n ≤ N,xn appears positively in Ck}

∪ {ck,n σn−1
⊥/⊥ , ck,n ck,n−1

⊤/⊤ | 0 < n ≤ N,xn appears negatively in Ck}

∪ {ck,n idb/b | 0 < n ≤ N, b ∈ Σ \ {⊥,⊤}} ⊆ δ

where we identify ck,0 with the identity state id. This results in the automaton part
schematically depicted in Figure 4.

The reader may verify that we obtain the cross diagram

w

ck,N

{

σ0 if w = 〈A〉 such that A satisfies Ck

id otherwise
w

(3)

for all w ∈ Σ∗ of length N and all 1 ≤ k ≤ K by construction of the automaton. Note
here that the “otherwise” case occurs if w contains a letter different to ⊥ and ⊤ (i. e. it
does not encode an assignment) and if w encodes an assignment which does not satisfy Ck.
Also note that this part does not introduce any cycles either (again, we are in the identity
state after at most N +1 many letters) and that we may compute it in logarithmic space
since we only need to count up to N .

This concludes the definition of T and it remains to define q. For this, we assume
without loss of generality that K is a power of two. We may do this since we can
easily just repeat one of the clauses and only have to count up to the next power of two
(which can be done in logarithmic space). To actually define q, we may now use the
balanced commutator from Definition 2.1. In order to simplify our notation a bit, we
will simply write Bn[qℓ, . . . , q1] for any 0 ≤ n ≤ N instead of Bβn,αn

[qℓ, . . . , q1] (for any
q1, . . . , qℓ ∈ Q±∗). Using this convention, we let

q = BN [cK,N , . . . , c1,N] .

Please note that q may be computed in logarithmic space by Fact 2.3.

11

This concludes the definition of the reduction function and it remains to show q 6=T id
if and only if ϕ is satisfiable. We start by looking at how q acts on a word w ∈ Σ∗ of
length N . From the cross diagrams (3), we obtain the black part of the cross diagram

w

c1,N q1

w
...

...
...

w

cK,N qK

w

B
N
[

]
,

,

B
0
[

]
,

,

q = (4)

where we have qk = σ0 if w = 〈A〉 for some assignment A that satisfies Ck and qk = id
otherwise (i. e. if w does not encode a suitable assignment or if the assignment does not
satisfy Ck). By combining Fact 2.4 with the left part of the cross diagrams (1) (for γ = α
and γ = β where n = N), we may add the balanced commutators to the cross diagram
(gray additions above).

Now, assume that there is some assignment A : X → B such that A satisfies ϕ. Note
that σ0 acts on the first letter like σ (from Fact 2.5) and then like the identity on all
following letters. Thus, Fact 2.6 yields B0[σ0, . . . , σ0] =T σ0 (where the number of σ0
inside the commutator is any power of two) and we get the cross diagram

〈A〉 a

q B0[σ0, . . . , σ0] =T σ0 id

〈A〉 σ(a)

(5)

for this assignment from diagram (4). This shows that q acts non-trivially on 〈A〉a for
some a ∈ Σ and, thus, q 6=T id.

For the other direction, assume that ϕ is not satisfiable. We will show that q acts as
the identity on all words of length at least N+1 (and, thus, in particular, also on shorter
ones). Consider a word wau ∈ Σ∗ where w is of length N and a ∈ Σ. From the cross
diagram (4), we obtain the black part of the cross diagram

w a u

q B0[qK , . . . , q1] =T id id id

w a u

. (6)

Now, we have to consider two cases. If w does not encode an assignment, all q1, . . . , qK
will be equal to id (by cross diagram (4)). If w does encode an assignment A, this
assignment cannot satisfy all clauses in ϕ (as ϕ is not satisfiable) and there must be
some 1 ≤ k ≤ K such that A does not satisfy the clause Ck. For the above cross

12

diagram, this implies qk = id. Thus, in both cases, there is some 1 ≤ k ≤ K with qk = id
and we have B0[qK , . . . , q1] =T id by Fact 2.2, which yields the gray additions to the
above cross diagram. In particular, we have q ◦ wau = wau and, in general, q =T id as
desired.

