
Solving various NP-Hard problems using exponentially fewer qubits
on a Quantum Computer

Yagnik Chatterjee,1, 2, ∗ Eric Bourreau,2, † and Marko J. Rančić1, ‡

1TotalEnergies, Tour Coupole - 2 place Jean Millier 92078 Paris la Défense cedex, France
2LIRMM, Université de Montpellier, CNRS, 161 rue Ada, 34392 Montpellier Cedex 5

(Dated: January 18, 2023)

NP-hard problems are not believed to be exactly solvable through general polynomial time al-
gorithms. Hybrid quantum-classical algorithms to address such combinatorial problems have been
of great interest in the past few years. Such algorithms are heuristic in nature and aim to obtain
an approximate solution. Significant improvements in computational time and/or the ability to
treat large problems are some of the principal promises of quantum computing in this regard. The
hardware, however, is still in its infancy and the current Noisy Intermediate Scale Quantum (NISQ)
computers are not able to optimize industrially relevant problems. Moreover, the storage of qubits
and introduction of entanglement require extreme physical conditions. An issue with quantum op-
timization algorithms such as QAOA is that they scale linearly with problem size. In this paper, we
build upon a proprietary methodology which scales logarithmically with problem size – opening an
avenue for treating optimization problems of unprecedented scale on gate-based quantum computers.
In order to test the performance of the algorithm, we first find a way to apply it to a handful of NP-
hard problems: Maximum Cut, Minimum Partition, Maximum Clique, Maximum Weighted
Independent Set. Subsequently, these algorithms are tested on a quantum simulator with graph
sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256. To our
knowledge, these constitute the largest realistic combinatorial optimization problems ever run on a
NISQ device, overcoming previous problem sizes by almost tenfold.

I. INTRODUCTION

NP-hard problems are problems that do not have algo-
rithms that can give an exact solution in polynomial time,
whereas it is ’easy’ to verify the solution if it is known
[1–3]. While finding exact solutions to large problems is
difficult, there exist many algorithms that find approxi-
mate solutions to these problems [4–7]. In the scope of
quantum computing, a huge amount of research has been
carried out on hybrid quantum-classical algorithms [8–
20]. In such algorithms, quantum circuit measurements
are used in tandem with a classical optimization loop to
obtain an approximate solution.

One of the most commonly used hybrid algorithms
is the Quantum Approximate Optimization Algorithm
(QAOA) [8, 21–24]. One of the main drawbacks of the
QAOA is that it scales linearly with problem size [25].
This means that a graph of n nodes would require an n-
qubit quantum computer to be solved. At the moment,
the largest available universal gate-based quantum com-
puter is IBM’s Osprey device, containing 433 qubits. All
the qubits are not of the same quality and the larger the
problem, the more likely it is to obtain noisier results
due to the presence of qubits with higher error rates.
Moreover, these qubits are not all-in-all connected, mean-
ing that in case of large sized problem, numerous SWAP
gates would have to be used in order to run the circuit,
leading to more noise.

∗ yagnik.chatterjee@totalenergies.com
† eric.bourreau@lirmm.fr
‡ marko.rancic@totalenergies.com

It is therefore not surprising that a smaller scale quan-
tum computer is likely to provide much better results
that a larger one. In light of this, an algorithm to en-
code the Maximum Cut problem on a quantum com-
puter using logarithmically fewer qubits was developed
[26]. This encoding allows us to represent much larger
problems using a fairly small number of qubits. There-
fore a Maximum Cut problem with a graph of N nodes
can be represented using only dlogNe qubits.

Since the developed algorithm deals specifically with
solving the Maximum Cut problem, a logical extension
of this algorithm would be to expand the applicability of
the algorithm to other problems. This can be approached
in two ways, as shall be demonstrated in the following
sections.

The paper is structured as follows. In section II, we
describe in detail the logarithmic encoding of the Max-
imum Cut problem on a quantum computer. In section
III, we show how this algorithm can be applied on a vari-
ety of NP-hard problems by converting them, directly or
indirectly, to the Maximum Cut problem. In section IV,
we show how any Quadratic Unconstrained Binary Opti-
mization Problem (QUBO) problem can be treated using
the logarithmic encoding. In section V, experimental re-
sults of all the methods described in the previous sections
are shown. Notably, we show quantum simulator results
with instances of sizes of over a hundred nodes/objects,
as well as quantum hardware (QPU) results for problem
sizes up to 256.

ar
X

iv
:2

30
1.

06
97

8v
1

 [
qu

an
t-

ph
]

 1
7

Ja
n

20
23

mailto:yagnik.chatterjee@totalenergies.com
mailto:eric.bourreau@lirmm.fr
mailto:marko.rancic@totalenergies.com

2

II. A QUBIT-EFFICIENT MAXIMUM CUT
ALGORITHM

Contemporary quantum optimization algorithms in
general scale linearly with problem size. This means that
if the problem consists of an n node graph, the algorithm
will require n qubits to solve the problem. Note that to
solve a problem here implies to obtain an approximate
solution. Following Ref. [26], we present an algorithm
that scales logarithmically with the problem size. For
a problem of size n, the number of qubits required is
dlog2 ne.

A. Description of the algorithm

Recall first the definition of Maximum Cut:

Maximum Cut

Input: A weighted graph G(V,E,w).
Task: Find x ∈ {1,−1}|V | that maximizes∑

ij wij
(1− xi)(1 + xj)

4
∀{(i, j) ∈ E}, where

wij are the weights on the edges.

Given a graph G(V,E), the Maximum Cut can be
represented using the graph Laplacian matrix. The graph
Laplacian is defined as follows:

Lij =


degree(i) if i = j

−1 if i 6= j and (i, j) ∈ E
0 otherwise

(1)

The Maximum Cut value is given by the following
equation:

Maximum Cut =
1

4
xTLx (2)

where L is the Laplacian matrix and x ∈ {1,−1}|V | is
the bi-partition vector [27].

