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Abstract—We present a trichotomy theorem for the
quantum query complexity of regular languages. Every
regular language has quantum query complexity Θ(1),
Θ̃(

√
n), or Θ(n). The extreme uniformity of regular

languages prevents them from taking any other asymptotic
complexity. This is in contrast to even the context-free
languages, which we show can have query complexity
Θ(nc) for all computable c ∈ [1/2, 1]. Our result implies
an equivalent trichotomy for the approximate degree
of regular languages, and a dichotomy—either Θ(1) or
Θ(n)—for sensitivity, block sensitivity, certificate complex-
ity, deterministic query complexity, and randomized query
complexity.

The heart of the classification theorem is an explicit
quantum algorithm which decides membership in any star-
free language in Õ(

√
n) time. This well-studied family of

the regular languages admits many interesting character-
izations, for instance, as those languages expressible as
sentences in first-order logic over the natural numbers
with the less-than relation. Therefore, not only do the star-
free languages capture functions such as OR, they can also
express functions such as “there exist a pair of 2’s such
that everything between them is a 0.”

Thus, we view the algorithm for star-free languages as
a nontrivial generalization of Grover’s algorithm which
extends the quantum quadratic speedup to a much wider
range of string-processing algorithms than was previously
known. We show a variety of applications—new quantum
algorithms for dynamic constant-depth Boolean formulas,
balanced parentheses nested constantly many levels deep,
binary addition, a restricted word break problem, and
path-discovery in narrow grids—all obtained as immediate
consequences of our classification theorem.

Keywords-regular languages; query complexity; Grover
search; star-free languages; classification; monoids

I. INTRODUCTION

Regular languages have a long history of study in

classical theoretical computer science, going back to

Kleene in the 1950s [1]. The definition is extremely

robust: there are many equivalent characterizations rang-

ing from machine models (e.g., deterministic or non-

deterministic finite automata, o(log logn)-space Turing

machines [2]), to grammars (e.g., regular expressions,

prefix grammars), to algebraic structures (e.g., recogni-

tion via monoids, the syntactic congruence, or rational

series). Regular languages are closed under most natural

operations (e.g., union, complement), and also most

natural questions are decidable (e.g., is the language

infinite?). Perhaps for this reason, regular languages are

also a useful pedagogical tool, serving as a toy model

for theory of computation students to cut their teeth on.

We liken regular languages to the symmetric1

Boolean functions. That is, both are a restricted, (usu-

ally) tractable special case of a much more general

object, and often the common thread between a number

of interesting examples. We suggest that these special

cases should be studied and thoroughly understood first,

to test proof techniques, to make conjectures, and to

gain familiarity with the setting.

In this work, we hope to understand the regular

languages from the lens of another great innovation of

theoretical computer science—query complexity, partic-

ularly quantum query complexity. Not only is query

complexity one of the few models in which provable

lower bounds are possible, but it is also often the case

that efficient algorithms actually achieve the query lower

bound. In this case, the query lower bound suggests an

algorithm which was otherwise thought not to exist, as

was famously the case for Grover’s search algorithm.

In the case of query complexity, symmetric functions

are extremely well-understood with complete charac-

terizations known for deterministic, randomized, and

quantum algorithms in both the zero-error and bounded-

error settings [3]. However, to the authors’ knowledge,

regular languages have not been studied in the query

complexity model despite the fact that they appear

frequently in query-theoretic applications.

For example, consider the OR function over Boolean

strings. This corresponds to deciding membership in

the language recognized by the regular expression

(0|1)∗1(0|1)∗. Similarly, the parity function is just

membership in the regular language (0∗10∗1)∗0∗. It is

well known that the quantum query complexity of OR

is Θ(
√
n), whereas parity is known to require Θ(n)

quantum queries. Yet, there is a two-state deterministic

finite automaton for each language. This raises the

question: what is the difference between these two

1A symmetric Boolean function f : {0, 1}n → {0, 1} is such that
the value of f only depends on the Hamming weight of the input.
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languages that causes the dramatic discrepancy between

their quantum query complexities? More generally, can

we decide the quantum query complexity of a regular

language given a description of the machine recognizing

it? Are all quantum query complexities even possible?

We answer all of these questions in this paper.

The main contribution of this work is the com-

plete characterization of the quantum query complexity

of regular languages (up to some technical details),

manifest as the following trichotomy: every regular

language has quantum query complexity Θ(1), Θ̃(
√
n),

or Θ(n). In the process, we get an identical trichotomy

for approximate degree, and dichotomies—in this case,

Θ(1) or Θ(n)—for a host of other complexity measures

including deterministic complexity, randomized query

complexity, sensitivity, block sensitivity, and certificate

complexity.

Many of the canonical examples of regular languages

fall easily into one of the three categories via well-

studied algorithms or lower bounds. For example, the

upper bound for the OR function results from Grover’s

famous search algorithm, and the lower bounds for OR

and parity functions are straightforward applications of

either the polynomial method [3] or adversary method

[4]. Nevertheless, it turns out that there exists a vast

class of regular languages which have neither a trivial

Ω(n) lower bound nor an obvious o(n) upper bound

resulting from a straightforward application of Grover’s

algorithm. A central challenge of the trichotomy the-

orem for quantum query complexity was showing that

these languages do actually admit a quadratic quantum

speedup.

One such example is the language Σ∗(20∗2)Σ∗,
where Σ = {0, 1, 2}. Although there is no finite wit-

ness for the language (e.g., to find by Grover search),

we show that it nevertheless has an Õ(
√
n) quan-

tum algorithm. More generally, this language belongs

to a subfamily of regular languages known as star-
free languages because they have regular expressions

which avoid Kleene star (albeit with the addition of

the complement operation).2 Like regular languages, the

star-free languages have many equivalent characteriza-

tions: counter-free automata [5], predicates expressible

in either linear temporal logic or first-order logic [6],

[5], the preimages of finite aperiodic monoids [7], or

cascades of reset automata [8]. The star-free languages

are those regular languages which can be decided in

Õ(
√
n) queries. As a result, reducing a problem to any

one of the myriad equivalent representations of these

languages yields a quadratic quantum speedup for that

problem.

2For example, the star-free expression for Σ∗(20∗2)Σ∗ is

∅2∅{1, 2}∅2∅.

Let us take McNaughton’s characterization of star-

free languages in first-order logic as one example [5].

That is, every star-free language can be expressed as a

sentence in first-order logic over the natural numbers

with the less-than relation and predicates πa for a ∈ Σ,

such that πa(i) is true if input symbol xi is a. We can

easily express the OR function as ∃i π1(i), or the more

complicated language Σ∗(20∗2)Σ∗ as

∃i ∃k ∀j i < k∧π2(i)∧π2(k)∧ (i < j < k ⇒ π0(j)).

Our result gives an algorithm for this sentence and

arbitrarily complex sentences like it. We see this as a

far-reaching generalization of Grover’s algorithm, which

extends the Grover speedup to a much wider range of

string processing problems than was previously known.3

A. Results

Our main result is the following:

Theorem 1 (informal). Every4 regular language has
quantum query complexity Θ(1), Θ̃(

√
n), or Θ(n).

Moreover, the quantum time complexity of each lan-
guage matches its query complexity.

The theorem and its proof have several consequences

which we highlight below.

1) Algebraic characterization: We give a characteri-

zation of each class of regular languages in terms

of the monoids that recognize them. That is, the

monoid is either a rectangular band, aperiodic, or

finite. In particular, given a description of the ma-

chine, grammar, etc. generating the language, we

can decide its membership in one of the three

classes by explicitly calculating its syntactic monoid

and checking a small number of conditions. See

Section III.

2) Related complexity measures: Many of the lower

bounds are derived from lower bounds on other

query measures. To this end, we prove query di-

chotomies for deterministic complexity, randomized

query complexity, sensitivity, block sensitivity, and

certificate complexity—they are all either Θ(1) or

3Readers familiar with descriptive complexity will recall that AC0

has a similar, but somewhat more general characterization in first-
order logic. It follows that all star-free languages, which have quantum
query complexity Õ(

√
n), are in AC0. Conversely, we will show that

regular languages not in AC0 have quantum query complexity Ω(n).
Thus, another way to state the trichotomy is that very roughly speaking
regular languages in NC0 have complexity O(1), regular languages
in AC0 but not NC0 have complexity Θ̃(

√
n), and everything else

has complexity Ω(n).
4There are two caveats: the quantum query complexity may os-

cillate between asymptotically different functions; the quantum query
complexity may also be zero. For the formal statement of this theorem
see Section III.
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Θ(n) for regular languages. By standard relation-

ships between the measures, this shows that ap-

proximate degree and quantum query complexity are

either O(1) or Ω(
√
n). See Section VI.

3) Generalization of Grover’s algorithm: The BQP
algorithm using Õ(

√
n) queries for star-free regular

languages extends to a variety of other settings

given that the star-free languages enjoy a myriad

of equivalent characterizations. The characteriza-

tion of star-free languages as first-order sentences

over the natural numbers with the less-than relation

shows that the algorithm for star-free languages is

a broad generalization of Grover’s algorithm. See

Section IV for the description and proof of the star-

free algorithm and Section I-C and Appendix C for

applications.

4) Star-free algorithm from faster unstructured
search: The Õ(

√
n) algorithm for star-free lan-

guages results from many nested calls to Grover

search, using the speedup due to multiple marked

items. However, a careful analysis reveals that when-

ever this speedup is required, the marked items are

consecutive. We show that these Grover search calls

can then be replaced by any unstructured search

algorithm. Therefore, any model of computation that

has faster-than-brute-force unstructured search will

have an associated speedup for star-free languages.

Consider, for example, the model of quantum com-

putation of Aaronson, Bouland, Fitzsimons, and Lee

in which non-collapsing measurements are allowed

[9]. It was shown that unstructured search in that

model requires at most Õ(n1/3) queries, and there-

fore, star-free languages can be solved in Õ(n1/3)
queries as well.

Finally, we stress that this trichotomy is only possible

due to the extreme uniformity in the structure of regular

languages. In particular, the trichotomy does not extend

to another basic model of computation, the context-free

languages.

Theorem 2. For all limit computable5 c ∈ [1/2, 1],
there exists a context-free language L such that Q(L) =
O(nc+ε) and Q(L) = Ω(nc−ε) for all ε > 0. Further-
more, if an additive ε-approximation to c is computable
in 2O(1/ε) time, then Q(L) = Θ(nc). In particular, any
algebraic c ∈ [1/2, 1] has this property.

In fact, the converse also holds.

Theorem 3. Let L be a context-free language such that
limn→∞

logQ(L)
logn = c. Then, c is limit computable.

5We say that a number c ∈ R is limit computable if there exists
a Turing machine which on input n outputs some rational number
T (n) such that limn→∞ T (n) = c.

B. Proof Techniques

Most of the lower bounds are derived from a di-

chotomy theorem for sensitivity—the sensitivity of a

regular language is either O(1) or Ω(n). In particular,

we show that the language of sensitive bits for a regular

language is itself regular. Therefore, by the pumping

lemma for regular languages, we are able to boost any

nonconstant number of sensitive bits to Ω(n) sensitive

bits, from which the dichotomy follows.

The majority of the work required for the clas-

sification centers around the Õ(
√
n) quantum query

algorithm for star-free languages. The proof is based

on Schützenberger’s characterization of star-free lan-

guages as those languages recognized by finite ape-

riodic monoids. Starting from an aperiodic monoid,

Schützenberger constructs a star-free language recur-

sively based on the “rank” of the monoid elements

involved. Roughly speaking, this process culminates in

a decomposition of any star-free language into star-free

languages of smaller rank. Although this decomposition

does not immediately give rise to an algorithm, the no-

tion of rank proves to be a particularly useful algebraic

invariant. Specifically, we use it to show that given a

Õ(
√
n)-query algorithm for membership in some star-

free language L, we can construct a Õ(
√
n)-query

algorithm for Σ∗LΣ∗. This “infix” algorithm is the key

subroutine for much of the general star-free algorithm.

C. Applications

We give quantum quadratic speedups for sev-

eral problems simply by showing that the under-

lying language is star free. Consider the language

2Σ∗2\Σ∗20∗2Σ∗, where Σ = {0, 1, 2}. We call this the

dynamic AND-OR language, for reasons which may not

be evident from the regular expression alone. Think of

the 2’s as delimiting the string into some number of

blocks over {0, 1}. We take the OR of each block and

the AND of those results to decide if the string is in the

language. That is, if there is some pair of consecutive

2’s with no intervening 1, then that block evaluates to 0,

and the whole string is not in the language. It has long

been known that the quantum query complexity of the

AND-OR tree, or more generally Boolean formulas with

constant depth, is Θ(
√
n) [10]. In that case, however,

the tree or formula is fixed in advance and not allowed

to change with the input. Nevertheless, our quantum

algorithm for star-free languages implies that even the

dynamic version of the AND-OR language (as well as

the dynamic generalization of constant-depth Boolean

formulas [11]) can be decided with Θ̃(
√
n) queries and,

moreover, there is an efficient quantum algorithm.

Next consider the language of balanced parentheses,

where the parentheses are only allowed to nest k levels

deep. When k is unbounded, this is called the Dyck
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language. When k = 1 this is the language of strings

of the form ()() . . .(), which has a simple Grover

search speedup—search for (( or )). However, the

language quickly becomes more interesting as k in-

creases. Nevertheless, for any constant k, this language

is known to be star free [12], and therefore has an

Õ(
√
n) quantum algorithm by our classification.