Remark 3.3. The automaton constructed by the reduction for Proposition 3.2 has (3 +
K) · (N + 1) + 1 many states where N is the numbers of variables in the input formula
and K is the number of clauses. The depth of the automaton is N + 1.

Proposition 3.1 and Proposition 3.2 constitute the two parts of showing that the word
problem is coNP-complete.

Theorem 3.4. The word problem for finitary automaton groups is coNP-complete.

4 The Compressed Word Problem

Straight-line Programs. A straight-line program (or SPL) is a context-free grammar
which generates exactly one word. A context-free grammar mainly consists of a set of
rules where the left-hand side consists of a single non-terminal symbol and the right-hand
side is a finite word whose letters may be non-terminal or terminal symbols. A word is
generated by starting at a dedicated non-terminal starting symbol and then iteratively
replacing non-terminal symbols by matching right-hand sides of rules until only terminal
symbols are left. By convention, non-terminal symbols are usually capitalized while
terminal symbols are lowercase. More details may be found in any introductory textbook
on formal language theory (see e. g. [13]).

Remark 4.1. The word generated by an SLP may be exponential in the size of the SLP.
An example for this is given by the rules A1 → a and An+1 → AnAn (for 1 ≤ n ≤ N).

The Compressed Word Problem. The uniform compressed word problem for finitary
automaton groups is the problem

Input: a finitary G-automaton T = (Q,Σ, δ) and
a straight-line program generating a state sequence q ∈ Q±∗

Question: is q = 1 in G (T)?
The difference to its ordinary version is that the state sequence is not given directly but
only by a generating straight-line program. Due to the potential exponential blow-up
when decompressing the SLP, the complexity of the compressed version differs in many
cases from the one of the ordinary word problem. More information on the compressed
word problem may be found in [5, 15].

In this section, we will show that the uniform compressed word problem for finitary
automaton groups is PSpace-complete.

Proposition 4.2. The uniform compressed word problem for finitary automaton groups
is in PSpace.

13

Proof. We follow the same guess and check approach as in the proof for Proposition 3.1.
Since the length of the witness (on which q acts non-trivially) is bounded by the size
of T , it can clearly be guessed in linear space. The more interesting part is the “check”
part. Here, we cannot simply decompress q and then apply it state by state (since q
can be exponentially long). However, we can still compute (and store) the intermediate
ui directly from the SLP. We start with the rule S → αℓ . . . α1 where the αi are either
terminal symbols (i. e. states) or non-terminals. We apply the symbols αi from right to
left to u. If αi is a state, we can directly apply it to the current word. If it is a non-
terminal symbol αi = B, we descend recursively into the rule B → βk . . . β1. For this, we
have to store where we were in the previous rule (this can, for example, be done using a
pointer, which is clearly possible even in linear space). Note that we may assume that
the same non-terminal symbol does not appear twice in the same recursive branch as
this would correspond to a syntax tree with multiple instances of the same non-terminal
symbol on one branch, which cannot occur if the grammar only generates a single word.
Thus, in the worst case, we need to store one position for every rule in the input, which
is still possible in linear space.

For the other direction – namely to prove that our problem is PSpace-hard – we will
use the following problem to make the reduction.

Theorem 4.3. The problem 3-QBF

Input: a quantified boolean formula ϕ = ¬∀xN¬∀XN−1 . . .¬∀x1 : ϕ0

where ϕ0 is in 3-conjunctive normal form and
contains no other variables than {x1, . . . , xN}.

Question: is ϕ true?

is PSpace-complete (under many-one LogSpace-reductions).

Proof. We reduce the problem
Input: ϕ = ∃x1∀x2 . . . QNxN : ϕ0 where ϕ0 is in conjunctive normal form
Question: does ϕ hold?

where QN = ∃ if N is odd and QN = ∀ is N is even, which is PSpace-complete (under
many-one LogSpace-reductions) by [20, Theorem 19.1], to the special version stated in
the theorem.

First, we split up all clauses with more than three literals in the common way7 by
using the fact that L1 ∨ · · · ∨ Lℓ and ∃z : (L1 ∨ L2 ∨ z) ∧ (¬z ∨ L3 ∨ . . . Lℓ) (where z
is a new, so-far unused variable) are equivalent (i. e. they are satisfied by exactly the
same assignments). This introduces additional existential quantifiers at the innermost
position.