Due to fact that the Laplacian is a Hermitian matrix,
it resembles a Hamiltonian of an actual physical system.
The quantum analog of equation (2) is

C(θ1...θn) = 2n−2 〈Ψ(θ1...θn)|L |Ψ(θ1...θn)〉 (3)

where L is the Laplacian matrix of the graph, |Ψ〉 is the
parameterized ansatz, n is the size of the graph, and
θ = {θ1....θn} are the variables to be optimized. 2n−2 is
the normalization constant.

As described in Figure 1, we have designed a varia-
tional algorithm that finds a good approximation to the
best Maximum Cut. Starting from the initial values
of θ parameters, we call a quantum circuit to evaluate
the objective function (Algorithm 1) and run a classical
black box optimization loop over the θ parameters (Al-
gorithm 2). As a result, we obtain θ∗ to evaluate the best
solution.

The Variational Ansatz

Calculate the Expectation
Value /Energy

Classical optimization loop to minimize the
expectation value:

Update the parameters until the best value is
reached.

From the best parameters
obtained, interpret the required

partition vector.

Classical Part:
Algorithm 2

Quantum Part: Algorithm 1

Figure 1. Diagrammatic representation of the hybrid
quantum-classical algorithm.

To evaluate the expectation value C on a quantum
computer, first we need to create the ansatz |Ψ(θ1...θn)〉.
In order to do this the following steps are required.

1. We define a function R(θk) as follows:

R(θk) =

{
0 if 0 ≤ θk < π

1 if π ≤ θk < 2π
(4)

Therefore,

exp(iπR(θk)) =

{
1 if 0 ≤ θk < π

−1 if π ≤ θk < 2π
(5)

The point of doing this is that not all classical op-
timizers accept binary variables. The function R
converts a continuous variable into a binary one,
which is what we need.

2. Given a graph G(V,E) such that |V | = n and |E| =
m, to create the ansatz we first define the number
of qubits required as follows:

N = dlog2 ne (6)

When the number of nodes are not an exact power
of 2, we can adjust L to be of size 2N by adding
null matrices of size 2N − |V |, O2N−|V |, as shown
in line 3, Algorithm 1.

3. Create a quantum circuit and apply a Hadamard
gate to all the qubits to achieve an equal superpo-
sition of the states (lines 7 and 8, Algorithm 1).

3

4. To the circuit, apply a diagonal gate U (line 9, Al-
gorithm 1) of the following form:

U(θ) =


eiπR(θ1) 0 0

0 eiπR(θ2) 0
....
0 0 0 eiπR(θn)

 (7)

Therefore the final ansatz is:

|Ψ(θ)〉 = U(θ)H⊗N |0〉⊗N (8)

The state in the above equation is obtained in line
10 of Algorithm 1.

Having an ansatz, we can now define the Laplacian as an
observable and evaluate the measurement (as in equation
3) which is the energy of the system. Since the classical
optimizer minimizes the cost function we take the nega-
tive of the Laplacian matrix. Thus the final cost function
is:

C(θ) = −2n−2 〈Ψ(θ)|L |Ψ(θ)〉 (9)

To evaluate this expectation value, the Laplacian matrix
needs to be converted into a sum of tensor products of
Pauli matrices (line 4 Algorithm 1, see Appendix A).

Using classical black-box meta optimizers such as
COBYLA, Nelder-Mead or Genetic Algorithm (as de-
tailed in Algorithm 2), we then obtain

C∗(θ∗) = minC(θ) (10)

The final parameters obtained θ∗ gives the bi-partition
vector, using equation (5).

Algorithm 1: Log Encoding of Maximum Cut:
Building the Objective Function

Input: Laplacian matrix of a graph G(V,E)
1 L←Graph Laplacian of size |V | × |V |
2 N ← dlog2 |V |e

3 L∗ ←
[

L O2N−|V |
O2N−|V | O2N−|V |

]
4 H ← 1

n

4N∑
i=1

Tr(Ji · L∗)Ji where J = {
∏N

k=1 S
⊗k}

5 θ ← List of |V | parameters
6 Function EvalCost(θ):
7 Q← Quantum Circuit of N qubits
8 Add Hadamard gate to each Qubit
9 U ← diagonal gate diag(θ,R)

10 Apply U to Q
11 F ← ExpectationV alue(Q,H)

12 return 2|V |−2F

13

B. Advantages and disadvantages of the algorithm

The algorithm helps us represent large problems (by
current standards of quantum computing) on a quantum

Algorithm 2: Log Encoding of Maximum Cut:
Minimizing the Objective Function

Input: EvalCost(θ)
1 Function Optimizer(EvalCost(θ),θinitial):
2 repeat
3 θp ← θ at pth iteration
4 C ← EvalCost(θp)
5 if C is sufficiently good then
6 C∗ ← C
7 break

8 else
9 Update θp → θp+1

10 continue

11 end

12 return C∗

13

computer. Algorithms like the QAOA, for example, re-
quire 128 qubits to represent a 128-node Maximum Cut
problem. The same problem can be solved by the pro-
posed algorithm using only 7 qubits. A problem with over
a million nodes can be represented with just 20 qubits,
something that is quite unthinkable using contemporary
algorithms. It therefore has the promise of being able to
be applied to interesting and even industrially relevant
sizes using the currently available sizes of NISQ QCs.
While the QAOA depends on the availability of a large
number of qubits for the algorithm to work on any inter-
esting problem, the above algorithm only depends on an
increased accuracy in QCs of current size. The number
of CNOT gates required for the QAOA ansatz is p|E|,
where p is the depth of the algorithm (for all practical
purposes, p � 1 [28]) and |E| is the number of edges in
the graph. In our algorithm the number of CNOTs is
equal to |V | − 1, |V | being the number of vertices. Gen-
erally, and especially at higher densities, it is easy to see
that p|E| � |V |. This means that our circuit turns out
to be much shallower than that of QAOA.