Finally, we mention a few more examples of star-free

languages (proofs in Appendix C).

Addition: Given x0y0z0x1y1z1 . . . xnynzn, i.e, three

binary numbers as input, decide if x+ y = z.

Word Break: Given finite dictionary D ⊆ Σ∪Σ2, decide

if word x ∈ Σ∗ is in D∗.
Grid Path: Given a constant-height grid of cells, some

of which are impassable, decide whether there is a path

from the bottom left corner to the top right corner.

To the authors’ knowledge, no quadratic quantum

speedups for any of the previous problems were known

prior to this publication.

D. Related Work

We are not the first to study regular languages in

a query-complexity setting. One such example is work

in property testing by Alon, Krivelevich, Newman, and

Szegedy. They show that regular languages can be

tested6 with Õ(1/ε) queries [13]. Interestingly, Alon

et al. also show that there exist context-free grammars

which do not admit constant query property testers [13].

In Section VII, we show that context-free languages can

have query complexity outside the trichotomy.

A second example comes from work of Tesson and

Thérien on the communication complexity of regular

languages [14]. As with query complexity, several im-

portant functions in communication complexity happen

to be regular, e.g., inner product, disjointness, greater-

than, and index. They show that for several measures

of communication complexity, the complexity is Θ(1),
Θ(log logn), Θ(log n), or Θ(n). Clearly, there are

many parallels with this work, but surprisingly the

classes of regular languages involved are different.

Also, communication complexity is traditionally more

difficult than query complexity, yet the authors appear

to have skipped over query complexity—we assume

because quantum query complexity is necessary to get

an interesting result.

There are also striking parallels in work of Childs and

Kothari, who conjecture a dichotomy for the quantum

query complexity of minor-closed graph properties [15].

6We say a language L is testable with constantly many queries if
there exists a randomized algorithm such that given a word w ∈ Σn,
the algorithm accepts w if w ∈ L, and the algorithm rejects w if at
least εn many positions of w must be changed in order to create a
word in L. The algorithm is given Õ(1/ε) many queries to w.

Minor-closed graph properties are not, to our knowl-

edge, directly related to regular languages, but they

are morally similar in that both are very uniform—

(almost) every part of the input is treated the same

by the property. Childs and Kothari show that such

properties have query complexity Θ(n3/2), except for

forbidden subgraph properties which are o(n3/2) and

Ω(n), and are conjectured to be Θ(n). Even some of the

proof techniques are similar—the proof that forbidden

subgraph properties are Ω(n) could be phrased in terms

of block sensitivity, like our Ω(
√
n) lower bound for

non-trivial languages.

Finally, we are aware of one more result on the

complexity of star-free languages prior to our work.

It is possible to show that star-free languages have

o(n) quantum query complexity, just barely enough

to separate them from non-star-free languages. This

result is a combination of two existing results: Chandra,

Fortune, and Lipton [16] show that star-free languages

have (very slightly) super-linear size AC0 circuits; Bun,

Kothari, and Thaler show that linear size AC0 circuits

have (moderately) sublinear quantum query complexity

[17].7 This connection was pointed out to us by Robin

Kothari.

II. BACKGROUND

This section introduces both regular languages and

basic query complexity measures and their relationships.

In particular, we will focus on algebraic definitions of

regular languages as they serve as the basis for many

of the results in this paper. Readers familiar with query

complexity can skip much of the introduction on that

topic, but may still want to read Section II-B2 on

extending the complexity measures to larger alphabets.

A. Regular languages

The regular languages are those languages that can

be constructed from ∅, {ε}, and singletons {a} for all

a ∈ Σ using the operations of concatenation (e.g., AB),

union (e.g., A ∪ B), and Kleene star8 (A∗). A regular
expression for a regular language is an explicit expres-

sion for how to construct the language, traditionally

writing | for alternation (instead of union), and omitting

some brackets by writing a for {a} and ε for {ε}.
For example, over the alphabet Σ = {0, 1}, the OR

function can be written as regular expression Σ∗1Σ∗,

7In more detail, the Chandra et al. result shows that every star-free
regular language has O(n log∗ n) size AC0 circuits. On the other
hand, Bun et al. show that every linear size AC0 circuit with depth d

has quantum query complexity O(n1−1/2d ). Therefore, we can pad
the star-free language to have linear size AC0 circuits, and apply the
quantum query algorithm to get an o(n) query algorithm.

8Let A be a set of strings. Define A∗ = {a1 . . . ak : k ≥ 0, ai ∈
A}, that is, the concatenation of zero or more strings in A. We will
also use A+ = {a1 . . . ak : k ≥ 1, ai ∈ A} to capture one or more
strings.
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and the languages of all strings such that there are no

two consecutive 1’s is (0|10)∗(ε|1).
The class of regular languages has extremely robust

definitions and many equivalent characterizations. For

instance, some machine-based definitions9 include those

languages accepted by deterministic finite automata

(DFA), or by non-deterministic finite automata (NFA),

or even by alternating finite automata. Regular lan-

guages also arise by weakening Turing machines, for

example by making the machine read-only or limiting

the machine to o(log logn) space.

For our purposes, some of the most useful definitions

of regular languages are algebraic in nature. In particu-

lar, regular languages arise as the preimage of a subset

of a finite monoid under monoid homomorphism.10

First, we say that language L ⊆ Σ∗ is recognized by

a monoid M if there exists a monoid homomorphism

ϕ : Σ∗ → M (where Σ∗ is a monoid under concatena-

tion) and a subset S ⊆M such that

L = {w ∈ Σ∗ : ϕ(w) ∈ S} = ϕ−1(S).

Theorem 4 (folklore). A language is recognized by a
finite monoid iff it is regular.

In fact, starting from a regular language, we can

specify a finite monoid recognizing it through the so-

called syntactic congruence. Given language L ⊆ Σ∗,
the syntactic congruence is an equivalence relation ∼L

on Σ∗ such that x ∼L y if

∀u, v ∈ Σ∗, uxv ∈ L ⇐⇒ uyv ∈ L.

Thus, ∼L divides Σ∗ into equivalence classes. Further-

more, ∼L is a monoid congruence because u ∼L v and

x ∼L y imply ux ∼L vy. This means the equivalence

classes of Σ∗ under ∼L are actually congruence classes
(because they can be multiplied), defining a monoid ML

which we call the syntactic monoid of L. Finally, it is

not hard to see that the map ϕ : Σ∗ →ML, from a string

to its congruence class, is a homomorphism. Since the

syntactic monoid is also minimal,11 it is also finite for

any regular language by Theorem 4.

The most important subclass of regular languages are

the star-free languages. These languages are recognized

by a variant of regular expressions where complement

(A) is allowed but Kleene star is not. We call these

star-free regular expressions. For convenience, star-free

9We assume familiarity with the basic machine models for regular
languages—see [18] for an introduction.

10A monoid (M, ·, 1M ) is a set M closed under an associative
binary operation · : M×M → M with an identity element 1M ∈ M .
A monoid homomorphism is a map from one monoid to another that
preserves multiplication and identity.

11For every monoid N recognizing L, the syntactic monoid ML

is a quotient of a submonoid of N .

regular expressions sometimes contain the intersection

operation since it follows by De Morgan’s laws.

Note that star-free languages are not necessarily fi-

nite. For example, Σ∗ can also be expressed as ∅, the

complement of the empty language. Similarly, 0∗ is

∅(Σ\{0})∅, the set of strings which do not contain any

symbol other than 0. Once again, an algebraic character-

ization of star-free languages will be particularly useful

for us. First, we say that a monoid M is aperiodic if

for all x ∈ M there exists an integer n ≥ 0 such that

xn = xn+1.

Theorem 5 (Schützenberger [7]). A language is recog-
nized by a finite aperiodic monoid iff it is star free.

We also define a subset of the star-free languages,

which we call the trivial languages. Intuitively, the triv-

ial languages are those languages for which membership

can be decided by the first and last characters of the

input string,12 which we formalize as those languages

accepted by trivial regular expressions. A trivial regular

expression is any Boolean combination of the languages

a|aΣ∗a, aΣ∗b, and ε for a �= b ∈ Σ.

The algebraic characterization of trivial languages

will need to use both the properties of the monoid

and the properties of the homomorphism onto the

monoid. To that end, we say that language L ⊆ Σ∗ is

recognized by a monoid homomorphism ϕ : Σ∗ →M if

L = {w ∈ Σ∗ : ϕ(w) ∈ S} = ϕ−1(S) for some subset

S ⊆ M . Finally, a monoid M is a rectangular band
if for r, s, t ∈ M , each element is idempotent, r2 = r,

and satisfies the rectangular property, rst = rt.

Theorem 6 (Appendix B). A language is recognized
by morphism ϕ such that ϕ(Σ+) is a finite rectangular
band iff it is trivial.

B. Query complexity

This section serves as a brief overview of query

complexity, a model of computation where algorithms

are charged based on the number of input bits they

reveal (the input is initially hidden) rather than the actual

computation being done. To model that the input is

hidden, all query algorithms must access their inputs via

an indexing oracle—a function which takes some index

and outputs the value of the corresponding input bit. We

use the standard notion of oracles in the quantum set-

ting. That is, for oracle function O : {0, 1}n → {0, 1},
the quantum algorithm can apply the (n + 1)-qubit

transformation which flips the last qubit if O applied

to the first n qubits evaluates to 1.

12More generally, trivial languages are decided by a constant size
prefix and/or suffix of the input, but the processing we do to formalize
the trichotomy theorem compresses those substrings to length 1. See
Section III.
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Formally, the quantum query complexity of a function

f : Σ∗ → {0, 1} is a function Q(f) : N → N such that

Q(f)(n) is the minimum number of oracle calls for a

quantum circuit to decide (with bounded error) the value

of f for input strings of length n. An astute reader may

notice that we only defined the indexing function over

bits and that regular languages are defined over arbitrary

finite alphabets Σ. However, one can always transform

the function so that each symbol of Σ is encoded by

�log2 |Σ|� bits. In fact, we will show later that this only

affects the query complexity by a constant factor for

regular languages.

One can similarly define deterministic query complex-
ity (D), bounded-error randomized query complexity
(R), and zero-error randomized query complexity (R0)

by counting the number of input symbols accessed

in these models. Closely related to quantum query

complexity is a notion of approximation by polyno-

mials called approximate degree, denoted d̃eg(f). The

approximate degree of a function f : [k]n → {0, 1}
is the minimum degree of a polynomial p(x1, . . . , xn)
such that |p(x1, . . . , xn) − f(x1, . . . , xn)| ≤ 1

3 for all

x1, . . . , xn ∈ [k].
We conclude by defining several query complex-

ity measures which are useful tools in proving lower

bounds in the more standard models of computation

above. Fix a function f : Σ∗ → {0, 1}. Let x ∈ Σn

be some input. We say that some input symbol xi is

sensitive if changing only xi changes the value of the

function on that input. The sensitivity of x is equal to

its total number of sensitive symbols. The sensitivity of
f , denoted s(f), is the maximum sensitivity over all

inputs x.

Similarly, the block sensitivity at an input is the

maximum number of disjoint blocks (i.e., subsets of the

input bits) such that changing one entire block changes

the value of the function. The block sensitivity of f ,

denoted bs(f), is the maximum block sensitivity over

all inputs x.

A certificate is a partial assignment of the input

symbols such that f evaluates to the same value on

all inputs consistent with the certificate. The certificate

complexity of an input is the minimum certificate size

(i.e., the number of bits assigned in the partial assign-

ment). The certificate complexity of f , denoted C(f),
is the maximum certificate complexity over all inputs.

Finally, when clear from context, we will often let a

language denote its characteristic function when used

as an argument in the various complexity measures.

For example, for language L ⊆ Σ∗, we will write

Q(L) as the quantum query complexity of the function

fL : Σ
∗ → {0, 1} where f(x) = 1 iff x ∈ L.

1) Relationships: There are many relationships be-

tween the different complexity measures that will be

useful throughout this paper. For example, the proposi-

tion below follows from the fact that some models of

computation can easily simulate others.

Proposition 7 ([3]). For all f : {0, 1}∗ → {0, 1},
1

2
d̃eg(f) ≤ Q(f) ≤ R(f) ≤ R0(f) ≤ D(f).

In Section V, we prove a dichotomy theorem for

block sensitivity—it is either O(1) or Ω(n). This is

particularly useful since nearly all complexity measures

are polynomially related to block sensitivity:

Theorem 8 ([19]). For all f : {0, 1}∗ → {0, 1}, we
have the following relationships for block sensitivity:

Lower bounds Upper bounds
C(f) ≥ bs(f) s(f) ≤ bs(f)

d̃eg(f) = Ω(
√
bs(f)) C(f) ≤ bs(f)2

R(f) = Ω(bs(f)) D(f) ≤ bs(f)3.

Notice that for nearly all complexity measures M ,

we have bs(f)a ≤ M(f) ≤ bs(f)b for some constants

a, b ≥ 0. The exception is sensitivity, for which it

is famously open whether a polynomial in sensitivity

upper bounds block sensitivity. There is, however, an

exponential relation due to Simon.

Theorem 9 (Simon [20]). For all f : {0, 1}∗ → {0, 1},
bs(f) = O(s(f)4s(f)).

Corollary 10. If any query complexity measure in
{s, bs, C,D,R0, R,Q, d̃eg} is O(1), then all of them
are O(1).