Clauses with less than three literals can be padded with new variables by using the
fact that any literal L is equivalent to ∀z : (L∨z) (where z is again a new variable). This
introduces additional universal quantifiers at the innermost position.

7This is usually used to prove that 3-SAT is NP-complete (see e. g. [20, Problem 9.5.2]).

14

tN−1 tN−2 . . . t0 id
⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊥

⊤/⊤

⊥/⊤

⊤/⊥

Figure 5: The additional automaton part with the states {tn | 0 ≤ n < N}. Missing
transitions are b/b transitions to the identity state (for b ∈ Σ \ {⊥,⊤}).

We may ensure that the quantifiers are alternating between ∃ and ∀ by adding dummy
variables not appearing in the matrix (i. e. the inner part of the formula without quan-
tifiers) of the formula. This results in a formula of the form ∃xN ′∀xN ′−1 . . . ∃x2∀x1 : ϕ′

0

where ϕ′
0 is in 3-conjunctive normal form which is equivalent to the original formula.

Finally, we use the equivalence of ∃z : ψ and ¬∀z : ¬ψ to eliminate all existential
quantifiers.

Note that each of these steps can be computed in LogSpace and that, thus, the whole
reduction can be done in LogSpace.

Proposition 4.4. The uniform compressed word problem for finitary automaton groups
is PSpace-hard (under many-one LogSpace-reductions). This remains true if we fix a
set with five elements as the alphabet of the input automaton.

Proof. We reduce 3-QBF from Theorem 4.3 to the (complement of the) compressed word
problem for fintary automaton groups (in LogSpace). For this, assume that we get a
quantified boolean formula ϕ = ¬∀xN¬∀xN−1 . . .¬∀x1 : ϕ0 where ϕ0 is in 3-conjunctive
normal form and contains no other variables than {x1, . . . , xN}. First, we perform the
LogSpace-computable reduction described in the proof of Proposition 3.2 using ϕ0 as
the input. This yields a finitary G-automaton T = (Q0,Σ, δ0) with Σ = {a1, . . . , a5} and
a state sequence q0 ∈ Q±∗

0 . Then we perform a second reduction on this output (which
is possible since LogSpace-computable functions are closed under composition, see, for
example, [20, Proposition 8.2]). Here, we need to compute a finitary G-automaton T and
a state sequence q encoded as an SLP such that q 6=T id if and only if ϕ holds.

To obtain the automaton T = (Q,Σ, δ), we extend T0 by some additional states (but
keep the alphabet the same: Σ = {a1, . . . , a5}). The new states are {tn | 0 ≤ n < N}
with the additional transitions

{

tn tn−1
⊥/⊥ , tn tn−1

⊤/⊤ , tn idb/b | 0 < n < N, b ∈ Σ \ {⊥,⊤}
}

∪
{

t0 id⊥/⊤ , t0 id⊤/⊥ , t0 idb/b | b ∈ Σ \ {⊥,⊤}
}

⊆ δ

(where ⊥ and ⊤ refer to the special elements from Σ chosen in the proof of Proposition 3.2
and id is the identity state of T0). This new automaton part is depicted in Figure 5.
Note that we have not introduced any cycles and that this new part may be computed
in logarithmic space (as we only need a counter up to the value of N). By construction,
we obtain the cross diagram

w a

tn t0 id

w ¬a

(7)

15

for all 0 < n < N where w ∈ {⊥,⊤}∗ is of length n, a ∈ {⊥,⊤} and ¬a denotes the
negation of a (i. e. ¬a = ⊤ if a = ⊥ and ¬a = ⊥ if a = ⊤). For general words w ∈ Σ∗ of
length 0 < n < N and letters a ∈ Σ, we get the cross diagram

w a

tn t′ id

w ã

(8)

where we have t′ = t0 and ã = ¬a if wa ∈ {⊥,⊤}∗ and t′ = id and ã = a otherwise.
We will define the state sequence q inductively and will use this inductive structure in

the end to compute an SLP generating q. We already have q0 and, for 0 < n ≤ N , we
let

q′n = BN [q
tN−n

n−1 , qn−1] and qn =
(

q′n
)−1

σN

(using the notation Bn for Bβn,αn
introduced in the proof of Proposition 3.2).