In our study, the search space remains the same as
that of the classical search space. A procedure to re-
duce the number of variables has been presented in [26].
However, this method is beyond the scope of the current
work. Readers should also be refereed to followup studies
[29] where the algorithm was evaluated on the Maximum
Cut problem by using the alternating optimization pro-
cedure [30] which scales polynomialy in problem size.

III. APPLYING THE ALGORITHM TO OTHER
NP-HARD PROBLEMS

A logical next step is to attempt to solve a variety
of combinatorial optimisation problems using the algo-
rithm. In Karp’s paper from 1972 [31], he outlined how
we can convert one NP-complete problem into another.
A more recent paper [32] lists numerous more such reduc-
tions. Figure 2 shows a subset (a transformation family)

4

of these reductions directly or indirectly relating to Max-
imum Cut. Here, we follow a similar logic to convert
various NP-hard problems to Maximum Cut.

Minimum
Bounded Set

Partition Max2SAT

MaxCut

Subset Sum Knapsack 3SAT

Exact Cover

K-Coloring

Coloring

SAT
Vertex Cover

Independent Set

Clique

Set Cover

Figure 2. Graph of Maximum Cut transformation family for
NP-complete problems.

Note, however, that these conversions might not have a
one-to-one scaling. For example, an n variable Maximum
2-Sat problem requires us to solve a 2n node Maximum
Cut problem.

In Karp’s paper all the transitions are from one deci-
sion problem to another. Usually in classical computing
it would be considered trivial to convert a decision prob-
lem into an optimisation one. However, our algorithm is
inherently an optimisation algorithm and moreover will
give various results for a various runs. The point being, it
will not respond well to yes-no decision problems. There-
fore, it is important to make reductions between the op-
timisation versions. Moreover it is important to make
sure that these conversions support a wide definition of
the problems (for example Maximum 3-Sat instead of
3-Sat).

Following are some such polynomial-time reductions of
NP-hard problems:

A. Minimum Partition to Maximum Cut

Minimum Partition

Input: A set S = {w : w ∈ Z+}.
Task: Find A ⊆ S that minimizes

|
∑

wk∈A
wk −

∑
wl /∈A

wl|.

This can be converted to the maximum cut problem in
the following manner:

1. Create a graph such that there is a node for every
number.

2. For every pair of nodes (i, j), connect them using
an edge of weight wi ∗ wj .

3. The maximum cut value of this graph gives a bi-
partition that is equivalent to the minimum parti-
tion.

B. Maximum 2-Sat to Maximum Cut

Maximum 2-Sat

Input: A set of m clauses C = {wpq(xp + xq) :
xp, xq ∈ X ∪X ′} where X = {x : x ∈ {0, 1}},
X ′ = {x : x ∈ X} and wpq are the clause
weights.

Task: Find the variable assignment X that max-
imizes the combined weight of the satisfied
clauses.

The problem is said to be satisfiable if all the clauses
are satisfied.

We can convert this problem into the maximum cut
problem in the following manner:

1. In a graph, assign 2 nodes for every variable, one
for the variable and another for the complement of
the variable. Hence there are 2|X| nodes in the
graph.

2. Draw an edge between the nodes representing the
variables and their complements. For example con-
nect x1 and x1, x2 and x2 and so on. Add a large
edge weight (about 10m). This is to make sure that
the variables and their complements do not fall in
the same partition.

3. For every clause, add an edge between the respec-
tive nodes with edge weight as wpq.

4. The maximum cut of this graph is equivalent to the
Maximum 2-Sat solution.

C. Maximum Clique to Maximum 2-Sat

Maximum Clique

Input: A graph G(V,E).
Task: Maximize |V ′| in the graph {G′(V ′, E′) :

V ′ ⊆ V,E′ ⊆ E, |E′| = |V ′|(|V ′|−1)
2 }.

It can be converted to the Maximum 2-Sat problem
in the following manner:

1. Consider a graph G(V,E) having vertices vi ∈ V .
For each vertex vi add a variable xi. Also an auxil-
iary variable z. We therefore have |V |+1 variables.

2. For every variable add the following 2 clauses: (xi+
z) and (xi+z). Let us refer to these clauses as Type
A clauses.

3. Add the following clauses: (xi + xj) ∀ (i, j) /∈ E.
We will refer to these clauses as clauses of type B.

5

4. The clauses of type A ensure that the maximum
number of nodes are selected and the clauses of
type B make sure that the selected subgraph is a
clique.

5. To the type B clauses, add a large weight. Due to
the nature of the algorithm and it’s susceptibility
to errors, we may get solutions that are not cliques
at all. Moreover finding a clique and maximizing
it are 2 different problems and by adding weights
we make sure that they are not affected by one
another.

6. The Maximum 2-Sat problem is solved for this set
of clauses. The partition of selected variables form
the Maximum Clique.

IV. GENERALIZING THE ALGORITHM

The algorithm described above solves, originally, the
Maximum Cut problem. Various conversions are then
used in order to solve other problems. Here, a second,
more general approach, shall be described, where any
problem which can be written in the form of a Quadratic
Unconstrained Binary Optimization (QUBO) problem.
Instead of taking the Laplacian matrix as the input, this
algorithm takes as input the QUBO matrix of the prob-
lem.

Firstly, we define the QUBO matrix. To describe
a problem as a QUBO, all the terms in the objective
function should be either linear or quadratic. Since the
variables in the objective function are binary, a linear
term can be easily converted to a quadratic one, since
x2i = xi ∀ x ∈ {0, 1}.