2) Alphabet size: In this section, we discuss how

alphabet size affects the various query measures. Recall

that the query complexity measures above are usually

defined for Boolean functions. Nevertheless, we would

like to extend the known relationships between the

complexity measures to functions over larger (yet con-

stant) alphabets. While it is true that many of these

relationships generalize without too much work, we

would like to avoid reproving the results one at a time.

Our solution is to simply encode symbols of Σ as

binary strings of length λ := �log |Σ|�. If the size of the

alphabet Σ is not a power of two, we can simply map

the extra binary strings to arbitrary elements of Σ. This

maps a language L ⊆ Σ∗ to a language Lbin ⊆ {0, 1}∗
over binary strings. Since regular languages are closed

under inverse morphism, Lbin is regular if L is regular.

It is also easy to see that almost all complexity

measures are changed by at most a constant factor

when converting to a binary alphabet. For example,

D(L)(n) ≤ D(Lbin)(λn) since for any bit we look at,

there is some symbol we can examine that tells us that

bit. In the other direction, D(Lbin)(n) ≤ λD(L)(λn),
since we can query the entire encoding of any symbol
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we query. Similarly, the encoding changes R0, R, Q, s,

C, and (with some additional work) d̃eg, by at most a

constant factor. The exception is block sensitivity.

It is clear that bs(L)(n) ≤ bs(Lbin)(λn), since for

any sensitive block of symbols there is some way to

flip it, and this changes some block of bits. In the other

direction, a block of sensitive bits gives a block of

sensitive symbols in the obvious way, but then disjoint

blocks of bits will not necessarily map to disjoint blocks

of symbols, so it is difficult to say more for general

languages.

Theorem 11. Let L ⊆ Σ∗ be a regular language.
Then, there exists constant c such that bs(L)(n) ≥
c · bs(Lbin)(λn) for all n.

Proof: We borrow a dichotomy result13 from Sec-

tion V, namely Corollary 28—any flat regular language

has sensitivity either O(1) or Ω(n). Since L is a regular

language and not necessarily flat, we also borrow The-

orem 13 from Section III—membership in L reduces to

membership in some flat language based on some finite

suffix of the input string. Therefore, for every length n,

the sensitivity s(L) is either constant or Ω(n), which

we use to split the proof into two cases.

If the sensitivity s(L) is constant, then s(Lbin) is

also constant. This implies that bs(Lbin) is constant

by Theorem 9. Therefore, bs(L) is also constant since

bs(L)(n) ≤ bs(Lbin)(λn). If the sensitivity s(L) is not

constant, then it is linear by the dichotomy theorem.

Therefore, s(L)(n) ≤ bs(L)(n) ≤ bs(Lbin)(λn) im-

plies block sensitivity is linear for both languages from

which the theorem follows.

With this theorem, every regular language and its en-

coding have the same complexity for all of the measures

we are interested in, up to constants. Therefore, we will

lift known relationships between complexity measures

in the Boolean setting to the general alphabet setting

without further comment.

III. FORMAL STATEMENT

The naı̈ve version of the trichotomy theorem states

that the quantum query complexity of a regular language

is always Θ(1), Θ̃(
√
n), or Θ(n). Unfortunately, this is

not strictly true. We now explain the difficulty and a

technique which we call “flattening” that allows us to

formalize this statement.

Let us see why flattening is necessary. Consider any

language which has large quantum query complexity

(e.g., parity) and take its intersection with (Σ2)∗, the

language of even length strings. When the input length

is odd, we know without any queries that the string

cannot be in the language. When the input length

13Note that Corollary 28 is true for any alphabet size and does not
depend on Theorem 11, so the argument is not circular.

is even, we have to solve the parity problem, which

requires Ω(n) queries. Thus, the query complexity os-

cillates drastically between 0 and Θ(n) depending on

the length of the input. Strictly speaking, this means

the complexity is neither Θ(1), Θ̃(
√
n), nor Θ(n); the

naı̈ve statement of the trichotomy is false.

We want to state the trichotomy only for languages

which are length-independent. Fortunately, a DFA can-

not count how many symbols it reads. With finite state,

the best a DFA can do is count modulo some constant.

Thus, if there is any dependence on length, it is periodic.

Similarly, a language may have periodic dependence

on position. For example, consider the language of all

strings with exactly two 1s. This language is star free

and therefore has an Õ(
√
n) quantum query algorithm.

If we further require the 1s to be an even distance apart,

the language is no longer star free, but clearly has an

Õ(
√
n) quantum query algorithm. Flattening will reduce

this language to a collection of star-free languages, and

in general it will remove periodicities not inherent to

the query complexity of the language.

Before continuing with flattening, we address a differ-

ent way to handle length dependence. That is, redefine

the quantum query complexity of a function to be

the minimum number of quantum oracle calls needed

to compute the function on inputs of length up to
n (rather than exactly n). For this definition, notice

that the quantum query complexity is nondecreasing. In

Appendix A we show that trichotomy theorem holds for

all regular languages under this definition as a simple

consequence of Theorem 1, the trichotomy theorem for

flat languages. To be clear, we will continue to use the

standard definition of quantum query complexity for the

remainder of the paper.

A. Flattening

The main idea behind flattening is to eliminate a

language’s periodicities by dividing the strings into

blocks. For any string x ∈ Σ∗ of length kn, we can

reimagine x as a length-n string over Σk. This operation

can be applied to a language by keeping only strings of

length divisible by k and projecting them to the alphabet

Σk. Flattening a regular language applies this operation

to the language for some carefully chosen k:

Definition 12. Let L ⊆ Σ∗ be a regular language

recognized by the morphism ϕ : Σ∗ → ML onto its

syntactic monoid. Let Σj denote the non-empty strings

of length divisible by j, and let k be the least integer

such that ϕ(Σk) = ϕ(Σnk) for all n ≥ 1. We say L is

flat if k = 1.

Nevertheless, we argue that the language and its

flattened version are effectively the same since we are
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simply blocking characters together. We formalize this

in the following theorem.

Theorem 13. Let L ⊆ Σ∗ be a regular language recog-
nized by a monoid M . There exists an integer k ≥ 2 and
a finite family of flat regular languages {Li}i∈I over
alphabet Σk such that testing membership in L reduces
(in fewer than k queries) to testing membership in Li for
some i. Furthermore, the same monoid M recognizes L
and every Li (although there may be a simpler monoid
which recognizes Li).

The full proof is in Appendix A with the rest of the

details about flattening a language. After flattening, the

key property of the language, which we now refer to as

flat, is the following:

Property 14. Let L ⊆ Σ∗ be a flat regular language.
For any non-empty string x ∈ Σ+, and any non-zero
length k > 0, there exists a string y ∈ Σk of length k
such that for any u, v ∈ Σ∗,

uxv ∈ L ⇐⇒ uyv ∈ L.

That is, x and y belong to the same congruence class.

In other words, for any non-empty string x, we can

replace (substring) occurrences of x with some string of

every (non-zero) length, without changing membership

in the language. Notice that a flat regular language

cannot have a length dependence, otherwise we would

replace the first few letters with something slightly

longer or shorter to reduce the problem to whichever

nearby length is easiest.

To summarize, any regular language can be reduced

(or flattened) to a collection of flat regular languages.

Some of these languages may be easier than others, but

they are all length-independent, and thus suitable for

our trichotomy theorem. See Appendix A for details.

B. Formal Statement of Main Result

We are now ready to formally state Theorem 1.

Technically, there are a few regular languages (even flat

languages), which can be decided with zero queries,

strictly from the length of the input. This divides the

languages into the following four classes (i.e., a tetra-
chotomy).

Theorem 1. Every flattened regular language has quan-
tum query complexity 0, Θ(1), Θ̃(

√
n), or Θ(n) accord-

ing to the smallest class in the following hierarchy that
contains the language.
• Degenerate: The four languages ∅, ε, Σ∗, or Σ+.
• Trivial: The set of languages which have trivial

regular expressions.
• Star free: The set of languages which have star-free

regular expressions.

• Regular: The set of languages which have regular
expressions.

Note that each class is contained in the next. Fur-
thermore, the quantum time complexity of each class
matches its query complexity.

Nevertheless, we refer to this classification as a

trichotomy. We either think of degenerate and trivial

languages under the category of “constant query regular

languages” or, alternatively, disregard the degenerate

languages entirely because they are uninteresting.

As it turns out, the regular expression descriptions,

some of which were already mentioned in Section II,

are not particularly useful for the classification. We will

prefer the following algebraic/monoid definitions of the

languages, and use them throughout. We prove they

coincide with the regular expression characterizations

in Appendix B.

Theorem 15. Let L be a regular language.
• L is degenerate iff it is recognized by morphism ϕ

such that |ϕ(Σ+)| = 1.
• L is trivial iff it is recognized by morphism ϕ such

that ϕ(Σ+) is a finite rectangular band.
• L is star free iff it is recognized by a finite aperiodic

monoid.
• L is regular iff it is recognized by a finite monoid.

C. Structure of the proof

We separate the proof of the trichotomy into two

natural pieces: upper bounds (Section IV) and lower

bounds (Section VI). The upper bounds are derived di-

rectly from the monoid characterizations of the various

classes. Given a flat language, we construct explicit

algorithms using at most 0 queries for degenerate lan-

guages, 2 queries for trivial languages, Õ(
√
n) queries

for star-free languages, and n queries for regular lan-

guages.

The lower bound section aims to prove that these

are the only possible classes. First, we show that any

non-degenerate language requires at least one quantum

query. We then show that any nontrivial language re-

quires ω(1) quantum queries. At this point, we will

appeal to a dichotomy theorem for the block sensitivity

of regular languages, which we prove in Section V.

From this dichotomy and standard relationships between

the complexity measures, we get that any regular lan-

guage requiring ω(1) quantum queries actually requires

Ω(
√
n) queries. Finally, we show that any non-star-free

language requires Ω(n) queries, completing the proof.

IV. UPPER BOUNDS

In this section, we will describe the algorithms for

achieving the query upper bounds in Theorem 1. As a

warm-up, we will first consider every class besides the
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star-free languages. Each algorithm will follow trivially

from the monoid characterization of each class.

Proposition 16. Any regular language has an O(n)-
time deterministic algorithm. The trivial languages have
constant-time deterministic algorithms. The degenerate
languages have 0-query deterministic algorithms.14

Proof: Let L ⊆ Σ∗ be a regular language. Let

ϕ be the homomorphism onto its syntactic monoid

ML such that L = {ϕ−1(s) : s ∈ S ⊆ ML}.
Let x = x1 . . . xn ∈ Σn. We have that x ∈ L iff

ϕ(x1)ϕ(x2) . . . ϕ(xn) ∈ S. Since ML is finite and ϕ is

specified by a finite mapping from characters to monoid

elements, this product is computable in linear time.

Suppose L is trivial. Consider input x = ayb where

a, b ∈ Σ and y ∈ Σ∗. By the rectangular band property,

we have ϕ(x) = ϕ(a)ϕ(y)ϕ(b) = ϕ(a)ϕ(b). That is,

x ∈ L iff ϕ(ab) ∈ S.

Suppose L is degenerate. Consider some input x ∈
Σ∗. If |x| = 0, then x ∈ L iff ϕ(ε) ∈ S. If |x| > 0,

then ϕ(x) ∈ ϕ(Σ+) = {s} so x ∈ L iff s ∈ S. Since

the query algorithm knows the length in advance, no

queries are needed to determine the membership of x.

Of course, the existence of these deterministic algo-

rithms implies their corresponding query upper bounds

as well. Much more interesting is the Õ(
√
n) quantum

algorithm for star-free languages to which the remainder

of this section is dedicated. Much like Proposition 16,

we will use the monoid characterization as our starting

point for the algorithm; however, before delving directly

into the details of the algorithm, we give some tech-

niques and ideas that will be pervasive throughout.

A. Proof techniques

In this section, we introduce a basic substring

search operation and a decomposition theorem (due to

Schützenberger) for aperiodic monoids.

Splitting and infix search

Consider the language L = Σ∗20∗2Σ∗ over the alphabet

Σ = {0, 1, 2}, that is, the problem of finding a substring

of the form 20∗2. We call the problem of finding a

contiguous substring satisfying a predicate infix search.

Since L is star free, our trichotomy theorem implies

that infix search for the language 20∗2 is possible with

Õ(
√
n) queries.

Consider the following algorithm for L: Grover

search for an index i in the middle of a substring 20∗2,

searching outwards to verify that there is a substring

of the form 20∗ immediately before the index (suffix

14Note, the power of constant-time algorithms depends on the
particular model of computation. We assume a RAM model where
the length of the input string is given, and arithmetic on indices can
be performed in constant time.

search) and a substring of the form 0∗2 immediately

after (prefix search). More precisely, we can use Grover

search to check whether a substring is all 0s, then binary

search to determine how far the 0s extend on either side

of the index, and finally check for 2s on either end.

We introduce a few ideas necessary to prove this

algorithm for L is efficient, and to generalize it to arbi-

trary languages. The first tool we need is Grover search,

to help us search for the position of the substring. In

particular, we use a version of Grover search which is

faster when there are multiple marked items.15

Theorem 17 (Grover search). Given oracle access to
a string of length n which is 1 on at least t ≥ 1
indices, there exists a quantum algorithm which returns
a random index on which the oracle evaluates to 1 in
O(

√
n/t) queries with constant probability.