The reason for choosing the qn in this way is to satisfy a certain invariant. To state it,
recall that ϕ0 is already given, let ϕ′

0 = ϕ0 and

ϕ′
n = ∀xn : ϕn−1 and ϕn = ¬ϕ′

n

for 0 < n ≤ N . Note that this means

ϕn = ¬∀xn . . .¬∀x1 : ϕ0

and ϕ′
n is the same except that it misses the out-most negation. In particular, we have

ϕN = ϕ. Before we finally state the invariant, we extend the notation 〈A〉 from the proof
of Proposition 3.2 to assignments A : {xn+1, . . . , xN} → B (for 0 ≤ n ≤ N) by letting
〈A〉 = A(xN) . . .A(xn+1) ∈ {⊥,⊤}∗ ⊆ Σ∗. Note that |〈A〉| has length N − n and that
the empty word is the encoding of an empty assignment. Now, the invariant we want to
satisfy with the qn is that, for all 0 ≤ n ≤ N , all words u ∈ Σ∗ of length N − n and all
words v ∈ Σ∗ of length n, we have the black part of the cross diagram

u v

σN =

{

σ0 if uv ∈ {⊥,⊤}∗

id otherwise
u v

(q′n)
−1 =T

{

(σ0)
−1 if u = 〈A〉 s. t. A satisfies ϕ′

n and v ∈ {⊥,⊤}∗

id otherwise
u v

qn =

(9)
where we let q′0 = q0 and use the convention that the empty assignment satisfies a
(closed)8 formula if and only if the formula holds. Note that the (black) “otherwise”

8A formula is closed if it does not have any free variables, i. e. if all appearing variables are bound by
a quantifier.

16

case includes the case that u or v is not from {⊥,⊤}∗ and the case that u encodes an
assignment not satisfying ϕ′

n.
As soon as we have established this invariant for some n, we immediately also get a

version where we take the inverses of the states (this is possible since the action is trivial;
normally, we would have to additionally flip the diagram along the horizontal axis). Using
the cross diagram (2) (from the proof of Proposition 3.2), we may add an additional line
for σN and obtain the gray additions to the above diagram for 0 < n ≤ N . Note that
the product of the state sequences on the right hand side acts trivially if u = 〈A〉 for
some A which satisfies ϕ′

n (this is the case if and only if A does not satisfy ϕn = ¬ϕ′
n)

and v ∈ {⊥,⊤}∗. It also acts trivially if uv 6∈ {⊥,⊤}∗. On the other hand, it acts like
σ0 if u = 〈A〉 for some A which does satisfy ϕn = ¬ϕ′

n and v ∈ {⊥,⊤}∗. This yields the
cross diagram

u v

qn =T

{

σ0 if u = 〈A〉 s. t. A satisfies ϕn and v ∈ {⊥,⊤}∗

id otherwise
u v

(10)

for all 0 ≤ n ≤ N , all words u ∈ Σ∗ for length N − n and all words v ∈ Σ∗ of length n.
To prove the invariant (i. e. the black part of cross diagram (9)), we use induction on

n. For n = 0, we have to show the cross diagram

u ε

q′0 = q0 =T

{

σ0 if u = 〈A〉 s. t. A satisfies ϕ′
0 (which is equal to ϕ0)

id otherwise
u ε

for u ∈ Σ∗ of lengthN . This, however, has already been established by the cross diagrams
(5) and (6) in the proof of Proposition 3.2.

For the inductive step from n− 1 to n, consider a word u ∈ Σ∗ of length N −n, a ∈ Σ
and v ∈ Σ∗ of length n− 1. We have the black part of the cross diagram

u a v

qn−1 pn,0

u a v

tN−n id id

u ã v

qn−1 pn,1

u ã v

t−1
N−n id id

u a v

B
N

[
]

,

q′n =

B
0

[

]

,

(11)

17

where we have

pn,0 =T

{

σ0 if ua = 〈A′〉 s. t. A′ satisfies ϕn−1 and v ∈ {⊥,⊤}∗

id otherwise

pn,1 =T

{

σ0 if uã = 〈Ã′〉 s. t. Ã′ satisfies ϕn−1 and v ∈ {⊥,⊤}∗

id otherwise.