Consider the objective function of the following form:

P =
∑
i

aix
2
i +

∑
ij

aijxixj (11)

It can be rewritten as:

P =
(
x1 x2 ... xn

)a11 a12 ... a1n
a21 a22 ... a2n
...
an1 an2 ... ann


x1x2...
xn

 (12)

P = xTQx (13)

Q =

a11 a12 ... a1n
a21 a22 ... a2n
...
an1 an2 ... ann

 (14)

Q is the required QUBO matrix.
We propose that any problem that can be represented

in a QUBO format can be solved using a similar algo-
rithm, described in Algorithm 3.

Algorithm 3: Log Encoding of a QUBO
problem: Building the Objective Function

Input: QUBO Matrix
1 Q←QUBO Matrix of size n× n
2 N ← dlog2 ne

3 Q∗ ←
[

Q O2N−n

O2N−n O2N−n

]
4 H ← 1

n

4N∑
i=1

Tr(Ji ·Q∗)Ji where J = {
∏N

k=1 S
⊗k}

5 θ ← List of n parameters
6 Function EvalCost(θ):
7 QC ← Quantum Circuit of N qubits
8 Add Hadamard gate to each Qubit
9 U ← diagonal gate diag(θ,R)

10 Apply U to QC
11 F ← ExpectationV alue(Q,H)
12 return F

13

A. Maximum Weighted Independent Set using
QUBO

Maximum Weighted Independent Set

Input: A graph G(V,E) with node weights wi
Task: Find x ∈ {0, 1}|V | that maximizes

∑
i wixi

such that xi + xj ≤ 1 ∀ (i, j) ∈ E.

The Maximum Weighted Independent Set prob-
lem consists of an objective function and constraints. We
can however incorporate the constraints in the objective
function as penalty terms.

W = −max
∑
i

wixi + P
(∑

(i,j)∈E

xixj

)
(15)

where P is the magnitude of the penalty. Since xi is
binary

W = −max
∑
i

wix
2
i + P

(∑
(i,j)∈E

xixj

)
(16)

Hence we have a QUBO matrix of the following form:

Qij =


−wi if (i, j) ∈ E and i = j
P
2 if (i, j) ∈ E and i 6= j

0 if (i, j) /∈ E
(17)

V. EXPERIMENTS AND RESULTS

In this section we first show the performance of the
algorithm for the Maximum Cut problem. We compare
the results from our algorithm with the optimal solution
achieved using an integer linear program. We test our
algorithm on both a quantum simulator and real hard-
ware. Then, the effect of increasing graph density on per-
formance is tested to surpass the sparse examples found

6

in the literature. Finally for Maximum Cut, quantum
simulator runs of up to 256 nodes are shown. Then we
display the results of the Minimum Partition problem,
which has been solved by converting it to the Maximum
Cut problem.

Next, the results from the QUBO method are shown.
The Minimum Partition problem is solved, this time
using the QUBO method, and the results are compared
with the conversion method.

A. Maximum Cut

We start by benchmarking the Maximum Cut al-
gorithm against classical methods such as 0-1 integer
linear programming and Goemans-Williamson method.
All graph instances in this section are generated using
the fast gnp random graph() function of the networkx
Python package, with seed = 0 for all cases.

ILP-Optimal
Simulator w/ GA

Simulator w/ COBYLAQPU-IBM
0

50

100

150

200

M
ax

Cu
t

MaxCut for 32 Nodes - Graph Density = 0.65

Figure 3. Performance of the algorithm on a 32-Node graph
instance. The QPU result is based on a single run while the
simulator results are based on 50 runs.

Figure 3 shows the performance of the algorithm ver-
sus the optimal solution obtained using an Integer Lin-
ear Program (see Appendix B). Two different classical
optimizers have been used for the runs on the Quantum
Simulator. We can see that both classical optimizers give
fairly similar results, 90.04% of the optimal for the ge-
netic algorithm and 91.04% of the optimal for COBYLA.
The result from the QPU is slightly worse (83.58% of the
optimal), as is expected due to the noise present in the
current devices. Note that only a single instance has been
considered here as opposed to multiple. This is because
running algorithms on real hardware is extremely time
consuming due to queue times (wait times).

In Figure 4, 10 randomly generated 32-Node instances
are tested with increasing graph density. Here graph den-
sity implies the fraction of the total possible edges present
in the graph. For each instance, data was collected for
50 runs, using 2 different types of classical optimizers,
COBYLA and Genetic Algorithm. In addition, a 0-1 in-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Density

75

80

85

90

95

100

M
ax

Cu
t

MaxCut for 32 Nodes - Normalized

Figure 4. The Maximum Cut of 32-node graphs of vary-
ing densities. Optimizer used is Genetic Algorithm. Data is
based on 50 runs for each instance and is normalized using
the optimal result obtained using ILP.

teger linear program (ILP) [33] was used to obtain the
optimal result of each of the instances. The ILP data is
then used to normalize the simulator data. Hence, the
data is in the form of percentage of optimal value. In
most instances, the genetic algorithm (GA) performed
better than COBYLA. This, however, might be down to
the fact that the genetic algorithm is simply able to cover
a larger search space. Larger instances might require a
larger number of iterations with high computational cost.
In these cases, using COBYLA could be more practical.
While the GA results vary with each run, the results
from COBYLA are the same in each run. This can be
seen from the fact that the COBYLA plot has a flat error
bar. We can see that the increase in the number edges
does not heavily impact the accuracy of the algorithm.
This is an important factor and is useful for the sections
to follow.