Next, the solution to Σ∗20∗2Σ∗ used the fact that

given an index, we can search outwards for a substring

20∗ before the index and 0∗2 after. Notice that the index

has “split” the regular language 20∗2 into two closely

related languages. It is not clear every language has

this property, so we introduce a notion of splitting for

arbitrary regular languages.

Definition 18. We say that a language L ⊆ Σ∗

splits if there exists a constant k and languages

A1, . . . , Ak, B1, . . . , Bk such that L =
⋃k

i=1 AiBi and

for all x ∈ L and decompositions x = uv, there exists

1 ≤ i ≤ k such that u ∈ Ai and v ∈ Bi. We say L splits
as

⋃k
i=1 AiBi to succinctly introduce the languages.

Formally, 20∗2 splits as (20∗2)ε ∪ (20∗)(0∗2) ∪
ε(20∗2). In fact, every star-free language L ⊆ Σ∗ splits

as
⋃k

i=1 AiBi where the Ai and Bi are also star free. We

will prove this in the next section in Theorem 24. We

delay the proof until we have the definitions to show that

the languages Ai and Bi are in some sense no harder

than the language L itself.

Supposing we can determine membership for Σ∗Ai

and BiΣ
∗ efficiently, a combination of Grover search

15 In this section, we will need the speedup from multiple marked
items. However, whenever we require the speedup, the marked items
will be consecutive. In this case, we can derive the same speedup from
any Õ(

√
n) unstructured search algorithm by searching over indices

at fixed intervals (a “grid” on the input). In more detail: we search
for a grid size G, starting from n and halving until G is less than
the number of consecutive marked items (which is unknown). Hence,
the set of indices divisible by G will intersect some marked item and
the search on n/G indices will succeed in Õ(

√
n/G) queries. Since

the last search dominates the runtime, the entire procedure requires
Õ(

√
n/t) queries.

In fact, there are other models of computation where unstructured
search uses Õ(nc) queries for c �= 1/2 (for instance, [9]). It will
turn out that the procedure described above still accelerates search for
multiple consecutive marked items. This will translate to an Õ(nc)-
query algorithm for star-free languages. In particular, the runtime in
Theorem 19 becomes Õ(nc).
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and exponential search will solve the infix search prob-

lem, as shown below.

Theorem 19 (Infix search). Let language L ⊆ Σ∗ split
as

⋃k
i=1 AiBi. Suppose Q(Σ∗Ai) and Q(BiΣ

∗) are
Õ(
√
n) for all i ∈ {1, . . . , k}. Then, Q(Σ∗LΣ∗) =

Õ(
√
n).

Proof: We perform an exponential search—

doubling � with � initially set to 1—until the algorithm

succeeds. Let x be the input and suppose there is a

substring of x belonging to L of length at least � and at

most 2�, for some power of two �. Search for an index j
such that xj−2� · · ·xj−1 ∈ Σ∗Ai and xj · · ·xj+2�−1 ∈
BiΣ

∗ for some i = 1, . . . , k. This implies the substring

xj−2� · · ·xj+2�−1 is in Σ∗AiBiΣ
∗ ⊆ Σ∗LΣ∗.

Since testing each index requires at most Õ(
√
�)

queries and k is constant, there are Õ(
√
�) queries

to the string to test a particular index j. Recall that

we assumed the matching substring has length at least

�, and thus, there are � indices of x for which the

prefix/suffix queries will return true. Hence, there are

at most O(
√

n/�) total Grover iterations (Theorem 17),

and the final algorithm requires only Õ(
√
n) queries.

Aperiodic monoids and Schützenberger’s proof

At its core, the algorithm for star-free languages uses

one direction of Schützenberger’s theorem for star-free

languages, which we recall from Section II.

Theorem 5. If language L is recognized by a finite
aperiodic monoid, then L is star free.

We will show that Schützenberger’s proof can be

modified to produce a Õ(
√
n) algorithm for any star-

free language starting from the aperiodic monoid rec-

ognizing it. Central to this modification will be the

notion of splitting introduced in the previous section.

In this section we give the basic prerequisites and

outline for Schützenberger’s proof which will eventually

culminate in a formal justification of splitting based on

the properties of aperiodic monoids.

Let M be a finite aperiodic monoid recognizing

some language L ∈ Σ∗. Recall that L = ϕ−1(S) =⋃
m∈S ϕ−1(m), where ϕ : Σ∗ → M is a surjective

monoid homomorphism, and S ⊆M is some subset of

the monoid. Thus, to show that L is star free, it suffices

to show that ϕ−1(m) is star free for each m ∈M .

One of the central ideas in Schützenberger’s proof is

to consider these languages in order of the size of the

ideal16 they generate. Formally, Schützenberger’s proof

16Let M be a monoid and I ⊆ M be a subset. We say I is a right
ideal if IM = I , I is a left ideal if MI = I , and I is an ideal if
MIM = I . For example, for any m ∈ M , mM is a right ideal,
Mm is a left ideal, and MmM is an ideal.

is an induction on the rank of m, defined as

ρ(m) := |M\MmM |,

that is, the number of elements not in MmM = {amb :
a ∈ M, b ∈ M}. For example, ρ(1) = 0. Rank is a

particularly useful measure of progress in the induction

due to the following proposition:

Proposition 20. For any p, q ∈ M we have
ρ(p), ρ(q) ≤ ρ(pq).

Proof: MpqM ⊆ MpM , so M\MpqM ⊇
M\MpM . Therefore, ρ(p) ≤ ρ(pq). Similarly, ρ(q) ≤
ρ(pq).

It will turn out that only the identity of the monoid

M has rank 0. First, we show that a product of monoid

elements is the identity if and only if every element is

the identity.

Proposition 21. For elements p1, · · · , pn ∈ M in an
aperiodic monoid M , if p1 · · · pn = 1 then p1 = · · · =
pn = 1.

Proof: It suffices to prove the result for n = 2
and induct. Suppose 1 = pq, and then by repeated

substitution,

1 = pq = p1q = p2q2 = · · · = piqi,

for any i. Since the monoid is aperiodic, there exists

n ≥ 0 such that pn+1 = pn. Therefore,

p = p(pnqn) = pn+1qn = pnqn = 1.

By symmetry, q is also the identity.

Corollary 22. Let M be a finite aperiodic monoid. For
any m ∈M , ρ(m) = 0 iff m = 1.

Proof: Suppose that ρ(m) = 0 for some monoid

element m ∈M . By the definition of rank, we have that

M = MmM , and in particular 1 ∈M implies 1 = amb
for some a, b ∈M . By Proposition 21, a = b = m = 1.

It is not hard to see that ϕ−1(1) is star free. For

ρ(m) > 0, Schützenberger decomposes ϕ−1(m) into a

Boolean combination of star-free languages with strictly

smaller rank, completing the proof. To avoid recapitu-

lating all of Schützenberger’s proof, we simply quote

the main decomposition theorem.

Theorem 23 (Decomposition Theorem). For any m ∈
M ,

ϕ−1(m) = (UΣ∗ ∩ Σ∗V )\(Σ∗CΣ∗ ∪ Σ∗WΣ∗).
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where

U =
⋃

(r,a)∈E
ϕ−1(r)a

V =
⋃

(a,r)∈F
aϕ−1(r)

C = {a ∈ Σ : m /∈Mϕ(a)M}
W =

⋃
(a,r,b)∈G

aϕ−1(r)b

and

E = {(r, a) ∈M × Σ : rϕ(a)M = mM, rM �= mM},
F = {(a, r) ∈ Σ×M : Mϕ(a)r = Mm,Mr �= Mm},
G = {(a, r, b) ∈ Σ×M × Σ :

m ∈ (Mϕ(a)rM ∩Mrϕ(b)M)\Mϕ(a)rϕ(b)M}.
Furthermore, for all r ∈ M appearing in E, F , or G,
ρ(r) < ρ(m).

Although Theorem 23 is sufficient to prove

Schützenberger’s theorem, the same inductive approach

does not immediately lead to a quantum algorithm

for star-free languages. For example, it is not clear

how to efficiently decide membership in UΣ∗ given

an algorithm for membership in U .17 In the next

section, we will strengthen our induction hypothesis

such that queries of this type are possible. Let us

conclude this section with a splitting theorem based on

Schützenberger’s notion of rank.

Theorem 24. Let L = ϕ−1(m) for monoid element
m ∈M . Then, L splits as⋃

pq=m

ϕ−1(p)ϕ−1(q).

Furthermore, for all elements of the union, ρ(p), ρ(q) ≤
ρ(m).

Proof: We first verify equality. We have that L ⊇
∪pq=mϕ−1(p)ϕ−1(q) since

ϕ(ϕ−1(p)ϕ−1(q)) = pq = m.

Furthermore,⋃
pq=m

ϕ−1(p)ϕ−1(q) ⊇ ϕ−1(m)ϕ−1(1) = L.

By Proposition 20, we get that ρ(p), ρ(q) ≤ ρ(m).

17We will show this is possible, but it requires that the language
is regular. In general, a Õ(

√
n)-query algorithm for a language

L does not imply a Õ(
√
n)-query algorithm for LΣ∗. We have

a counterexample: consider the language L of strings of the form
#x0#x1#x2# · · ·#xk# such that all xi are binary strings of the
same length and xi = xk for some i < k. L can be decided in
Õ(

√
n) queries by a Grover search. There is a clear reduction from

element distinctness to LΣ∗, therefore Q(LΣ∗) is at least Ω(n2/3).

B. Õ(
√
n) algorithm for star-free languages

Recall that our objective is to create an Õ(
√
n)

algorithm for language ϕ−1(m), where m ∈ M is an

arbitrary monoid element. We mimic Schützenberger’s

proof of Theorem 5 by constructing algorithms for each

ϕ−1(m) in the order of the rank of m. Implicit in

such an argument is a procedure that must convert an

efficient query algorithm for ϕ−1(r) into an efficient

query algorithm for ϕ−1(r)aΣ∗ for (r, a) ∈ E.

Notice that for (r, a) ∈ E, we have (by definition)

that rM � rϕ(a)M . That is, the prefix of the input

string matching ϕ−1(r)a is not an arbitrary location in

the string, but one of finitely many points in the string

where the right ideal strictly decreases. We use this to

our benefit in the following key lemma.

Lemma 25. Let ϕ : Σ∗ → M be a monoid homo-
morphism. Suppose there exists an Õ(

√
n) membership

algorithm for ϕ−1(m) for any m ∈ M such that
ρ(m) ≤ k. Then, there exists an Õ(

√
n) algorithm to

test membership in L := ϕ−1(r)aΣ∗ for any r ∈ M
and a ∈ Σ such that ρ(r) ≤ k and rM � rϕ(a)M .

Proof: Consider a string x ∈ Σ∗. The right ideal

ϕ(x1 · · ·xi)M represents the set of monoid elements we

could reach after reading x1 · · ·xi. These right ideals

descend as we read more of the string:

M = ϕ(ε)M ⊇ ϕ(x1)M ⊇ ϕ(x1x2)M ⊇ · · ·
⊇ ϕ(x1 · · ·xn)M = ϕ(x)M.

If x ∈ L, then there is some prefix y in ϕ−1(r) followed

by an a. By assumption, ϕ(y)M = rM � rϕ(a)M =
ϕ(ya)M , so this is a point in the string where the right

ideal strictly descends.

Notice that if r were contained in rϕ(a)M , then

rM ⊆ rϕ(a)M . However, we have rM � rϕ(a)M
by assumption so, we conclude that r /∈ rϕ(a)M . In

other words, the right ideal descends from something

containing r (namely rM ), to something not containing

r (namely rϕ(a)M ).

To decide whether x belongs to L, it suffices to

find the longest prefix x1 · · ·xi such that ϕ(x1 · · ·xi)M
contains r. If xi+1 = a and x1 · · ·xi ∈ ϕ−1(r), then

the string is in L, otherwise there is no other possible

prefix that could match ϕ−1(r)a, so the string is not in

L.

Define a new language K where

K :=
⋃

s:r∈sM
ϕ−1(s).

This is precisely the language of strings/prefixes that

could be extended to strings in ϕ−1(r). We can decide

membership in K with O(
√
n) queries because r ∈ sM

implies MrM ⊆MsM and hence ρ(s) ≤ ρ(r) ≤ k.
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It is also clear that K is prefix closed: if x1 · · ·xi ∈
K then r ∈ ϕ(x1 · · ·xi)M ⊆ ϕ(x1 · · ·xi−1)M , so

x1 · · ·xi−1 ∈ K as well. The empty prefix is in K, and

by binary search we can find the longest prefix in K.

Then, as discussed above, we complete the algorithm

by checking whether the prefix is (i) in ϕ−1(r) and (ii)

followed by an a. If so, then we report x ∈ L, otherwise

x /∈ L.

We are now ready to state and prove our main

theorem.

Theorem 26. For any star-free language L ⊆ Σ∗, there
exists a quantum algorithm which solves membership in
L with Õ(

√
n) queries and Õ(

√
n) time.

Proof: Let L = ∪m∈Sϕ−1(m) for some homomor-

phism ϕ : Σ∗ → M to an aperiodic finite monoid M ,

and S ⊆ M . We will show that there is an algorithm

for each ϕ−1(m) by induction on the rank of m.

Suppose first that ρ(m) = 0, implying that m is the

identity by Corollary 22. From Proposition 21, we know

that a string is in ϕ−1(1) if every character is in ϕ−1(1),
i.e.,

ϕ−1(1) = {a ∈ Σ : ϕ(a) = 1}∗.
We can Grover search for a counterexample in O(

√
n)

time to decide membership in ϕ−1(1).

