Empirical studies of the genetic algorithm with
non-coding segments

Annie S. Wu Robert K. Lindsay
Artificial Intelligence Laboratory Mental Health Research Institute
University of Michigan University of Michigan
Ann Arbor, MI 48109-2110 Ann Arbor, MI 48109
aswu@engin.umich.edu lindsay@umich.edu

To appear in Fvolutionary Computation, 3:2, 1995.

Abstract

The genetic algorithm (GA) is a problem solving method that is modelled after
the process of natural selection. We are interested in studying a specific aspect of
the GA: the effect of non-coding segments on GA performance. Non-coding
segments are segments of bits in an individual that provide no contribution,
positive or negative, to the fitness of that individual. Previous research on
non-coding segments suggests that including these structures in the GA may
improve GA performance. Understanding when and why this improvement
occurs will help us to use the GA to its full potential. In this article, we discuss
our hypotheses on non-coding segments and describe the results of our
experiments. The experiments may be separated into two categories: testing our
program on problems from previous related studies, and testing new hypotheses
on the effect of non-coding segments.

Keywords: genetic algorithms, non-coding segments, non-coding DNA. introns, Royal
Road function.

1 Introduction

Nature has successfully used a simple, elegant selection method for millions of years.
Natural selection sustains healthy populations because fitter individuals have a greater
chance of survival and reproduction. Reproduction then propagates the characteristics
of the fitter individuals to the next generation. The genetic algorithm (GA) is a
computer model of the process of natural selection. The GA has become increasingly
popular as a non-biological engineering tool and has been applied successfully to many
different types of problems.

The GA operates on a population of individuals or chromosomes. Each individual
represents one possible solution to the problem to be solved. A fitness function
evaluates each individual and returns a value that indicates how well that particular
solution solves the problem. The GA exploits individuals with high relative fitness by
giving them the chance to have more offspring than less fit individuals. As a result, the
better individuals of a generation have a greater chance of propagating their building
blocks into the next generation. Building blocks are specific bit patterns that
contribute to high fitness values. The crossover and mutation operators, which are
modelled after biological processes, are used to explore the solution space. Crossover
randomly chooses a breakpoint at which two individuals are cut and the two end
segments are exchanged. Mutation changes the value of individual bits. The strength
of the GA is believed to be its ability to find good solutions to complex problems
without needing to test every possible solution. This ability is especially valuable when
solving combinatorially explosive problems. The GA achieves this ability by balancing
the exploratory and exploitative tendencies described above. According to the building
block hypothesis (Holland, 1975), the GA finds solutions by searching for building
blocks that have high relative fitness and combining them to form even larger building
blocks, eventually forming a complete solution.

We would like to extend the analogy between GAs and genetics by studying the
effects of another aspect of genetics on the GA’s problem solving ability, specifically,
non-coding DNA. In natural systems, deoxyribonucleic acid (DNA) is the genetic
material that is propagated from generation to generation. The majority of the DNA in
an organism, however, is non-coding DNA, DNA that does not code for the ribonucleic
acid (RNA) necessary for synthesizing proteins. Though the function of non-coding
DNA is still unknown, these structures must not contribute negatively to the genetic
process or they would most likely have been eliminated by natural selection long ago.
Just as the GA models the process of natural selection, non-coding segments'— excess

bits — can be added to the individuals of a GA to model non-coding DNA.

Previous studies on non-coding segments have suggested that including these

In this paper, the term non-coding segment replaces the term intron which has been used in the
past (see Section 2.1).

segments in the GA population may speed up the GA’s climb from initial, randomly
chosen solutions to good, high-fitness solutions. We believe that non-coding segments
may also have a stabilizing effect on the preservation of building blocks or partial
solutions by the GA. A better understanding of the contributions of non-coding
segments would help us to use GAs more efficiently and effectively. We have performed
a detailed study on non-coding segments that both replicates previous research and
extends it to new experiments.