In order to demonstrate the scalability of the algo-
rithm, we further test the algorithm on problem instances
of 64, 128 and 256 nodes (6, 7 and 8 qubits respectively).
For the case of 64 node graphs, as shown in Table I, each
instance is run 10 times on the quantum simulator and
their mean and standard deviation are shown. The ge-
netic optimizer is used for all obtained data. The data
was normalized by using the ILP algorithm as mentioned
before. The model solved the problem upto a specified
integrality gap of 4%. The data represented in the table
is given as a percent of the solution obtained from ILP.
We can see that for all cases, the results are nearly or over
90% of the optimal cut. It is seen again that increase in
graph density does not affect performance whatsoever.
Furthermore, the execution time of ILP increases rapidly
with graph density whereas it remains more or less the
same for both the simulator and the QPU. For example
in the graph with density 0.45, the ILP takes 1375.2 sec-
onds whereas the quantum simulator and QPU take 272
seconds and 518 seconds respectively.

7

Graph Density
ILP Quantum Simulator QPU

Solution Time(s) Gap(%) Solution Time(s) Solution Time(s)
0.30 383 7.6 3.92 343.9 280 282 383
0.35 443 69.7 3.84 400.8 272 365 439
0.40 497 1077.7 3.82 454.3 270 380 393
0.45 553 1375.2 3.98 512.8 272 446 518

Table I. 64-Node Maximum Cut results

Graph Density
128 Nodes 256 Nodes

GW Range Solution % Difference GW Range Solution % Difference
0.3 1376 - 1431 1270 88.7 - 92.3 5408 - 5587 5066 90.7 - 93.7
0.4 1796 - 1864 1691 90.7 - 94.1 7087 - 7232 6736 93.1 - 95.0
0.5 2186 - 2271 2103 92.6 - 96.2 8701 - 8880 8367 94.2 - 96.2
0.6 2618 - 2679 2501 93.3 - 95.5 10356 - 10504 9967 94.9 - 96.2

Table II. 128 and 256-Node Maximum Cut results using a quantum simulator.

Instance Solution GW Range % Diff.
Size=128, Density=0.4 1538 1796 - 1864 82.5 - 85.6
Size=128, Density=0.5 2022 2186 - 2271 89.0 - 92.5
Size=256, Density=0.5 8079 8701 - 8880 90.9 - 92.8

Table III. 128 and 256-Node Maximum Cut results using
QPU with GA.

For 128 and 256 nodes (Table II and III), the Goemans
Williamson (GW) method [34] is used for benchmarking.
This is because the ILP took longer than 2 days with-
out converging (Gurobi optimizer) on a PC. The GW
range is based on 50 runs. Table II shows results using a
quantum simulator while Table III shows results obtained
using an IBM quantum computer. The ibmq mumbai
backend was used for the instances of size 128 while the
ibmq guadalupe was used for the instance of size 256.

B. Minimum Partition as a conversion from
Maximum Cut

As described in Section III A, the number partitioning
problem can be directly converted into the Maximum
Cut problem. The graphs hence formed are weighted
fully-dense graphs.

For the instances, all the numbers used were random
integers between 1 and 100. Tests were carried out on
the quantum simulator as well as on real hardware from
IBM.

The results of partition differences have been normal-
ized in the following manner. For a problem with N
numbers, if the partition difference is p, then the nor-

malised difference is pnorm =
50N − p

50N
. All our numbers

are random integers between 1 and 100, hence 50.5 on an
average. For simplicity we use 50 in pnorm.

The optimal value for each instance is obtained using
the Integer Quadratic model described in Appendix C.

Figure 5 displays a relatively good performance of 32-
number Minimum Partition converted to Maximum

Cut with a 98% mean value and a very small disper-
sion using the quantum simulator. Likewise, Figure 6
shows the performance of 64-number Minimum Parti-
tion, where the mean values are better than 85% for all
instances. Moreover, for both problems sizes, despite the
fact that the Minimum Partition problem leads to a
complete graph Maximum Cut problem, actual QPUs
are able to demonstrate an approximate solution.

Figure 7 shows the performance for a problem size of
128 on a quantum simulator, with mean values of about
97%.

All QPU runs in this section are done on
ibmq mumbai.

1 2 3 4
Instances

0.75

0.80

0.85

0.90

0.95

1.00

Pa
rti

tio
n

di
ffe

re
nc

es

Partition differences for 32 Numbers - Normalized

Optimal
Q Sim.
QPU-IBM

Figure 5. The difference between partition sets for 32 Num-
bers. Each instance was run on the quantum simulator with
GA a 100 times. The QPU data is a single run.

C. Maximum Clique as a conversion from
Maximum Cut

The Maximum Clique problem can be converted to
the Maximum Cut problem by first converting it to the

8

Instance No. of Qubits No. of Runs Best Solution Worst Solution Average Solution Optimal Solution
Size=31, Density=0.3 6 50 4 3 3.38 4
Size=31, Density=0.4 6 50 5 3 3.92 5
Size=31, Density=0.5 6 50 6 3 4.46 6
Size=31, Density=0.6 6 50 7 4 5.34 8
Size=31, Density=0.7 6 50 8 5 6.26 9
Size=63, Density=0.5 7 10 8 6 6.5 8
Size=63, Density=0.6 7 10 8 6 7.2 10
Size=63, Density=0.7 7 10 11 8 9.3 12

Table IV. Maximum Clique results using quantum simulator with GA.

1 2 3 4 5 6 7 8
Instances

0.75

0.80

0.85

0.90

0.95

1.00

Pa
rti

tio
n

di
ffe

re
nc

es

Partition differences for 64 Numbers - Normalized

Optimal
Quant Sim.
QPU - IBM

Figure 6. The difference between partition sets for 64 Num-
bers. The quantum simulator data is an average of 10 runs of
the algorithm while the QPU data is based on a single run.

1 2
Instances

0.75

0.80

0.85

0.90

0.95

1.00

Pa
rti

tio
n

di
ffe

re
nc

es

Partition differences for 128 Numbers - Normalized

Optimal
Quant Sim.

Figure 7. The difference between partition sets for 128 Num-
bers. Each instance was run on the quantum simulator 4
times.