Now suppose ρ(m) is nonzero. Our main tool is

Theorem 23, which decomposes ϕ−1(m) into a Boolean

combination of languages,

ϕ−1(m) = (UΣ∗ ∩ Σ∗V )\(Σ∗CΣ∗ ∪ Σ∗WΣ∗),

where U, V, C,W ⊆ Σ∗ are as they appear in that

theorem statement. We will also make reference to sets

E,F,G from Theorem 23.

To give an algorithm for ϕ−1(m), it suffices to give

an algorithm for each component of this Boolean com-

bination: UΣ∗, Σ∗V , Σ∗CΣ∗ and Σ∗WΣ∗. Since U , V ,

and W are finite unions of simpler languages, it suffices

to consider each language in the union separately.

The first component is UΣ∗, but we have already

done most of the work for UΣ∗ in Lemma 25. Recall

UΣ∗ =
⋃

(r,a)∈E
ϕ−1(r)aΣ∗

where E = {(r, a) ∈M × Σ : rϕ(a)M = mM, rM �=
mM}. This gives us an Õ(

√
n)-time algorithm for

UΣ∗. By symmetry, there also exists an algorithm for

Σ∗V . Recall that C = {a ∈ Σ : m /∈ Mϕ(a)M} is

a finite set of characters, so membership in Σ∗CΣ∗ is

decided by a Grover search for any of those characters.

The last component is Σ∗WΣ∗, which consists of

a union of languages of the form aϕ−1(r)b where

(a, r, b) ∈ G. That is, m ∈ Mϕ(a)rM and m ∈

Mrϕ(b)M but m /∈ Mϕ(a)rϕ(b)M . We can use

Theorem 24 to split W into⋃
pq=r

aϕ−1(p)ϕ−1(q)b.

We hope to apply Lemma 25 to ϕ−1(q)bΣ∗ and (in

reverse) Σ∗aϕ−1(p), then use infix search (i.e., Theo-

rem 19) to try to find a substring in W , but first we need

to verify that all the preconditions of these theorems are

met—namely, that the rank of p and q are small, and a
and b cause the ideal to descend.

First, the decomposition theorem (Theorem 23) gives

that ρ(r) < ρ(m), and by Proposition 20, ρ(p), ρ(q) ≤
ρ(r). Next, suppose that qϕ(b)M = qM . It follows that

Mϕ(a)rM = Mϕ(a)pqM = Mϕ(a)pqϕ(b)M

= Mϕ(a)rϕ(b)M,

but we know m is in Mϕ(a)rM and not in

Mϕ(a)rϕ(b)M , so we have a contradiction from the

definition of G. Hence, qϕ(b)M �= qM , and by a sym-

metric argument Mϕ(a)p �= Mp, so we have Õ(
√
n)-

query algorithms for Σ∗aϕ−1(p) and ϕ−1(q)bΣ∗ from

Lemma 25. It follows that there is a Õ(
√
n) algorithm

for Σ∗WΣ∗ as well.

This finishes the main theorem for this section. See

Algorithm 1 for pseudocode.

V. DICHOTOMY THEOREMS

In this section, we prove a dichotomy result for block

sensitivity. This will be important for the next logical

step in the trichotomy theorem: proving lower bounds to

match our upper bounds in Section VI. The core of this

section is a dichotomy theorem for sensitivity, namely

that the sensitivity is either O(1) or Ω(n). This implies

an identical dichotomy for block sensitivity, from which

the Ω(
√
n) lower bound on approximate degree follows

for all nontrivial languages.

Regular languages are closed under an astonishing

variety of natural operations. Our Ω(
√
n) lower bound

begins with one such closure property. Recall that a

symbol in a string is sensitive with respect to some input

x if changing only that symbol changes the value of the

function.

Theorem 27. Let L ⊆ Σ∗ be a regular language. Define
the language SL ⊆ {0, 1}∗ of all sensitivity masks as
follows.

SL := {y ∈ {0, 1}∗ : there exists x ∈ Σ∗ such that

|x| = |y| and xi is sensitive in L iff yi = 1}
Then, SL is regular.

Proof: This is a straightforward application of non-

determinism, but since there are a few levels, let us
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Algorithm 1 Star Free Language Algorithm


 The monoid M , alphabet Σ, and homomorphism ϕ : Σ∗ →M are fixed and known.

function INFIXSEARCH(x = x[1..n],pred)


 Searches for a substring matching the predicate pred. See Theorem 19.

for � = 1, 2, 4, . . . , n do
Grover search for i such that pred(x[min(1, i− �+ 1)..i], x[i+ 1..max(i+ �, n)] is true

if i found then return TRUE

return FALSE

function PREFIXCHECK(x, r, a)


 This function decides whether x ∈ ϕ−1(r)aΣ∗ as described in Lemma 25.

H ← {s ∈M : r ∈ sM}
Binary search for largest 1 ≤ i < n satisfying

∨
s∈H MAIN(x[1..i], s)

return (x[i+ 1] = a) ∧MAIN(x[1..i], r)

function RIGHTIDEAL(x, m)


 Checks if x is in UΣ∗.
E ← {(r, a) ∈M × Σ : rϕ(a)M = mM, rM �= mM}
for (r, a) ∈ E do

if PREFIXCHECK(x, r, a) then return TRUE

return FALSE


 Define SUFFIXCHECK and LEFTIDEAL likewise. Details omitted.

function IDEAL(x,m)


 Checks if x is in Σ∗WΣ∗.
G← {(a, r, b) ∈ Σ×M × Σ : m ∈ (Mϕ(a)rM ∩Mrϕ(b)M)\Mϕ(a)rϕ(b)M}
for (a, r, b) ∈ G do

if INFIXSEARCH(x, (x1, x2) �→
∨

pq=r SUFFIXCHECK(x1, p, a) ∧ PREFIXCHECK(x2, q, b)) then
return TRUE

return FALSE

function MAIN(x = x[1..n], m)


 Decides whether x is in ϕ−1(m).
if m = 1 then

return ¬ GROVERSEARCH({1, . . . , n}, i �→ ϕ(x[i]) �= 1)

else

return

⎧⎪⎪⎨
⎪⎪⎩

LEFTIDEAL(x,m) ∧
RIGHTIDEAL(x,m) ∧
¬IDEAL(x,m) ∧
¬GROVERSEARCH({1, . . . , n}, i �→ m /∈Mϕ(x[i])M)

spell out the details. First, let us show that the following

language is regular:

S′L := {(x1, y1) · · · (xn, yn) ∈ (Σ×{0, 1})∗ : y1 · · · yn
indicate the sensitive bits of x1 · · ·xn}.

How do we go about proving a string is not in S′L?

There are two possibilities:

• Find some i such that yi = 0, but changing xi flips

membership in the language.

• Find some i such that yi = 1, but all possible changes

to xi fail to flip membership in the language.

Each of these can be checked by a co-non-deterministic

finite automaton. In the first case, we guess a position

i where yi = 0, guess the new value of xi, simulate

the DFA on both paths and verify that they produce

different outcomes. In the second case, we also guess a

position i where yi = 1, but now simulate the original

DFA for all possible values of xi and ensure that they

are the same. Since there is a coNFA for S′L, we get
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that SL is regular.

Now use non-determinism to reduce S′L to SL: a

string y1 · · · yn ∈ {0, 1}∗ is in SL if we can guess

the accompanying x1 · · ·xn ∈ Σ∗ that puts it in S′L.

We conclude that there is an NFA accepting SL, and

therefore SL is regular.

Corollary 28. Let L be a flat regular language. The
sensitivity of L is either O(1) or Ω(n).

Proof: Consider the language of sensitivity masks

SL as defined in Theorem 27. Notice that for a given

length n, the sensitivity of L is exactly the weight of

the maximum Hamming weight string in SL. Suppose

the sensitivity is not O(1). Therefore, for any k, there

exists a string yk ∈ SL with Hamming weight at least

k.

Since SL is a regular language, it has some pumping

length18 p. We can pump down any block of p consec-

utive zero bits in yk such that at least 1
p fraction of the

remaining bits are sensitive (or n ≤ kp). This implies

that sensitivity is Ω(n) for infinitely many n. We can

also pump down arbitrary blocks of p bits to decrease

the length, so we can make sure sensitivity is Ω(n) for at

least 1
p fraction of n. Finally, since L is flat, congruence

classes contain strings of all length, which allows us to

replace some substring of a Ω(n) sensitive string with

a slightly longer or shorter string. In this way, we can

construct strings of sensitivity Ω(n) for all n.

Corollary 29. Let L be a flat regular language. The
block sensitivity of L is either O(1) or Ω(n).

Proof: By Corollary 28, sensitivity is either O(1)
or Ω(n). If sensitivity is O(1) then block sensitivity and

all other measures are O(1) by Corollary 10. However,

s(f) ≤ bs(f), so if sensitivity is Ω(n) then block

sensitivity is Ω(n). It follows that block sensitivity is

either O(1) or Ω(n).
It follows that the certificate complexity, deterministic

complexity, randomized zero-error complexity, random-

ized complexity are also O(1) or Ω(n).

Theorem 30. Let L be a flat regular language. The
approximate degree of L is either O(1) or Ω(

√
n).

Proof: Consider block sensitivity. If block sensitiv-

ity is O(1), then so are approximate degree and quantum

query complexity by Corollary 10. If block sensitivity

is Ω(n), then we recall that d̃eg(L) = Ω(
√
bs(L)) =

Ω(
√
n) by Theorem 8. Furthermore, 1

2 d̃eg(L) ≤ Q(L)

18Let L ⊆ Σ∗ be a regular language. There exists a finite pumping
length p > 0 such that for all strings w ∈ Σ∗ with |w| ≥ p there
exists a decomposition w = xyz for x, y, z ∈ Σ∗ and |y| > 0,
w ∈ L ⇐⇒ (∀i ≥ 0, xyiz ∈ L). This (or a similar statement) is
called the “pumping lemma” since the substring y may be repeated
(“pumped”) arbitrarily many times.

by Proposition 7, so quantum query complexity is also

Ω(
√
n).

It follows that Q(L) is either O(1) or Ω(
√
n).

VI. LOWER BOUNDS

In this section, we will show matching lower bounds

for the algorithms described in Section IV. In fact,

since approximate degree is a lower bound for quantum

query complexity, it suffices to prove lower bounds

for approximate degree, which is what we will do.

Let us start with simplest case—lower bounds on non-

degenerate languages.

Proposition 31. Let L be a flat regular language. If L
is not degenerate, then d̃eg(L) ≥ 1.

Proof: Let ϕ : Σ∗ → ML be the homomorphism

onto the syntactic monoid of L such that L = {ϕ−1(s) :
s ∈ S ⊆ ML}. Since L is not degenerate, there

exists x, y ∈ Σ+ such that ϕ(x) �= ϕ(y). By the

definition of the syntactic congruence, there exist strings

u, v ∈ Σ+ such that u ∈ L but v �∈ L. Since L
is flat, each set ϕ−1(ϕ(u)) and ϕ−1(ϕ(v)) contains

strings of all positive lengths. Therefore, any polynomial

approximating the membership function for L cannot be

constant.

For the trivial languages, we first prove a theorem

about their deterministic complexity. Recall that a de-

terministic query algorithm is a decision tree: on input

x ∈ Σn, the algorithm queries a particular index of

the input. Based on the value of x at that index (one

of finitely many possible choices), the algorithm either

deduces the membership of x in L or decides to query

a different index. The process is repeated until the

algorithm can decide membership. The height of the

decision tree is the deterministic query complexity of

L. In particular, if the deterministic query complexity

of L is constant, then the height of the decision tree is

constant, which implies that the entire tree has constant

size (since each node in the tree has constant fan-out).

Theorem 32. Let L be a flat regular language. If L is
not trivial, then D(L) = ω(1).

Proof: We will argue the contrapositive. Suppose

D(L) = O(1). That is, for any input x ∈ Σn, the

deterministic algorithm queries a constant-size set of in-

dices to determine membership. Clearly, as n increases,

there will be large gaps between the indices which

are queried. Since L is flat we have two important

consequences: first, any nonempty string which is not

queried can correspond to any non-identity element of

the syntactic monoid; second, we may assume that any

gap of nonzero size can be expanded or contracted to

any other nonzero size. It follows that we can move the

queries made by the deterministic algorithm (provided
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that we do not create or destroy any gaps) without

changing its correctness.

Therefore, let us move all the queries as close to

the start or end of the input as possible, maintaining

1-symbol gaps where necessary. Since there are only

constantly many queries, there exists a deterministic al-

gorithm which determines membership of x by querying

c symbols from the start and end of x for some constant

c.
Let ϕ be the homomorphism from Σ∗ onto the syntac-

tic monoid ML such that L = {ϕ−1(s) : s ∈ S ⊆ML}.
For x ∈ Σ∗ of length greater than 2c, write x = uwv
such that |u| = |v| = c. We have that membership of x
in L is determined completely by prefix u and suffix v.

We claim that this implies that ϕ(uwv) = ϕ(uw′v)
for all w ∈ Σ∗. For suppose that ϕ(uwv) �= ϕ(uw′v).
By the definition of the syntactic congruence, there

exists strings a ∈ Σ∗ and b ∈ Σ∗ such that auwvb ∈ L
and auw′vb �∈ L (or vice versa). Since |au| > 0
and |bv| > 0, there exists strings au, bv ∈ Σc such

that ϕ(au) = ϕ(au) and ϕ(bv) = ϕ(bv). However,

auwbv ∈ L and auw
′bv �∈ L contradicts the fact that

membership in L is determined by a prefix and suffix of

length at most c. In particular, this holds when w′ = ε.