2 Background

2.1 Non-coding DNA

It is useful to understand the biological inspiration for this work. A genome is the
complete set of genetic material of a cell, and is composed of several discrete units
called chromosomes. Chromosomes are sequences of DNA nucleotides. A gene is a
segment of DNA that codes for a protein, for RNA, or for a regulator product. The
DNA of a gene is copied into messenger RNA (mRNA) inside the nucleus of a cell.
The mRNA is released from the nucleus into the cytoplasm after preprocessing. In the
cytoplasm, transfer RNA (tRNA) match up to the mRNA| three nucleotides at a time.
Each tRNA carries an amino acid. The final product is a chain of amino acids whose
order is determined by the nucleotide sequence of the mRNA. The synthesis of RNA
from a DNA template is called transcription. The synthesis of a protein from the
mRNA template is called translation. A genotype is the genetic constitution of an
organism. A phenotype is the appearance or other characteristics of an organism,
resulting from the interaction of its genotype with the environment. A gene that is
expressed makes some contribution to the phenotype (Curtis, 1983) (Lewin, 1994).

There are several types of non-coding DNA (Nei, 1987). Intergenic regions and
intragenic regions (introns) make up a large part of the non-coding DNA. Intergenic
regions are found between genes and are not transcribed into mRNA. Some portions of
the intergenic regions regulate the expression of adjacent genes; other portions have no
known function. Intragenic regions, also called introns, are one or more segments of
DNA found within genes (Lewin, 1994). After a gene is transcribed into mRNA, the
intron regions are removed from the mRNA chain, and the remaining segments of
mRNA the ezon regions, are joined together to become the protein template. Though
we are starting to understand the intron removing mechanism (Patrusky, 1992), the
function of introns is still uncertain.

A third type of non-coding DNA is the pseudogene. A pseudogene is a segment of
DNA that is similar to a functional gene, but contains nucleotide changes that prevent
its expression (Nei, 1987). Pseudogenes are believed to arise from gene duplication or

reverse RNA transcription. Interestingly, pseudogenes produced from reverse
transcription do not contain introns. Since pseudogenes are not expressed, they are not
subject to selection pressure from the environment. As a result, pseudogenes
accumulate mutations quickly. When a pseudogene mutates enough that its similarity
to a functional gene is no longer apparent, it becomes simply non-coding intergenic

DNA.

2.2 Schemata

Since building blocks are an intrinsic part of the GA, it is important to have a clear
definition of them. Typical GA individuals are strings of binary bits. Building blocks
are subsets of these bits that work together, i.e. specific patterns of these bits may
result in a significant increase in fitness. Building blocks are defined by their
encompassing schemata. A schema refers to the set of all strings that contain a
particular building block (Forrest & Mitchell, 1993) (Goldberg, 1989). The GA
operates on individuals that are strings of length [, defined over the set {0,1}. The
schemata are strings, also of length [, defined over the set {0,1,*}, where * is the don’t
care character. The order of a schema is the number of defined bits in the schema. The
schema 11 % 01% has order, r = 4. Since either a 1 or a 0 may be substituted for a *,
each schema is a set of 2/~ chromosomes. The schema 110 * * includes 2°73 = 22 = 4
chromosomes. These chromosomes are 11000, 11001,11010,11011. The defining length,
6(s), of a schema s is the distance between its first and last defined bit. For example,

S(k1 #%x) =0, 6(* % 10%) = 1, and 6(*1 * 1) = 3.

2.3 Other approaches to studying and improving the GA

There have been many attempts to understand how the GA works and to improve the
performance of the GA. The hope is that better understanding of the GA will lead to
more effective use of this problem solving tool. Past and current research on the GA
have addressed topics such as control parameter values, genetic operators, and problem
representations.

Much research has gone into searching for control parameter values that are
optimal or near optimal for all types of problems. Typical control parameters include
crossover rate, mutation rate, population size, and reproduction rate. De Jong (1975)
and Grefenstette (1986) both conducted empirical studies on the effect of control
parameters on GA performance. The results from these studies have been used as
guidelines for initial parameter settings for many GA systems and have spurred further
research on control parameter effects. Additional studies (Back, 1991) (Lee & Takagi,
1993) (Schaffer & Morishima, 1987) have attempted, with some success, dynamic

control of parameter values either by the GA itself or other automated regulator
systems. While there are several sets of good “starting point” control parameter
values, these sets are not universally optimal and fine tuning of these control
parameters to the specific problem is still necessary.