Maximum 2-Sat (III B)and then from the Maximum
2-Sat to Maximum Cut (III C).

After the conversion, a n-node Maximum Clique
problem requires the solution of a 2(n + 1)-node Maxi-
mum Cut. Table IV shows results for various instances
run on a quantum simulator. It is seen that in half of
the instances, the best solution is the optimal solution
as obtained using numpy. It should be noted that our
approach finds a dense subgraph and then removes the
nodes with lowest degree iteratively.

D. Maximum Weighted Independent Set using
QUBO method

In this section, results of the Maximum Weighted
Independent Set problem solved using the QUBO
method (section IV A) is presented.

For each figure the performance of the algorithm is
shown. The data is normalized using the optimal solution
found using the commercial CPLEX solver.

In Figure 8, the data for graphs of size 32 is shown.
For each instance the algorithm has been run 50 times
on a quantum simulator using GA as the optimizer. The
mean values for all instances is above 70% and the best
obtained result is on an average over 90%. In Figure
9, the same is done for graphs of size 64. In the case
the performance has degraded slightly. Nevertheless, the
mean values for all instances is above 60% and the best
obtained result is on an average over 80%. Figure 10
shows the data for 128 node graphs. The mean values
are over 60% for all instances.

Finally, table V shows results using a quantum com-
puter. The devices used were: ibmq montreal for in-
stance sizes 32 and 128, ibmq mumbai for instance size
64.

1 2 3 4 5
Instances

40

50

60

70

80

90

100

No
rm

al
ize

d
W

ei
gh

t

MWIS for 32 Nodes - Normalized

Figure 8. Maximum Weighted Independent Set problem
for 32-node graphs using a quantum simulator. Each instance
was run on a quantum simulator with GA 50 times.

9

1 2 3 4 5
Instances

40

50

60

70

80

90

100
No

rm
al

ize
d

W
ei

gh
t

MWIS for 64 Nodes - Normalized

Figure 9. Maximum Weighted Independent Set problem
for 64-node graphs using a quantum simulator. Each instance
was run on a quantum simulator with GA 50 times.

1 2 3
Instances

50

55

60

65

70

75

No
rm

al
ize

d
W

ei
gh

t

MWIS for 128 Nodes - Normalized

Figure 10. Maximum Weighted Independent Set prob-
lem for 128-node graphs using a quantum simulator. Each
instance was run on a quantum simulator with GA 10 times.

Size Solution Optimal Solution % Diff.
32 96.56 140.95 68.5
64 149.42 231.18 64.6
128 321.69 491.67 65.4

Table V. Maximum Weighted Independent Set results
using QPU with GA.

E. A comparative study of time taken by the
simulator and the QPU

In Table VI and Fig. 11, the time taken to run the
algorithm for different Maximum Cut instance sizes is
compared. While the quantum computer still takes a
significant amount of time to solve the problem, the time
taken does not increase exponentially as in the case of
the simulator.

N QPU(minutes) Quantum Simulator(minutes)
32 1.7 3
64 9 52
128 45 222
256 112 3202

Table VI. Data for time taken for various instance sizes in the
the QPU and in the quantum simulator

50 100 150 200 250
Number of Nodes

0

500

1000

1500

2000

2500

3000

Ti
m

e(
M

in
ut

es
)

QPU vs Simulator Time Comparison
Quantum Simulator
QPU

Figure 11. Plot demonstrating the time taken by the quantum
simulator versus the time taken to solve the same instance on
real hardware

As we move towards larger instances, we reach a point
where it is quicker to run a problem on a QPU than using
a simulator.

VI. CONCLUSION

In this paper, we investigated and further developed
methods to logarithmically encode combinatorial opti-
mization problems on a quantum computer. We begin
with expanding the work done in [26], which describes a
way to logarithmically encode the Maximum Cut prob-
lem. We performed several runs of this algorithm with
various instances, on the quantum simulator as well as
real hardware, using different classical optimizers like
COBYLA and the genetic algorithm.

We then reformulate a number of NP-hard combinato-
rial optimization problems into the Maximum Cut prob-
lem, either directly or indirectly and solve it on a real
quantum computer. We take the Minimum Partition
problem as an example and solve it by using a reduc-
tion as mentioned in section III A. This is possible since
the algorithm is largely unaffected by increasing the den-
sity of the Maximum Cut graph in question, since the
Minimum Partition problem converts into a weighted
fully-dense graph. Some performance benchmarks of the
partition problem have been presented.

10

We then proceed to present a more general formula-
tion inspired from the structure of the Maximum Cut
algorithm. We see that instead of using the Laplacian,
we can use the QUBO matrix of a problem in order to
solve it. This therefore opens up the applicability of the
algorithm to a wide range of algorithms. The Maximum
Weighted Independent Set problem is solved using
its QUBO matrix.

To our knowledge, it is the first time that graph prob-
lems of such sizes (256 Maximum Cut, 64 Minimum
Partition, 128 Maximum Weighted Independent
Set) have been executed on real universal gate-based
quantum computers.

ACKNOWLEDGMENTS

Y.C. and M.R. acknowledge funding from European
Union’s Horizon 2020 research and innovation pro-
gramme, more specifically the 〈NE|AS |QC〉 project un-
der grant agreement No. 951821. A part of the
methodology presented in the manuscript is protected
by a provisionally patent claim ”Method for optimiz-
ing a functioning relative to a set of elements and asso-
ciated computer program product” submission number
EP21306155.9 submitted on 26.8.2021.

Appendix A: Calculating the Expectation value of
an observable

Given a Hamiltonian matrixH, we first need to convert
into a sum of tensor products of Pauli strings.

Let H be a n × n Hamiltonian matrix and S =
{I,X, Y, Z}n be the set of Pauli matrices. We can con-
sider n to be a power of 2 without any loss of general-
ity. If the size of the Hamiltonian matrix is n′ which is
not a power of 2, we can easily convert it to a size of
n = 2log2(n

′), which is a power of 2. The extra space in
the matrix is filled with 0’s.