Let us now show that ϕ(Σ+) is a rectangular band.

Let x, y, z ∈ Σ+ be nonempty strings, and let x′, z′ be

strings of length c such that ϕ(x) = ϕ(x′) and ϕ(z) =
ϕ(z′). We have that

ϕ(xyz) = ϕ(x′yz′) = ϕ(x′z′) = ϕ(xz).

Finally, we show that ϕ(Σ+) is idempotent. Let x ∈
Σ+. By flatness, we have that ϕ(x) = ϕ(awb) for

strings a, b ∈ Σc. Therefore, we have

ϕ(x) = ϕ(awb) = ϕ(ab) = ϕ(abab) = ϕ(xx),

where the middle two equalities come from substituting

w = ε and w = ba, respectively.

Corollary 33. Let L be a flat regular language. If L is
not trivial, then d̃eg(L) = Ω(

√
n).

Proof: The corollary follows almost immediately

from Theorems 30 and 32. Suppose d̃eg(L) = o(
√
n).

We wish to show that L is trivial. If D(L) = O(1),
then we are done by Theorem 32. If D(L) = ω(1),
then approximate degree is also non-constant by Corol-

lary 10. But if d̃eg(L) is non-constant, then we must

have d̃eg(L) = Ω(
√
n) by Theorem 30.

Finally, we turn our attention to the star-free lan-

guages. Let MODp be the language of bit strings whose

Hamming weight is 0 modulo some fixed p ≥ 2. We

need the following theorem:

Theorem 34 (Beals et al. [3]). d̃eg(MODp) = Ω(n) for
any p ≥ 2.

Recall that star-free languages are aperiodic. There-

fore, if a language is not star free, then it should exhibits

some periodicity in which we can embed some MODp

language. We appeal to this intuition in the following

theorem.

Theorem 35. Let L be a flat regular language. If L is
not star free, then d̃eg(L) = Ω(n).

Proof: Let ML be the syntactic monoid of L, and

let ϕ : Σ∗ → ML be the accompanying surjection onto

ML. We assume ML is not aperiodic, so there exists an

element s ∈ML such that sn �= sn+1 for any n. Since

ML is finite, we have sn = sn+p for some p and n,

and therefore for all sufficiently large n. Let us take the

minimal p so that sn �= sn+i for 0 < i < p.

Since the language is flat, there exist a0, a1, b ∈ Σ
such that ϕ(a0) = sp, ϕ(a1) = s and ϕ(b) = sn. One

might worry that if sn is equal to the identity, its only

preimage is the empty string, as is sometimes true for

flat languages. However, because ϕ(an1 ) = ϕ(a1)
n =

sn, this is not the case. Given string x ∈ {0, 1}m,

observe that

ϕ(ax1
ax2

· · · axm
b) = sx1+x2+···+xm+n,

since sn+p = sn. In other words, the monoid ele-

ment associated with ax1 · · · axmb is determined by the

Hamming weight of x modulo p. Therefore, to decide

membership of x in MODp, it suffices to compute the

monoid element for ax1
· · · axm

b in ML.

Finally, by the definition of syntactic congruence,

any two monoid elements may be distinguished by

prepending and appending fixed strings to the input,

then testing membership in L. By flatness, we may take

those strings to be length zero or one. Thus, we can

determine the monoid element by a constant number

of queries to L, and therefore compute the Hamming

weight modulo p. It follows that membership in L has

approximate degree Ω(n) by Theorem 34.

VII. CONTEXT-FREE LANGUAGES

In this section we will prove that the context-free

languages—a slightly larger class of languages con-

taining the regular languages—have query complexities

outside the trichotomy. The context-free languages are

most often defined either through context-free grammars

or through pushdown automata (PDA). It will be easier

for us to work with the PDA definition in this section.

One can think of a PDA as a nondeterministic Turing

machine which has a read-once input tape and read-

write stack. Although the addition of the stack allows

PDA to recognize many languages which are not regu-

lar, they are still limited in many senses. For instance,

context-free languages exhibit a pumping lemma much

like the regular languages, and the membership problem
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is decidable. For a more formal definition we refer the

reader to introductory texts [18].

As a simple example, consider the Dyck language

over alphabet Σ = {(,)}, which consists of all words

with balanced parentheses. We can show this language

is context free by constructing a PDA for it. The idea

is that the stack contains all of the unmatched left

parentheses. When a new parenthesis is read from the

input tape, the PDA pushes it onto the stack if it is a

left parenthesis or pops an item from the stack if there

is a right parenthesis. The PDA accepts if the stack is

empty when the input is read entirely.

A. Context-free languages do not obey the trichotomy

In general, the easiest way to construct a language

with arbitrary query complexity is by padding a hard

language. The procedure is simple: take a problem with

Ω(n) query complexity, e.g., parity, and make the input

string longer by adding (or padding) irrelevant symbols

to the end. For instance, computing the parity of the first

Θ(n2/3) bits and ignoring the rest will require Θ(n2/3)
queries.

Unfortunately, to create a context-free language with

arbitrary query complexity, we cannot take such a direct

approach. Context-free languages cannot simply count

out some fraction of their input as the above example

suggests. Instead, let us consider a general procedure for

constructing a context-free language L ⊆ Σ∗ which has

quantum query complexity Θ(nc) for some c ∈ [1/2, 1].
We construct L from the union of two context-free

languages A and B. To test membership of some

x ∈ Σ∗ in L, we first test whether or not x belongs to A.

We always construct A in such a way that membership

in A can be decided in O(
√
n) queries, usually through

a simple Grover search.19 If x ∈ A, then we are done.

Otherwise, we can assume that x �∈ A when testing

membership in B. However, A is constructed such that

x �∈ A will imply that x has been “padded”—there

is some special symbol in x such that the distance

from that symbol to the beginning of the string is

approximately nc. Therefore, if B is the language of

all strings such that the prefix before the special symbol

has even parity, then the query complexity of L = A∪B
is Θ(nc).

Let us consider an example of such a language A ⊆
(Σ ∪ {#})∗. First, we enforce that every word in A
begins and ends with #. Next, we say that x ∈ A iff

there is some substring #y# of x such that y ∈ Σ∗

and the length of y is not equal to the total number of

# symbols in x. Notice that x �∈ A implies that x =
#x1#x2# . . .#xk# where |xi| ≈

√
n. Furthermore,

19In fact, the reason we cannot extend this procedure to other
exponents c ∈ (0, 1/2) is due to the fact that we will always incur
this cost of Grover search.

A is context free and the quantum query complexity of

A is Θ(
√
n) by Grover search.

We will prove a theorem vastly generalizing this

approach to create substrings of length nc for any

c ∈ [1/2, 1] which is limit computable.20 A number

c ∈ R is limit computable if there exists a Turing

machine which on input n outputs some rational number

T (n) such that limn→∞ T (n) = c.
We will need two main technical lemmas, both of

which define a language similar to A above. The first

ensures that the input contains (as a substring) the total

length of the input written in binary, and the second

simulates arbitrary computation by a Turing machine.

Lemma 36 (Proof in Appendix C). Let K ⊆
{0, 1,#1,#2, $}∗ be the language such that
• if x ∈ K, then x ends with $y#1, and
• for all n ≥ 6, there is an x ∈ K ending in $y#1,
where y is the binary representation of |x|. Then, K is
context free, and Q(K) = O(

√
n).

Lemma 37 (Proof in Appendix C, folklore [18]). Let
N be a k-tape nondeterministic Turing machine. Define
language KN which contains strings of the form

C1#CR
2 #C3 . . . C

R
n−1#Cn

where C1 is a valid start configuration of N , Cn is a
valid accepting configuration, and Ci to Ci+1 is a valid
transition. Then, KN is context free, and Q(KN ) =
O(
√
n).

We are now ready to construct context-free languages

that have quantum query complexities corresponding to

limit computable exponents. Although there are several

technical details to check in the proof, the central idea

is straightforward: Let x ∈ Σn be the input. If x is

not in the language defined in Lemma 36, then the n
will be written in binary on the string. If x is also not

in the language defined in Lemma 37, then the input

will contain a correct simulation of a Turing machine

limit computing some query exponent c ∈ [1/2, 1]
and verifying that a # symbol has been placed at

position nc. Using Grover search, we can verify that

the membership in these languages in O(
√
n) time. If

20Since the theorem constructs a very contrived language, we
note that natural problems can also be embedded into context-free
languages, e.g., the element distinctness problem. Given a list of
integers x1, . . . , xn such that each xi ∈ {1, . . . ,m}, the element
distinctness problem asks if there exists i �= j such that xi = xj .
Since m ≥ n, we write each xi as a string over {0, 1}, and delimit
the xis by 2’s. The language CF-ED consists of grammar rules:
S → A2B2A,B → 0B0 | 1B1 | 2A2, A → 0 | 1 | 2 | ε | AA.
CF-ED accepts strings where some xi is the reverse of some xj . Thus,
if all xi are represented by palindromes, CF-ED is at least as hard as
element distinctness. On the other hand, it is possible to adapt the
O(n2/3) quantum query algorithm for element distinctness to CF-ED

(with a log factor loss)[21], [22].

957



x is in neither language, then computing parity on the

prefix of the input (up to the # symbol) takes time

Θ(nc), from which the theorem follows.

Theorem 2. For all limit computable c ∈ [1/2, 1], there
exists a context-free language L such that Q(L) =
O(nc+ε) and Q(L) = Ω(nc−ε) for all ε > 0. Further-
more, if an additive ε-approximation to c is computable
in 2O(1/ε) time, then Q(L) = Θ(nc). In particular, any
algebraic c ∈ [1/2, 1] has this property.

Proof: Let M be the Turing machine computing c
in the limit. That is, on input 1k it outputs a rational

approximation ck such that limk→∞ ck = c. Let nk

be the size of the computation history when computing

ck. Without loss of generality, we assume nk is strictly

increasing with k. We also assume that the computation

history for computing nck from n and ck (both written

in binary) is of size at most n for all n ≥ nk.21

Our goal is to construct a context-free language which

accepts any input not satisfying the following array

of conditions. Note that each condition may require a

complicated witness to verify, perhaps as long as the

input itself. Therefore, we let the alphabet be tuples

Σ = Σ1×Σ2×· · ·×Σm so that there are m independent

tracks to work with. Suppose the input has length n, and

consider the following six tracks.

1) The first track contains bits and a $ symbol, hope-

fully at position �nck� in the string.

2) Some Turing machine M limit computes c ∈
[1/2, 1]. The second track holds a valid computation

history of M computing some ck from input 1k.

3) The third track contains an incomplete execution of

M on 1k+1. If the string is long enough to complete

the computation of ck+1, then ck is obsolete and

should not be used.

4) The fourth track contains a binary number (and

associated machinery, see Lemma 36) matching the

length of the input.

5) The fifth track is the same as the fourth, except the

number is the position of $ on track one.

6) The sixth track holds a Turing machine computation

history which verifies that the position of $ is �nck�,
based on the numbers from tracks 2 (ck), 4 (|z|), and

5 (position of $).

We enforce these conditions with a corresponding ar-

ray of context-free languages, which reject satisfying

strings. The final language will be a union of these

languages, so that it rejects a string if and only if all

the conditions are satisfied.

21Exponentiation will run in polynomial time, which is actually
polylog(n) since n is written in binary, plus the description size of
ck . In fact, we can be even sloppier and approximate nck with the
first ck fraction of the bits of n, and still be accurate up to constant
factors.

We have already seen most of the languages we

need. For example, we want to accept if track two

is not the computation history of the Turing machine

M which computes ck, but we have seen how to

construct such a language in Lemma 37. Similarly for

tracks three and six, we can tweak this construction to

accept on incomplete computation histories. On track

four we want precisely the binary counter language in

Lemma 36. Track five is the same thing concatenated

with $Σ∗ to ignore symbols after $. Track one is actually

just a regular language, Σ∗1\(0|1)∗$(0|1)∗.
Each language so far focuses on just one of the

tracks, and we need a few “glue” languages to ensure

the various tracks interact correctly. The first verifies

that ck, n, and the position of $ (appearing on track

two, track four, and track five respectively) match the

strings in the input configuration on track six. A second

glue language checks that if the starting configuration

on track two was 1k, then the starting configuration on

track three is 1k+1, so that it computes ck+1. The third

and final glue language checks that the $ on track one

matches the $ on track five. We arrange for all of the

glue languages to accept strings which fail these checks,

in keeping with the complemented behavior of the other

languages.

Suppose we have a string of length nk ≤ n < nk+1

which is rejected by all of the languages. It follows that

all of the conditions are satisfied, so we can say a lot

about the string. First, track two must compute ck′ for

some k′ ≤ k, since there is not enough space for ck+1.