Another area of study that has improved our understanding of the GA is the study
of genetic operators. Crossover and mutation are the most commonly studied
operators. Many different types of crossover have been used with the GA, ranging from
the basic one-point crossover to uniform crossover. Though theory predicts that
one-point and two-point crossover should perform the best (Syswerda, 1989),
experimental results have shown that multi-point crossovers perform significantly
better. Other studies have concentrated on the effects of mutation (Fogarty, 1989)
(Béck, 1991); both static and dynamic mutation rates have been tested. Eshelman and
Schaffer debated the usefulness of crossover versus mutation (Eshelman & Schaffer,
1993) (Schaffer & Eshelman, 1991). The results indicate that a combination of
crossover and mutation is generally more effective than either crossover or mutation
alone. While crossover is a good exploratory operator, it is “less effective than
mutation at maintaining gene pool variation in the face of selection pressure” (Schaffer
& Eshelman, 1991) and thus makes the GA prone to early convergence when used
alone. Mutation, which has often been considered a secondary operator, performed
surprisingly well on its own because of its ability to introduce variation into the
population.

Instead of changing the parameters, operators, or other parts of the GA, studies
have also looked into alternative problem representations in the GA. The typical
method of representing a problem solution in the GA is to separate the bits of an
individual into groups. Each group then codes for one part of the total solution. While
this method is both simple for the user to set up and easy for the fitness function to
evaluate, it may not always produce the best results. The user may not be aware of the
best arrangement of problem parts for creating good building blocks and there are
some problems which are simply not suited for the typical GA representation.
Goldberg et al. (1989) (1990) studies the placement of bits with the messy GA (mGA).
By representing each bit of an individual as a pair of numbers — the name and the value
of the bit — the mGA is able to arrange the relative placement of bits dynamically
during a run. This gives the mGA the flexibility to test and rearrange bits into groups
that make good building blocks. Levenick (1991) and Forrest and Mitchell (1992) also
investigate the placement of information on an individual. Their work will be discussed
in detail in section 5. There are some problems which seem to be good candidate
problems for the GA to solve that simply do not work well with the typical binary
string representation. GA users often need to tailor problem representations to their
specific problems. For example, scheduling problems (Oliver, Smith & Holland, 1987)
often use numerical string representations to avoid generating illegal solutions. Though
the new representations may require the modification of some steps or operators in the

GA, the basic GA principles of selection and reproduction remain intact.

3 Motivation

Though the function of their biological counterparts is still uncertain, there are a
number of arguments for studying the effect of non-coding segments on the GA. The
most compelling of these arguments is that non-coding DNA has existed in nature for
millions of years. In addition, previous studies on non-coding segments suggest that
including these structures in a GA may be beneficial to the GA. Levenick’s (1991)
research shows that including non-coding segments in the GA may improve the GA’s
ability to find the optimum individual within a given number of function evaluations.

We believe that non-coding segments may also have a stabilizing effect on the
preservation of building blocks by the GA. A key ingredient to using the GA effectively
is balancing the exploratory and exploitative tendencies of the GA (Eshelman,
Caruana & Schaffer, 1989). The GA explores the solution space to find new building
blocks and to combine existing building blocks into larger units. The GA exploits
highly fit individuals to preserve their presumably highly fit building blocks in the
population. Excessive exploration causes the GA to destroy existing building blocks
and excessive exploitation results in early convergence. Thus, too much of either
tendency cancels out the effect of the other. A stable GA must maintain a good
balance of exploration and exploitation.