This Hamiltonian can now represented on N = log2(n)

qubits. Consider the set J = {
∏N
k=1 S

⊗k} which consists
of all tensor product combinations of the Pauli matrices.

Then the Hamiltonian can decomposed as:

H =

4N∑
i=1

ciJi (A1)

where the coefficients are:

ci =
1

n
Tr(Ji ·H) (A2)

The Hamiltonian therefore becomes:

H =
1

n

4N∑
i=1

Tr(Ji ·H)Ji (A3)

The expectation value becomes a sum of the expecta-
tion values of all the terms.

〈Ψ|H |Ψ〉 =
1

n

4N∑
i=1

Tr(Ji ·H) 〈Ψ| Ji |Ψ〉 (A4)

Appendix B: Integer Linear Program for Maximum
Cut Problem

Given a graph G(V,E) such that n = |V |, and Aij be-
ing the corresponding Adjacency matrix terms, we have
Objective : max

∑
1≤i≤j≤n xijAij

Constraints :

1. xij ≤ xik + xkj

2. xij + xik + xkj ≤ 2

3. xij ∈ {0, 1}

Appendix C: Integer Quadratic Program for
Minimum Partition Problem

Given a set S = {w : w ∈ Z+}, we have

Objective : min
(n∑
i=1

wixi −
n∑
i=1

wixi+n
)2

Constraints :

1. xi + xi+n = 1 for i ∈ {1, 2, 3....n}

2. xi ∈ {0, 1}

[1] C. J. Hillar and L.-H. Lim, Most tensor problems are
np-hard, Journal of the ACM (JACM) 60, 1 (2013).

[2] G. J. Woeginger, Exact algorithms for np-hard problems:
A survey, in Combinatorial optimization—eureka, you
shrink! (Springer, 2003) pp. 185–207.

[3] A. Sánchez-Arroyo, Determining the total colouring num-
ber is np-hard, Discrete Mathematics 78, 315 (1989).

[4] P. N. Klein and N. E. Young, Approximation algorithms
for np-hard optimization problems, in Algorithms and
theory of computation handbook: general concepts and
techniques (2010) pp. 34–34.

[5] D. S. Hochba, Approximation algorithms for np-hard
problems, ACM Sigact News 28, 40 (1997).

[6] T. N. Bui and C. Jones, Finding good approximate vertex

https://dl.acm.org/doi/10.1145/2512329
https://link.springer.com/chapter/10.1007/3-540-36478-1_17
https://link.springer.com/chapter/10.1007/3-540-36478-1_17
https://www.sciencedirect.com/science/article/pii/0012365X89901878
https://dl.acm.org/doi/10.5555/1882757.1882791
https://dl.acm.org/doi/10.5555/1882757.1882791
https://dl.acm.org/doi/10.5555/1882757.1882791
https://dl.acm.org/doi/10.1145/261342.571216

11

and edge partitions is np-hard, Information Processing
Letters 42, 153 (1992).

[7] J. M. Hendrickx and A. Olshevsky, Matrix p-norms are
np-hard to approximate if p 6= 1, 2,∞, SIAM Journal on
Matrix Analysis and Applications 31, 2802 (2010).

[8] E. Farhi, J. Goldstone, and S. Gutmann, A quantum
approximate optimization algorithm, arXiv:1411.4028
(2014).

[9] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel,
D. Venturelli, and R. Biswas, From the quantum ap-
proximate optimization algorithm to a quantum alternat-
ing operator ansatz, Algorithms 12, 10.3390/a12020034
(2019).

[10] A. Callison and N. Chancellor, Hybrid quantum-classical
algorithms in the noisy intermediate-scale quantum era
and beyond, Phys. Rev. A 106, 010101 (2022).

[11] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien,
A variational eigenvalue solver on a photonic quantum
processor, Nature communications 5, 1 (2014).

[12] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow,
A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gam-
betta, M. Ganzhorn, et al., Quantum optimization us-
ing variational algorithms on near-term quantum devices,
Quantum Science and Technology 3, 030503 (2018).

[13] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, Quantum
natural gradient, Quantum 4, 269 (2020).

[14] K. M. Nakanishi, K. Fujii, and S. Todo, Sequential
minimal optimization for quantum-classical hybrid algo-
rithms, Physical Review Research 2, 043158 (2020).

[15] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, et al., Variational quantum algorithms, Nature
Reviews Physics 3, 625 (2021).

[16] L. Bittel and M. Kliesch, Training variational quan-
tum algorithms is np-hard, Physical Review Letters 127,
120502 (2021).

[17] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and
D. Jaksch, Variational quantum algorithms for nonlinear
problems, Physical Review A 101, 010301 (2020).

[18] N. Mariella and A. Simonetto, A quantum algorithm
for the sub-graph isomorphism problem, arXiv preprint
arXiv:2111.09732 (2021).

[19] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli,
and S. Woerner, Improving variational quantum opti-
mization using cvar, Quantum 4, 256 (2020).

[20] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li,
E. Grant, L. Wossnig, I. Rungger, G. H. Booth, et al.,
The variational quantum eigensolver: a review of meth-
ods and best practices, Physics Reports 986, 1 (2022).

[21] F. G. Fuchs, H. Ø. Kolden, N. H. Aase, and G. Sartor, Ef-
ficient encoding of the weighted max k-cut on a quantum

computer using qaoa, SN Computer Science 2, 1 (2021).
[22] J. Larkin, M. Jonsson, D. Justice, and G. G. Guerreschi,

Evaluation of qaoa based on the approximation ratio
of individual samples, Quantum Science and Technology
(2022).