Similarly, track three stops in the middle of computing

ck′+1 for some k′ ≥ k, since for small k′ it would

have finished. But k′ is the same in both cases (due

to a glue language), and hence k′ = k. Track four and

five generate binary numbers for the length and position

of the $ symbol which, by another glue language, are

written on the input of track six, along with ck. Finally,

the sixth track verifies that the position is indeed �nck�.
We have one final language, which accepts depending

on the parity of the bits on the first track up to the $. If

all of the other languages reject, then we have argued

that $ is at position �nck�, so computing the parity

takes nck queries, up to constant factors. Checking all

the other conditions takes O(
√
n) queries, so the cost

of computing the parity dominates because ck ≥ 1
2 . It

follows that the quantum query complexity is within a

constant factor of nck for n between nk and nk+1. For

any ε > 0 we have |c− ck| ≤ ε for sufficiently large k,

and hence for sufficiently large n, the query complexity

is Q(L) = O(nc+ε) and Ω(nc−ε).

Finally, we note that if the cks converge sufficiently

quickly (with respect to computation time, not k) then

the query complexity is truly Q(L) = Θ(nc). For

example, suppose we have a Turing machine which
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spends 2O(1/ε) time to output an approximation c′ to c
such that |c− c′| ≤ ε, for any ε > 0. It does not matter

whether the machine outputs a stream of better and

better approximations, or takes ε as input and outputs

a sufficiently good approximation. Either way, we can

construct a machine which maps 1k to ck with a similar

guarantee: the time to compute ck+1 is at most 2O(1/εk)

where εk = |c − ck|. We claim this is enough to show

Q(L) = Θ(nc).
Our construction of L is such that the query com-

plexity is (up to constant multiplicative factors) nck on

the entire interval [nk, nk+1). For convenience, define

a function c(n) : N → R such that c(n) = ck iff

n ∈ [nk, nk+1). This means Q(L) = Θ(nc(n)), and

taking logs gives
∣∣∣ logQ(L)

logn − c(n)
∣∣∣ = O(1/ log n). Re-

call nk+1 ≤ 2b/εk for some b (and all sufficiently large

k) so we have |c − ck| = εk ≤ b/ log nk+1. It follows

that |c− c(n)| ≤ O(1/ log n). Together, this implies∣∣∣∣ logQ(L)

log n
− c

∣∣∣∣ ≤
∣∣∣∣ logQ(L)

log n
− c(n)

∣∣∣∣+ |c(n)− c|

≤ a

log n

for some a and for all sufficiently large n. It follows

2−anc ≤ Q(L) ≤ 2anc, so we conclude that for

sequences converging sufficiently quickly, Q(L) =
Θ(nc). For example, any algebraic number can be

computed to 1/ε precision in polylog(1/ε) time using

Newton’s method from a suitable starting point.

The converse of this theorem also holds.

Theorem 3. Let L be a context-free language such that
limn→∞

logQ(L)
logn = c. Then, c is limit computable.

Proof: Suppose L is context free. Recall that given

w ∈ Σ∗, the problem of computing membership of w in

L is decidable [18]. Next, we observe that the quantum

query complexity can be expressed as the solution (up

to logarithmic factors) to a large semi-definite program

[23]. That is, there exists a Turing machine which

outputs Adv±(L) such that Q(L) = Θ̃(Adv±(L)).
Therefore, we can construct a Turing machine which

outputs log(Adv±(L))/(log n), and

lim
n→∞

log(Adv±(L))
log n

= lim
n→∞

logQ(L)

log n
= c.

Therefore, c is limit computable.

VIII. FUTURE WORK

Recall that the Õ(
√
n) algorithm for star-free lan-

guages incurs many log factors. This suggests a natural

question: what is the exact upper bound for the query

complexity for star-free languages? Proving that even

one log factor is necessary seems challenging.

Next, we are interested in extending the hierarchy

to other languages and settings. The context-free lan-

guages, for example, seem like a natural step. We know

(see Section VII) that there is no longer a trichotomy;

for every limit computable number c ∈ [1/2, 1], there

exists a context-free language with quantum query com-

plexity approaching Θ(nc). We also conjecture that no

context-free language has quantum query complexity

ω(1) but also o(
√
n).

Another setting to consider is promise problems. In

this work, we required the query algorithm to decide

membership on all strings. If we restrict the input strings

to some promise set, it may affect the query complexity.

Allowing for an arbitrary promise trivially leads to

languages with quantum query complexity Θ(f(n))
for an arbitrary function f between 0 and n. For

example, consider the parity function with the promise

that only the first f(n) bits are nonzero. Instead, let

us take the promise to be a regular language. In this

model, we can construct a binary search language with

query complexity Θ(log n). Formally, the problem is to

decide whether there is an occurrence of 01 at an even

position (i.e., membership in (ΣΣ)∗01Σ∗) promised

that the input is sorted (i.e., belongs to 0∗1∗). We

conjecture that the trichotomy becomes Θ(polylog(n)),
Θ(
√
n · polylog(n)), or Θ(n).

We are interested in more applications of the star-free

algorithm. For example, in the classical world, linear-

time algorithms for the string matching problem have

been derived from finite automata. Quantum algorithms

for string matching with quadratic speedup are known

[24], but can one derive a quadratic speedup by applying

our algorithm for star-free languages as a black box? As

a toy example, notice that for any fixed w, the language

Σ∗wΣ∗ is star free, so we obtain Õ(
√
n) string search

for fixed queries.

Finally, consider the restricted Dyck language intro-

duced in Section I-C—the language of nested paren-

theses where the parentheses are only allowed to nest

k levels deep. When k is constant, this language is

star free and therefore has quantum query complexity

Θ̃(
√
n). When k is unbounded, consider the set of

inputs wx = (( . . .(x) . . .)) where x ∈ {(,)}n/3
and there are exactly n/3 leading left parentheses and

n/3 trailing right parentheses. Notice that wx is in the

Dyck language iff the number of left parentheses in x is

equal to the number of right parenthesis in x. Therefore,

the quantum query complexity for k = Ω(n) is Ω(n).
We now ask the question: what is the quantum query

complexity of the restricted Dyck language when k is

sublinear but superconstant?
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APPENDIX

A. Flattening Details

Let us start with a precise definition of what we mean

in this paper by a flat regular language.

Definition 12. Let L ⊆ Σ∗ be a regular language
recognized by the morphism ϕ : Σ∗ → ML onto its
syntactic monoid. Let Σj denote the non-empty strings
of length divisible by j. The conductor is the least
integer k such that ϕ(Σk) = ϕ(Σnk) for all n ≥ 1.
We say L is flat if the conductor of ϕ is 1.

Once we convert the language to blocks of size k
(i.e., alphabet Σk), any congruence class of the monoid

containing a non-empty string contains strings of all

(non-zero) lengths. We refer to this as Property 14 in

Section III. However, we still need to show that for any

language k is finite, and hence that languages can be

flattened.

Theorem 38. For any homomorphism ϕ : Σ∗ → M
onto a finite monoid, the conductor is finite and com-
putable.

Proof: Let λ : Σ∗ → N be the homomorphism

mapping strings to their lengths. The set Ar :=
λ(ϕ−1(r)) is ultimately periodic, i.e., there exists p such

that Ar and Ar + p differ at finitely many points. This

may be easier to see by mapping ϕ−1(r) to unary, and

since the language is still regular, considering the DFA.

Let k′ be the least common multiple of the period of

Ar for all r ∈ M . We will take k to be a multiple of

k′, so we may as well assume without loss of generality

that the period of Ar is 1.

When a set of natural numbers has period 1, it is

either finite or cofinite. Take k larger than all the finite

exceptions in either case. That is, for all r, take k larger

than the maximum element in Ar (if finite) and the

maximum element not in Ar (if cofinite). The result is

that each Ar ∩ kN is one of ∅, {0}, kN, or kN\{0}.
Only the identity class, A1, can contain 0, so all other

Ar are either ∅ or kN\{0}. We throw away r ∈ M
such that Ar = ∅, and the remaining elements have the

property, by construction, that they are the images of

strings of all lengths divisible by k.

We are finally ready to restate and prove Theorem 13,

which states that any regular language can be divided

into a collection of flat languages.

Theorem 13. Let L ⊆ Σ∗ be a regular language recog-
nized by a monoid M . There exists an integer k ≥ 2 and
a finite family of flat regular languages {Li}i∈I over
alphabet Σk such that testing membership in L reduces
(in fewer than k queries) to testing membership in some
Li. Furthermore, the same monoid M recognizes L and
every Li.

Proof: Let k be the conductor of L. Consider an

input x ∈ Σ∗ of length n. Clearly we can divide x into

a string x′ ∈ (Σk)∗ of length �n/k�, and a remainder

r ∈ Σ∗ of length less than k. For each such r, we define

the language

Lr := {y ∈ (Σk)∗ : yr ∈ L},
slightly abusing notation so that y denotes both a string

over Σk and a string over Σ. We leave it as an exercise

to show that Lr is regular. By construction, x is in L if

and only if x′ is in Lr, so by looking at length of the

input and the last |r| symbols, we have reduced testing

membership in L to membership in Lr.

Finally, let ϕk : (Σk)∗ →M denote the extension of

ϕ to strings over Σp. Note that we can write Lr as

Lr = {y ∈ (Σk)∗ : ϕk(y)ϕ(r) ∈ S}
= {y ∈ (Σk)∗ : ϕk(y) ∈ {m ∈M : mϕ(r) ∈ S}}
= (ϕk)−1({m ∈M : mϕ(r) ∈ S}).

It follows that Lr is recognized by M . By construction,

the conductor of Lr is 1, so Lr is flat.

Monotonic query complexity

Let us now consider an alternative to flattening—

namely, modifying the definition of query complexity so

that it is nondecreasing. For this section only, define the

quantum query complexity Q(f)(n) of function f to be

the minimum number of quantum oracles calls needed

to determine the value of f on all strings of length up
to n. When query complexity is defined in this way,

we can prove a quantum query complexity trichotomy

theorem for all regular languages as a corollary of our

trichotomy theorem for flat languages.

Theorem 39. Let L ⊆ Σ∗ be any regular lan-
guage. The quantum query complexity of L is either
0,Θ(1), Θ̃(

√
n), or Θ(n).

Proof: By Theorem 13, we have that L is a finite

disjoint union of languages Lrr where each r ∈ Σ∗ has

length less than p. Technically, Lr is over the alphabet

Σp, but we extend strings in Lr to strings over alphabet
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Σ in the obvious way. If all Lr have constant query

complexity, then Q(L) = 0 or Q(L) = Θ(1). Therefore,

assume there is some Lr such that Q(Lr) = ω(1). We

will show that Q(L) = Θ(maxr Q(Lr)).
Let us consider one algorithm for L on strings of

length np + i where i < p: query the last i characters

of the string to determine r, and then use at most

pQ(Lr)(n) queries to test the rest. Therefore, we have22

Q(L)(np+ i) ≤ max
r

pQ(Lr)(n) + p.

In the other direction, notice that by decreasing the

length of the string by at most p, we can have any

remainder string r. By the modified definition of query

complexity, shortening the length must decrease the

query complexity. Since we can force the query algo-

rithm to solve any smaller instance of a flat language

Lr, we have

Q(L)(np+ i) ≥ max
r

Q(Lr)(n− 1).

That is, Q(L) = Θ(maxr Q(Lr)) from which the

theorem follows.

B. Equivalence of algebraic and regular expression
definitions

This appendix is devoted to proving Theorem 15,

which gives algebraic definitions for each class of

regular languages defined by a regular expression. Since

Theorems 4 and 5 give characterizations for the regular

and star-free languages, respectively, we focus on the

degenerate and trivial languages.

Proposition 40. A language is recognized by morphism
ϕ such that |ϕ(Σ+)| = 1 iff it is degenerate.

Proof: Recall that there are only four degenerate

languages: ∅, ε, Σ∗, or Σ+. First, we claim that the

morphism ϕ : Σ∗ → ML onto the syntactic monoid

of each language is such that |ϕ(Σ+)| = 1. This

calculation is straightforward, and we leave it as an

exercise.

Let language L ⊆ Σ∗ be recognized by morphism ϕ
such that |ϕ(Σ+)| = 1. For any x, y ∈ Σ+, we have

that ϕ(x) = ϕ(y). Therefore, x ∈ L iff y ∈ L. This

only leaves four possible choices of languages based

on whether or not Σ+ ∈ L and whether or not ε ∈ L.

These are exactly the degenerate languages.

Theorem 41. A language is recognized by morphism ϕ
such that ϕ(Σ+) is a rectangular band iff it is trivial.

Proof: Suppose first that L is a regular language

recognized by homomorphism ϕ : Σ∗ → M such that

22We now see the need to separate the constant and non-constant
cases. The additive p factor would technically take a 0-query algo-
rithm to an Θ(1)-query algorithm, which we want to avoid.

ϕ(Σ+) is a rectangular band. Suppose a ∈ Σ belongs

to L. We want to show that aΣ∗a is also in L. For any

w ∈ Σ+, we have that ϕ(a) = ϕ(aa) = ϕ(awa), where

the first equality comes from idempotence of M and

the second equality comes from the rectangular band

property. Therefore, if a ∈ L, then so is aΣ∗a. Similarly,

this implies that if awa ∈ L for a ∈ Σ and w ∈ Σ∗,
then a ∈ L and aΣ∗a ∈ L. A similar argument shows

that if a �= b ∈ Σ and awb ∈ L for some w ∈ Σ∗, then

aΣ∗b ∈ L. Finally, membership of ε is independent of

ϕ, so it may either be in the language or not in the

language.