There are a number of statistical arguments for including non-coding segments in a
GA. These arguments include the following hypotheses.

e Non-coding segments encourage the genetic recombination of existing building
blocks. Because non-coding segments increase the number of possible crossover
locations between building blocks, they also increase the probability that
crossover will occur in between building blocks rather than within a building
block. It is important to distinguish between crossover rate and the chance of
crossover at any location on an individual. Crossover rate is a control parameter
that refers to the chance that an individual will undergo crossover. Once it has
been decided that an individual will undergo crossover, a crossover location must
be chosen. The chance that crossover will occur at any location on an individual
is typically the same for all locations. As a result, adding non-coding bits in
between the building blocks increases the chance of crossover occurring in
between building blocks which improves the recombination rate of building

blocks.

This increase in the chance of crossover in between building blocks suggests that
adding non-coding segments to an individual is similar to using variable crossover

probabilities — where the chance of crossover occurring at any given location on
an individual differs from location to location — on an individual without
non-coding segments. The advantages of the non-coding segment method include
the fact that the GA does not need to be modified to handle variable crossover
probabilities and that crossover location calculations are much simpler. In
addition, the variable crossover probabilities are easily changed or removed by
adding or deleting non-coding bits.

Non-coding segments may reduce the hitchhiking effect (Forrest & Mitchell,
1992). The hitchhiking effect occurs when non-optimal bits in the don’t care
region of highly fit schemata benefit from the attached highly fit schemata. As
the non-optimal schemata increase in the population, courtesy of the attached
highly fit schemata, the non-optimal schemata may slow down the discovery of or
wipe out existing lower order building blocks at their same location on the
individual. Because of the genetic operators used in the GA, in particular
crossover, the hitchhiking effect is expected to be stronger in those parts of the
individual that are physically close to the highly fit schemata. Inserting
non-coding segments in the individual separates the building blocks and moves
them farther apart from each other. Thus, hitchhiking is more likely to be
contained in the non-coding segments adjacent to highly fit schemata, and less
likely to impede the discovery of neighboring building blocks.

Non-coding segments maintain variation in the individual. Variation is necessary
for exploration of the search space. Since the mutation rate is the probability
that each bit of an individual will be complemented, the expected total number
of mutations on an individual is equal to the length of the individual times the
mutation rate. Mutation as a discovery tool for the coding regions is not altered
by the addition of non-coding segments because the lengths of the coding regions
are not changed. Nevertheless, non-coding regions are also subject to mutation.
Because of lack of selection pressure, mutations should accumulate easily in the
non-coding segments. This variation could be very valuable in some situations,
such as in experiments where the building block locations are not pre-specified
and in experiments where the fitness function is not constant (the environment
changes). Should a non-coding segment ever become a building block, variation
in that region in the population will prevent early convergence to a sub-optimal
solution at that location.

Non-coding segments could reduce the chance of crossover breaking up an
existing building block. This depends on our definition of a simple individual (an
individual without non-coding segments). Figure 1 compares two versions of a
simple individual with an individual that has non-coding bits. Levenick (1991)
places additional extraneous bits at the end of the significant bits so that the
simple individual has the same length as the non-coding individual. Forrest and

aaaaaabbbbbbccccccddddddeeeecee;
aaaaaabbbbbbccccccddddddeeeeee®kkkkkkkkkkkkkkkkokkkkkkkkkkkkk ;

aaaaaa*x*x*xk*kxbbbbbb***kk*kx*kkcccccokkkkk*kkdddddd***x*k*k**keeeeee*x*;

Figure 1: A comparison of individuals with and without non-coding segments. Letters
indicate significant bits; * indicates non-coding bits. Fach building block is represented
by a different letter. C is an individual with non-coding segments from Levenick’s exper-
iments. B is an individual without non-coding segments from Levenick’s experiments.
A is an alternative individual without non-coding segments.

Mitchell (1992) define the simple individual as an individual consisting of only
significant bits.