[23] R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw,
T. S. Humble, and G. Siopsis, Globally optimizing qaoa
circuit depth for constrained optimization problems, Al-
gorithms 14, 294 (2021).

[24] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D.
Lukin, Quantum approximate optimization algorithm:
Performance, mechanism, and implementation on near-
term devices, Physical Review X 10, 021067 (2020).

[25] G. G. Guerreschi and A. Y. Matsuura, Qaoa for max-
cut requires hundreds of qubits for quantum speed-up,
Scientific reports 9, 1 (2019).

[26] M. J. Rančić, An exponentially more efficient op-
timization algorithm for noisy quantum computers,
arXiv:2110.10788, accepted in Phys. Rev. Res. (2021).

[27] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning
sparse matrices with eigenvectors of graphs, SIAM jour-
nal on matrix analysis and applications 11(430) (1990).

[28] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger,
F. Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends,
S. Boixo, et al., Quantum approximate optimization of
non-planar graph problems on a planar superconducting
processor, Nature Physics 17, 332 (2021).

[29] D. Winderl, N. Franco, and J. M. Lorenz, A compara-
tive study on solving optimization problems with expo-
nentially fewer qubits, arXiv preprint arXiv:2210.11823
(2022).

[30] J. C. Bezdek and R. J. Hathaway, Some notes on alter-
nating optimization, in AFSS international conference on
fuzzy systems (Springer, 2002) pp. 288–300.

[31] R. M. Karp, Reducibility among combinatorial problems,
In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds)
Complexity of Computer Computations. The IBM Re-
search Symposia Series. Springer, Boston, MA. (1972).

[32] J. A. Ruiz-Vanoye et al., Survey of polynomial transfor-
mations between np-complete problems, Journal of Com-
putational and Applied Mathematics 235, 4851 (2011).

[33] W. F. de la Vega and C. Kenyon-Mathieu, Linear pro-
gramming relaxations of maxcut, in Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07 (Society for Industrial and Ap-
plied Mathematics, USA, 2007) p. 53–61.

[34] M. X. Goemans and D. P. Williamson, Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming, Journal of the
ACM (JACM) 42, 1115 (1995).

[35] F. Glover, G. Kochenberger, and Y. Du, Quantum bridge
analytics i: a tutorial on formulating and using qubo
models, 4OR, Springer 17(4), 335 (2019).

https://www.sciencedirect.com/science/article/pii/002001909290140Q
https://www.sciencedirect.com/science/article/pii/002001909290140Q
https://epubs.siam.org/doi/10.1137/09076773X
https://epubs.siam.org/doi/10.1137/09076773X
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.3390/a12020034
https://doi.org/10.1103/PhysRevA.106.010101
https://www.nature.com/articles/ncomms5213
https://iopscience.iop.org/article/10.1088/2058-9565/aab822
https://quantum-journal.org/papers/q-2020-05-25-269/
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043158
https://www.nature.com/articles/s42254-021-00348-9
https://www.nature.com/articles/s42254-021-00348-9
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.120502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.120502
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.010301
https://arxiv.org/abs/2111.09732
https://arxiv.org/abs/2111.09732
https://quantum-journal.org/papers/q-2020-04-20-256/
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://link.springer.com/article/10.1007/s42979-020-00437-z
https://iopscience.iop.org/article/10.1088/2058-9565/ac6973
https://iopscience.iop.org/article/10.1088/2058-9565/ac6973
https://www.mdpi.com/1999-4893/14/10/294
https://www.mdpi.com/1999-4893/14/10/294
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://www.nature.com/articles/s41598-019-43176-9
https://arxiv.org/abs/2110.10788
https://epubs.siam.org/doi/10.1137/0611030
https://epubs.siam.org/doi/10.1137/0611030
https://www.nature.com/articles/s41567-020-01105-y
https://arxiv.org/pdf/2210.11823.pdf
https://arxiv.org/pdf/2210.11823.pdf
https://link.springer.com/chapter/10.1007/3-540-45631-7_39
https://link.springer.com/chapter/10.1007/3-540-45631-7_39
https://link.springer.com/chapter/10.1007/978-1-4684-2001-2_9
https://link.springer.com/chapter/10.1007/978-1-4684-2001-2_9
https://link.springer.com/chapter/10.1007/978-1-4684-2001-2_9
https://dl.acm.org/doi/abs/10.1016/j.cam.2011.02.018
https://dl.acm.org/doi/abs/10.1016/j.cam.2011.02.018
https://dl.acm.org/doi/10.5555/1283383.1283390
https://dl.acm.org/doi/10.5555/1283383.1283390
https://dl.acm.org/doi/10.5555/1283383.1283390
https://dl.acm.org/doi/10.1145/227683.227684
https://dl.acm.org/doi/10.1145/227683.227684
https://link.springer.com/article/10.1007/s10479-022-04634-2

	 Solving various NP-Hard problems using exponentially fewer qubits on a Quantum Computer
	Abstract
	I Introduction
	II A qubit-efficient Maximum Cut Algorithm
	A Description of the algorithm
	B Advantages and disadvantages of the algorithm

	III Applying the algorithm to other NP-hard problems
	A Minimum Partition to Maximum Cut
	B Maximum 2-Sat to Maximum Cut
	C Maximum Clique to Maximum 2-Sat

	IV Generalizing the Algorithm
	A Maximum Weighted Independent Set using QUBO

	V Experiments and Results
	A Maximum Cut
	B Minimum Partition as a conversion from Maximum Cut
	C Maximum Clique as a conversion from Maximum Cut
	D Maximum Weighted Independent Set using QUBO method
	E A comparative study of time taken by the simulator and the QPU

	VI Conclusion
	 Acknowledgments
	A Calculating the Expectation value of an observable
	B Integer Linear Program for Maximum Cut Problem
	C Integer Quadratic Program for Minimum Partition Problem
	 References