Now suppose that L is a trivial language. Define

monoid M = (Σ × Σ) ∪ {(ε, ε)} with operation

(a, b) · (c, d) = (a, d) for all a, b, c, d ∈ Σ, and

(a, b) = (ε, ε) · (a, b) = (ε, ε) · (a, b). Define morphism

ϕ : Σ∗ → M such that ϕ(a) = (a, a) for a ∈ Σ ∪ {ε}.
Therefore, ϕ(awb) = (a, b) for a, b ∈ Σ and w ∈ Σ∗.
Define S ⊆M , such that (a, a) ∈ S if a ∈ L, (a, b) ∈ S
if aΣ∗b ∈ L, and (ε, ε) ∈ S if ε ∈ L. By construction,

we claim that L = ϕ−1(S), which completes the proof.

One might wonder why we needed to reference the

homomorphism ϕ explicitly in the definition of the

degenerate and trivial languages, when the other classes

only needed a characterization of the monoid itself. In

that case, each class of languages would be a variety.

Unfortunately, such a characterization does not exist due

the following theorem of Eilenberg:

Theorem 42 (Eilenberg’s Variety Theorem [25]). If V
is a class of monoids and L is the class of regular
languages whose syntactic monoids lie in V , then V is
a monoid variety only if L is a language variety.23

Consider the degenerate language A = Σ+ and star-

free language B = Σ∗1Σ∗ over alphabet Σ = {0, 1}.
We claim that B is the inverse morphism of A by

χ : Σ∗ → Σ∗ such that χ(0) = ε, χ(1) = 1. Since B
is clearly nontrivial, the trivial languages are not closed

under inverse morphism. Therefore, by the Variety The-

orem, the class of trivial languages is not a variety.

C. Applications

We present a few concrete instances where our main

result implies surprising or novel quantum query algo-

rithms.

Addition

23A class of regular languages is an language variety if it is
closed under Boolean operations, left and right quotients, and inverse
morphisms. For x ∈ Σ∗, the left quotient of language L by x is
the language x−1L = {z : xz ∈ L}. Let χ : Σ∗1 → Σ∗2 be a
homomorphism, and let L ⊆ Σ∗1 be equal to

∑
m∈S ϕ−1(m) for

some subset S of the syntactic monoid. The inverse morphism of L
by χ is the language χ−1L =

∑
m∈S χ−1 ◦ ϕ−1(m) ⊆ Σ∗2 .
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Chandra, Fortune, and Lipton [16] observed that bi-

nary addition can be described by a monoid product.

Specifically, a product over a monoid M with elements

{S,R, P} (set, reset, propagate) satisfying

xS = S, xR = R, xP = x,

for all x ∈M . The idea is that given two n-bit numbers,

we map each column to a monoid element (i.e., 00 �→
R, 01, 10 �→ P , 11 �→ S) and then the prefix product to

a particular column (starting from the least significant

column, so perhaps suffix product is more appropriate)

indicates whether there is a carry in the next column

(R,P =⇒ no carry, S =⇒ carry). Chandra et al.

show that there are AC0 circuits for computing all prefix

products, and thus binary addition can be computed in

AC0.

Since the monoid is aperiodic, our result implies that

the product of any prefix can be computed with Õ(
√
n)

queries to the input, and therefore any particular output

bit of a binary addition can be computed in the same

number of queries. Similarly, the regular language ac-

cepting triples of binary numbers (represented a column

at a time) such that the first two sum to the third is star

free (the monoid is M adjoin a zero element ⊥, which

arises when the string is inconsistent with any valid

addition). This implies that addition can be checked

in Õ(
√
n) quantum queries. Unfortunately, we cannot

construct the sum in Õ(
√
n) queries for information

theoretic reasons: if one of the summands is zero then

the sum is exactly the other summand, which we should

not be able to reconstruct in fewer than Ω(n) queries.

Furthermore, we can extend these results to the

addition over any base k, for an integer k ≥ 2. In fact,

we use the exact same monoid. For example, in decimal,

if sum of the digits in a column is more than 9, then

a carry will be created. If the sum of the digits is less

than 9, then even if there is an incoming carry, there

will be no outgoing carry. And if the sum of digits is

exactly 9, then a carry will propagate.

Length-2 Word Break

Problem 43 (Word Break Problem). Given a finite
dictionary of strings D ⊆ Σ∗ and a string w ∈ Σ∗,
decide whether w ∈ D∗. That is, can w be written as
a concatenation of words in D?

There exists a straightforward dynamic program (DP)

which solves this problem in polynomial time. Faster

solutions exist (e.g., [26]), but still heavily rely on DP.

Since DP is sometimes claimed to be incompatible with

quantum speedups [27], we find it surprising that our

result gives a speedup on the following (limited) special

case of the word break problem.

Theorem 44. Fix a dictionary D ⊆ Σ∪Σ2 containing

strings of length 1 or 2. Given a string w ∈ Σ∗, there is
a Õ(

√
n) query algorithm to decide whether w ∈ D∗.

The result follows from a lemma characterizing the

syntactic monoids of such languages.

Lemma 45. Let D ⊆ Σ∗ be a set of strings of length at
most 2. Let M be the flattened syntactic monoid of D∗.
For any m ∈ M , we show that m2 = m3. It follows
that M is aperiodic.

Proof: It is clear that the identity element 1 ∈ M
has the property that 12 = 13. For any other m ∈ M ,

m �= 1, we can find a string y ∈ Σ∗ which ϕ maps to

m. Let n be the length of y. We may assume n is even

because the monoid is flat.

The statement m2 = m3 is equivalent to saying that

for all x, z ∈ Σ∗,

xy2z ∈ D∗ ⇐⇒ xy3z ∈ D∗.

We will argue this by showing that for any w ∈ D∗

containing y2, there is a substring u in y2, aligned to

the word breaks and of length n = |y|. This substring

can be pumped up or down, to show the =⇒ and ⇐=
directions respectively.

Now assume y2 is contained in some concatenation

of words from D, and consider the positions where there

are word breaks. If we find two word breaks (including

the endpoints of the string, but not both endpoints since

then we would pump all of y2!) at the same position

modulo n, we are done because we immediately have a

pumpable substring. In particular, if there are n+1 word

breaks within y2, then pigeonhole principle implies

there are two at same position modulo n. We are

necessarily close to this limit since |y2| = 2n, and

words in D have length at most 2, so the concatenation

involves at least n words.

Let us do the math more carefully. Suppose we have

a concatenation of words in with n word breaks (i.e.,

n + 1 words) at n different positions modulo n. Since

n is even, there must be breaks at both odd and even

positions. It follows that at least one of the words in the

concatenation has length 1, so the entire concatenation

has length at most 2n+1. This is just short enough that

y2 and the concatenation must share an endpoint. This

endpoint plus the n word breaks already in y2 give us

n+ 1 positions to apply the pigeonhole argument from

before, finishing the proof.

We also note that this result is tight; if the dictionary

contains even a single word of length 3 or more, the

query complexity may be Ω(n). For example, consider

D := {0, 11, 101}∗, and note that the parity of a

bit string x1 · · ·xn can be decided by testing whether

1x111x21 · · · 1xn1 is in D∗.
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Grid Problems

There are many instances of problems on grids which

turn into regular languages if one of the dimensions is

restricted to be constant. For example, 3-colorability is

NP-complete for 4-regular planar graphs [28], and such

graphs may be embedded into the grid with rectilinear

edges [29]. However, if one dimension of the grid is

constant size then the problem becomes regular under

a suitable encoding.

In this section, we consider a grid problem such that

the constant-height restriction is star free. This leads to

an efficient Õ(
√
n) quantum query algorithm, which is

otherwise difficult to see.

Problem 46 (Grid Path Problem). Given an m×n grid
of cells, some of which are impassable, decide whether
there is a path from the bottom left corner to the top
right corner.

For constant m, let

L = {w ∈ ({0, 1}m)∗ : grid w contains a path}.
be the language of grids which have a path from the

lower left corner to the top right corner. First, consider

a monotone version of the grid path problem in which

the path is only allowed to go up or to the right at each

step. In this case, there is a straightforward first order

logic characterization of this language, in which the

existential quantifiers are used to guess the finitely-many

positions at which the path’s y-coordinate increases.

Such a direct characterization will not suffice for the

language L since there is no succinct way to describe a

general path. Instead, we appeal to a more sophisticated

approach of Hansen et al. based on a monoid which

recognizes this language [30]. Roughly speaking, the

monoid elements describe sets of compatible paths

between the ends of a grid. Thus, by multiplying the

monoid elements corresponding to each column of the

grid, one can determine membership in L. Hansen el

al. show that the monoid is aperiodic, which immedi-

ately gives a faster quantum query algorithm using our

classification:

Corollary 47 (Combining [30] with star-free algo-

rithm). Q(L) = Õ(
√
n).

In fact, the monoid elements keep track of multiple

disjoint paths through the grid (which is necessary if the

path backtracks through a particular section of the grid),

so one can decide whether there exist O(1) disjoint

paths through the grid.

In this section we provide proofs for the two main

technical lemmas in Section VII.

Lemma 36. Let K ⊆ {0, 1,#1,#2, $}∗ be the lan-
guage such that

• if x ∈ K, then x ends with $y#1, and
• for all n ≥ 6, there is an x ∈ K ending in $y#1,
where y is the binary representation of |x|. Then, K is
context free, and Q(K) = O(

√
n).

Proof: Let K1 be the language over Σ :=
{0, 1,#1,#2, $} containing all strings which

• start with #1#a or #2$#a,

• end with #1,

• match ((#1|#2)$
∗)∗(0|1)∗#1, and

• contain no substring #a(0|1|$)i#b(0|1|$)j#c such

that
2(i+1)

a �= j+1
b where a, b, c ∈ {1, 2} and i, j are

integers.

Let us show that K1 is context free as a first step

to constructing K. We claim there is a context-free

language which accepts strings containing a substring of

the form #a(0|1|$)i#b(0|1|$)j#c. Indeed, it is easy to

describe the pushdown automaton: nondeterministically

guess the position of #a, push symbols onto the stack

as we read the input, read #b and pop symbols off the

stack at a ratio of 1 stack symbol for each 2b
a input

symbols. With some attention to detail, the PDA will

be able to decide whether
2(i+1)

a = j+1
b , and accept

if it does not. Since the first three conditions define a

regular language, the entire language K1 is context free.

The conditions above imply that any string z ∈ K1

is of the form

#a0
$∗#a1

$∗ · · · $∗#ak−1
$∗b�−1 · · · b1b0#1,

where a0, . . . , ak−1 ∈ {1, 2} and b0, . . . , b�−1 ∈ {0, 1}.
Let di be the distance (measured by the difference in

indices) between #ai
and #ai+1

, for all i = 0, . . . , k−2.

Let dk−1 be the distance from #ak−1
to the final #1.

Since #a0 is the first symbol and #1 is the last, it

follows that |z| = 1 +
∑

i di.
Since strings in K1 start with #1#a or #2$#a, we

have d0 = a0. We also have a condition on any three

consecutive #ai
which translates into 2 di

ai
= di+1

ai+1
. A

straightforward induction tells us that di = ai2
i for all

i, which means

|z| = 1 +

k−1∑
i=0

ai2
i. (1)

On the other hand, we want b�−1 · · · b0 to be the binary

number representation of |z|. That is,

|z| =
�−1∑
i=0

bi2
i. (2)

By combining (1) and (2), and considering the result

modulo powers of 2, one can show that bi = ai− 1 for

all i, and bk = 1. Let K2 be the language that accepts

if the ais and bis match up as described above. Clearly

K2 is context free because a PDA can easily push the
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ais onto the stack as it reads them, then pop off and

compare as it reads the bis.

We define K := K1∩K2 and note that K = K1∪K2

is context free as desired. There are strings in K1 of any

length n ≥ 2, but to be in K2, we also need the binary

representation of n to fit in dk−1 − 1. We claim the

binary representations fits for all n ≥ 6, so there exist

strings of those lengths in K.

Finally, we can decide whether a string z of length n
is in K in O(

√
n) time. First, we check if z ∈ K1,

since the length fixes the positions of #a0
through

#ak−1
in the string. We can determine these positions

a0, . . . , ak−1 ∈ {1, 2} from the length of the string, and

check those positions in O(log n) queries. If z is in K1

then we check whether bits bk · · · b0 at the end match

the length in O(log n) queries. Finally, we check that all

remaining positions are $’s in O(
√
n) quantum queries

by Grover search.

Lemma 37. Let N be a k-tape nondeterministic Turing
machine. Define language KN which contains strings of
the form

C1#CR
2 #C3 . . . C

R
n−1#Cn

where C1 is a valid start configuration of N , Cn is a
valid accepting configuration, and Ci to Ci+1 is a valid
transition. Then, KN is context free, and Q(KN ) =
O(
√
n).

Proof: The proof of this theorem follows from the

observation that computation is local. Let us sketch the

proof. First, we need to fix the encoding of the config-

uration of a Turing machine. Many different schemes

suffice, but let us assume that the encoding consists of

the k tapes laid out on top of each other so that each

symbol of the encoding includes a k-tuple of the values

of the k tapes. We also stipulate that one symbol on

each tape is marked with the head and the current state

(we can simply expand our alphabet to include these

possibilities as well). To verify that one configuration

follows properly from the next, the push-down automa-

ton for language KN nondeterministically guesses the

location on one of the tapes where a violation might

occur. It can count to the same position in the tape in

the next configuration by pushing all remaining tape

symbols onto the stack until the next # symbol. At

this point, it can pop these symbols to count back to

the same location (this is why each configuration is the

reverse of the previous one). All that remains is to check

a finite set of conditions.
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