The shaded parts are due to induction (compare to cross diagram (10)) and lines involving
tN−n follow from cross diagram (8).

By Fact 2.4 (and the cross diagram (1) for γ ∈ {α, β} from the proof of Proposition 3.2),
we may add balanced iterated commutators to the above cross diagram and obtain the
gray additions.

For the above cross diagram, we do a case distinction. If we have uav 6∈ {⊥,⊤}∗, we
get pn,0 =T pn,1 =T id and, thus, for the state sequence on the right B0[pn,1,pn,0] =T id.

Now, assume uav ∈ {⊥,⊤}∗ and, in particular, a ∈ {⊥,⊤}. In this case, we have
u = 〈A〉 for some A : {xn+1, . . . , xN} → B and ã = ¬a (see cross diagram (8)). Let
ua = 〈A′〉 and uã = 〈Ã〉. Note that we have A′(xn) = a = ¬Ã′(xn) (and A′(xm) =
Ã′(xm) = A(xm) for all n < m ≤ N). If A satisfies ϕ′

n = ∀xn : ϕn−1, we, therefore, have
that A′ and Ã′ both satisfy ϕn−1. This yields pn,0 =T pn,1 =T σ0 (by the above definition
of pn,0 and pn,1) and, thus, for the state sequence on the right B0[pn,1,pn,0] =T σ0 by
Fact 2.6. On the other hand, if A does not satisfy ϕ′

n = ∀xn : ϕn−1, we must have that
A′ or Ã′ does not satisfy ϕn−1. In this case, we have pn,0 =T id or pn,1 =T id and, thus,
for the state sequence on the right, B0[pn,1,pn,0] =T id by Fact 2.2. This shows that the
cases for the gray additions to cross diagram (11) reflect exactly the black part of cross
diagram (9), which shows the invariant.

Considering the special case n = N for cross diagram (10), we have obtain

ε v

qN =T

{

σ0 if ϕN holds and v ∈ {⊥,⊤}∗

id otherwise
ε v

for all v ∈ Σ∗ of length N . This shows that we have qN =T id if ϕN (which is equal to ϕ)
does not hold. If it does hold, on the other hand, we have qN ◦ ⊥Na = ⊥Nσ(a) 6= ⊥Na
for some a ∈ Σ (since σ is not the identity permutation). Thus, we may choose q = qN
as the sought state sequence and it remains to show how an SLP generating qN can be
computed in logarithmic space.

Note that q0 may be computed in logarithmic space (we obtain this from the proof of
Proposition 3.2). Thus, we may begin with the rule A0 → q0 and add the rules

A′
n → β−1

N t−1
N−nA

−1
n−1tN−nβN α−1

N A−1
n−1αN β−1

N t−1
N−nAn−1tN−nβN α−1

N An−1αN

= BN [A
tN−n

n−1 , An−1] and

An → (A′
n)

−1σN

18

for 1 ≤ n ≤ N , where we also implicitly add the rules for (A′
n)

−1 and A−1
n by mirroring

the right-hand sides and inverting every symbol. Note that these rules may be computed
in logarithmic space. We choose AN as our starting symbol and the reader may verify that
A′

n generates q′n and An generates qn (this follows directly from the inductive definitions
of the An, A′

n and qn, q′n).

Proposition 4.2 and Proposition 4.4 form the two directions for the following theorem.

Theorem 4.5. The uniform compressed word problem for finitary automaton groups is
PSpace-complete.

Acknowledgments

The authors would like to thank Armin Weiß for many discussions around the presented
topic. The presented results are part of the first author’s Bachelor thesis, which was
advised by the second author (while he was at FMI).

References

[1] David A. Mix Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC1. Journal of Computer and System Sciences.,
38(1):150–164, 1989.

[2] Laurent Bartholdi, Michael Figelius, Markus Lohrey, and Armin Weiß. Groups with
ALogTime-hard word problems and PSpace-complete circuit value problems. In
Shubhangi Saraf, editor, 35th Computational Complexity Conference (CCC 2020),
volume 169 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–
29:29, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[3] Laurent Bartholdi and Ivan Mitrofanov. The word and order problems for self-similar
and automata groups. Groups, Geometry, and Dynamics, 14:705–728, 2020.