In the first case (B), the chance of crossover combining two adjacent building
blocks is reduced in comparison to C because there is only one crossover point
between each building block on B. Assuming traditional one-point crossover, the
probability of crossover occurring at any location on the chromosome is 1/ (length
of chromosome). This probability includes the “null” crossover — when the
crossover location selected is at the end of the individual and, in effect, no
crossover occurs. Since both C and B are the same length and have the same
number of significant bits, the chance that a building block will be broken by
crossover is the same. When using one-point crossover, the extra bits at the end
of the individual simply increase the chance of the “null” crossover.

In the second case (4), the chance of crossover combining two adjacent building
blocks is also reduced. Again, this is because there is only one crossover point
between each building block on B. Since the probability of crossover occurring at
any bit depends on the length of the chromosome, and A is shorter than C, the
chance that a building block will be broken by crossover on A is greater than on
C. We expect C to lose (and rediscover) fewer building blocks in the process of
finding the optimum chromosome.

4 Experimental design

4.1 What are we testing?

e Does including non-coding segments improve the performance of the GA?
¢ Do non-coding segments combat the hitchhiking effect?

¢ Do non-coding segments stabilize the GA?

e Under what conditions (what fitness landscapes) do the non-coding segments
provide the most improvement?

e What is the best placement of the non-coding segments or of the building blocks?

e Can we confirm previously reported beneficial effects of non-coding segments?

4.2 Program/system details

Though the steps of a typical GA are well known, implementation details vary from
system to system. In replicating previous research, we found that small differences in
program structure can produce significant changes in the results. Thus, to successfully
replicate a GA experiment, we need to know all of the implementation details for that
experiment.

The following is a description of the steps of our GA program. Any changes that
were necessary for our replication experiments will be specified in the appropriate
sections.

1. Create initial population (generation 0). The individuals of the initial population
are generated randomly. Each bit in each individual is equally likely to be
initialized to a 1 or a 0.

2. Evaluate the fitness of each individual in the current generation. Also, calculate
the average fitness and standard deviation of the fitness of the current population.

3. If the stopping condition is satisfied, terminate the program; otherwise, continue.
The stopping condition may be a minimum fitness value to be achieved or a
maximum number of generations to run the GA.

4. Calculate the expected number of offspring for each individual in the current
generation. This value will be proportional to the fitness of the individual: more
fit individuals are expected to have more offspring. The expected number of
offspring is scaled to a real value ¥ where 0 < 2 < 1.5. In practice, this means
that the expected number of offspring will range from zero to two.

5. Select the parents of the next generation. An individual may be selected more
than once; multiple selections simply indicate that the individual will sire
multiple offspring. Parents are selected using the roulette wheel selection method.
To select a parent:

e Choose a random real number n : 0 < n < population_size — 1.

e Starting from the first individual in the current generation and iterating
through as many individuals as necessary, sum the expected number of
offspring for each individual. Stop when the sum becomes greater than n.
The individual which stops the iteration is selected as the parent.

The number of parents selected should be equal to the number of new offspring
expected in the next generation (remember that an individual may be selected to
be a parent more than once). Thus, the number of parents selected depends on
the reproduction rate. For 100% reproduction rate, there should be
population_size number of parents. For lesser reproduction rates, the number of
parents will be some fraction of the total population size. The remaining fraction
of the next generation will consist of individuals that survive the current
generation. An individual that survives from one generation to the next is copied
from the current generation to the next generation with no change. In this
algorithm, the survivors of the current generation are the most fit individuals of
the current generation.

6. Reproduce. Starting from the top of the list of parents, pairs of individuals
undergo one-point crossover and mutation to produce offspring. The crossover
rate is the probability that any pair will undergo crossover and the mutation rate
is the probability that a single bit will be complemented. The offspring together
with the survivors of the current generation form the next generation of
individuals.

7. Go to step 2.

The program that we are using is algorithmically the same as the program used in

(Forrest & Mitchell, 1992).

4.3 Testbed

With the exception of the replication experiments, we ran all of our experiments on the
Royal Road functions. The Royal Road functions (Forrest & Mitchell, 1992) (Forrest &
Mitchell, 1993) (Mitchell & Holland, 1993) are a class of fitness landscapes designed for
studying building block interactions. Royal Road functions are defined by their
component schemata. The building blocks of a Royal Road function are specified by
schemata and assigned fitness values before a run begins. Higher level building blocks
consist of two or more lower level building blocks. An example of a Royal Road
function from (Forrest & Mitchell, 1992), RR2.,ponential, is shown in Figure 2.