[4] Laurent Bartholdi and Pedro V. Silva. Groups Defined by Automata, chapter 24 of
Automata: from Mathematics to Applications (Handbook AutoMathA). 2010. To
appear.

[5] Frédérique Bassino, Ilya Kapovich, Markus Lohrey, Alexei Miasnikov, Cyril Nicaud,
Andrey Nikolaev, Igor Rivin, Vladimir Shpilrain, Alexander Ushakov, and Pascal
Weil. Complexity and Randomness in Group Theory. De Gruyter, 2020.

[6] Alex Bishop and Murray Elder. Bounded automata groups are co-ET0L. In Carlos
Martín-Vide, Alexander Okhotin, and Dana Shapira, editors, Language and Au-
tomata Theory and Applications, pages 82–94. Springer International Publishing,
2019.

19

[7] Ievgen Bondarenko and Jan Philipp Wächter. On orbits and the finiteness of
bounded automaton groups. International Journal of Algebra and Computation,
31(06):1177–1190, 2021.

[8] Ievgen V. Bondarenko, Natalia V. Bondarenko, Said N. Sidki, and Flavia R. Zapata.
On the conjugacy problem for finite-state automorphisms of regular rooted trees.
Groups, Geometry, and Dynamics, 7:232–355, 2013.

[9] Daniele D’Angeli, Emanuele Rodaro, and Jan Philipp Wächter. On the complexity
of the word problem for automaton semigroups and automaton groups. Advances in
Applied Mathematics, 90:160 – 187, 2017.

[10] Pierre Gillibert. The finiteness problem for automaton semigroups is undecidable.
International Journal of Algebra and Computation, 24(01):1–9, 2014.

[11] Pierre Gillibert. An automaton group with undecidable order and Engel problems.
Journal of Algebra, 497:363 – 392, 2018.

[12] Rostislav I. Grigorchuk and Igor Pak. Groups of intermediate growth: an introduc-
tion. L’Enseignement Mathématique, 54(3-4):251–272, 2008.

[13] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[14] Kenneth Krohn, Ward Douglas Maurer, and John L. Rhodes. Realizing complex
boolean functions with simple groups. Information and Control, 9(2):190–195, 1966.

[15] Markus Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Math-
ematics. Springer, 2014.

[16] Gennadií S. Makanin. Decidability of the universal and positive theories of a free
group. Izv. Akad. Nauk SSSR, Ser. Mat. 48:735–749, 1984. In Russian; English
translation in: Math. USSR Izvestija, 25, 75–88, 1985.

[17] Anatolij I. Mal’cev. On the equation zxyx−1y−1z−1 = aba−1b−1 in a free group.
Akademiya Nauk SSSR. Sibirskoe Otdelenie. Institut Matematiki. Algebra i Logika,
1(5):45–50, 1962.

[18] Ward Douglas Maurer and John L. Rhodes. A property of finite simple non-abelian
groups. Proceedings of the American Mathematical Society, 16(3):552–554, 1965.

[19] Volodymyr V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI, 2005.

[20] Christos M. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[21] Said N. Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and
acyclicity. Journal of Mathematical Sciences, 100(1):1925–1943, 2000.

20

[22] Pedro V. Silva. Groups and automata: A perfect match. In Martin Kutrib, Nelma
Moreira, and Rogério Reis, editors, Descriptional Complexity of Formal Systems,
pages 50–63, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[23] Benjamin Steinberg. On some algorithmic properties of finite state automorphisms
of rooted trees, volume 633 of Contemporary Mathematics, pages 115–123. American
Mathematical Society, 2015.

[24] Zoran Šunić and Enric Ventura. The conjugacy problem in automaton groups is not
solvable. Journal of Algebra, 364:148–154, 2012.

[25] Jan Philipp Wächter and Armin Weiß. An automaton group with PSpace-complete
word problem. Theory of Computing Systems, 2022.

21

	1 Introduction
	2 Preliminaries
	3 The Word Problem
	4 The Compressed Word Problem