Pre-defining all the building blocks of a function allows us to trace the GA’s
progress in combining short building blocks to form larger building blocks to eventually

10

Sp = kkikokkkokkkokkokokkokokkkokkokokkokkokok 11111 111 kskokkokokokokskokoksk ok kokskokkokokokkok ;. Cp
Sg = Rkkdckkkkikkokkiokokkkokkkkokkdokok Kok kbR kokokkokaok 1111111 Daokkskskokkokskokkakokokkok) Cg
S7 = kkkdckokkokskkokokokok Kok ok kkok ok kok Kok okkokkokokok ok kokokokkokokok 111 111 1 Dskokokskokokokok ;. 7

= kokkokokok ook ok okk ok ok ko ok ok ok ook ok ok koK ok ok ok Rk ok ok koo okk k% 11111111 cg = 8,

51 = 1111111 Taskkkkokakkokokokokok ok ok ok ok kokookokokokok ok okokok ok ook ok ok koo ok Rk kkokkokk ok) = 8 [
So = kkdkkkickk11111 11 Ldkakokokok ok ok ok kokokkokokokokokok ok ok ok kokokdokdkok ok ok kokkokkokokk ok o = &)
S3 = kkikkkickkikokkokiokk 11111111 ek kakokkokokokkokkok ok ok ok kokkokokdkokdkok ok ok kokkokkokokk ok 3 = &)
S4 T kRkkkikckkikkokkokiokkorokiokkok 1111111 Dkokkokdok ok ok kokkokokdkokdok ok kkokkokkokokk ok ¢ = &)
8
8
8

T L L L | VR T
N -NoNoNeNoNeo]

S8 =

59 = 1111111111111 11 ks ok ik koo kokok ok ok ok ok ok ok ok ok okkok ok ok kokkkokk ok . o9 = 16, [g
S10 = kkkkkkkokrkkokkkx] 111111111111 11 Dkkakkokiokkokk ok ok kkokkokkokokkkkkkkkkk ; c19 = 16,[10 = 1
511 = ********************************1111111111111111****************; c11 = 167111 =1
S1o T kkkkkkkkiokkkokdkokkokkkokdokokkokokkok ok kk ok ok kokkokokdkok Rk Rk % 1111111111111111 5 ¢90 = 16,112 = 1
S13 = 11111111111111111111111111111 11 Dskskskkskskokskokskok ks kkkkokkkkskokkkkkkkkkk ; c13 = 32,015 = 2
S14 = RREERRFRRFKARKFRFRF KRR RRRR kR kkF%11111111111111111111111111111111; ¢14 = 32,114 = 2

Sopt = 11;

Figure 2: The Royal Road function, RR2.;ponentiar- The fitness of 2, an input individual,
is computed by summing the coefficients or fitnesses, ¢;, corresponding to each schemata
s; of which x is an instance. The subscript exponential refers to the fact that the
coefficients, ¢;, increase exponentially. In this function, ¢; = order(s;) and [; indicates
the level. RR2.;ponential has two levels of intermediate building blocks between the basic
building blocks and the complete optimum individual.

11111141 111141111 11111111 11111141 11111111 11111111 11111111
*k 111111171 #kkk 11111111 s#okkx 11111111 *kkk 111111171 skkk 11111111 sokokx 11111111 *kkk 11111111 **

Figure 3: Examples of RR2.;ponentiar individuals without and with non-coding segments.
The “x” represents a non-coding bit.

finding the optimum. We can easily modify the fitness landscape by changing either
the building block definitions or the fitness values of the Royal Road function. For
example, Forrest and Mitchell also test a Royal Road function called RR1.;ponentials
which is RR2.;ponentiar minus schemata sg thru sq4.

Non-coding segments are added to the Royal Road functions by inserting
additional bits in between the basic building blocks. For all experiments described in
this paper, the non-coding bits were distributed evenly among the basic building
blocks. That is, the same number of extra bits were inserted in between each pair of
basic building blocks. This number is the non-coding segment length. Figure 3 shows
an example of RR2.;ponentiar individuals with and without non-coding bits, where “*”
represents a non-coding bit. Since RR2.;ponentiar has eight basic building blocks, eight
segments of non-coding bits are added (one segment is split and placed at the ends of
the individual). Thus, for a non-coding segment length of 4, the length of the
individual increases by (8 building blocks) x (4 bit long segments) = 32 bits.

11

4.4 Performance criteria

The most commonly used performance measure for evaluating GA performance is the
number of generations or function evaluations required before the GA finds an
acceptable solution to the problem. In the worst cases, this measure becomes “does the
GA find a solution at all?” The obvious goal is to minimize the number of generations
or function evaluations required to find the solution since this also minimizes the time
and computing power used. This measure, however, is not the only way to evaluate the
performance of a GA, and does not necessarily paint a complete picture of the GA’s
abilities. Other performance measures that we will look at include the number of
generations the GA takes to move up each level of the Royal Road function and the
number of times building blocks are found (discovered or rediscovered after being lost).

Observing the number of generations between levels will provide insight on how the
GA progresses when solving a problem. Does the GA find building blocks in evenly
spaced intervals of time or are there periods when the GA is more productive? The
hierarchical structure of the Royal Road functions makes them ideal for studying this
topic. Each level brings the GA closer to the optimum. In our experiments, we record
the first generation that a building block from each level is found.

The number of times building blocks are found gives some indication of the
stability of the GA. The definition of found includes the first time a building block is
discovered in the population and any later re-discoveries of the building block if it is
lost from the population. A stable GA is one which saves, in the population, the
building blocks that have been found, while encouraging search for the remaining
building blocks. The stability of the GA depends on the balance of exploration and
exploitation. According to the building block hypothesis, the GA should save the good
building blocks that it finds while continuing to search for other building blocks. Thus,
we prefer the number of times each building block is found to be as close to one as
possible. Let s;,: = 1,2, ..., num_building_blocks, equal the number of times building
block 7 is found. Then, for each run, we record

num _basic_bb

Sbasic = Z 55

=1

num _bb

Sann = Z Si

i=1
where Spysc 1s equal to the sum of the number of times the basic building blocks are
found and S,;; is equal to the sum of the number of times all of the building blocks are
found. A basic building block is a building block from level 0 of the Royal Road
function. Basic building blocks are the smallest building block units that contribute to
the fitness.

12

Building blocks occurring | Fitness value
none 1
aorborcordore 5
d and e 50
aand b and ¢ 100
a and b and c and d and e 1000

Table 1: Levenick’s fitness function. The value of the best (highest value) building block
in each individual provides the individual’s fitness worth.

5 Experimental results

5.1 Levenick

Levenick (1991) presents a set of experiments that compare the performance of the GA
on individuals whose building blocks are and are not separated by segments of
non-coding bits. His results indicate that separating building blocks with segments of
non-coding bits can make the GA more effective. The problem to be solved has five
building blocks with four levels of building block interaction. The individuals and their
component building blocks are shown in Figure 1. Levenick compares the GA’s
performance on type B and C individuals in his experiments. We decided to add type
A individuals to the comparison as well because A truly has no excess bits and should
be computationally quicker to process. The fitness function is shown in Table 1. The
following parameter settings were used for these runs.

Number of significant bits: 30
Number basic building blocks: 5 (each 6 bits long)
Number total building blocks: 8

Crossover rate: 1.0 (one point)

Mutation rate (per bit): 0.0003

Genome length: A =30,B =60, C =060
Stopping criterion: 20000 function evaluations

Each experiment was run 50 times, and the number of successes (number of times the
optimum was found) was recorded. Levenick varied both the population size and the
reproduction rate. The reproduction rate indicates how much of each generation was
allowed to generate offspring for the next generation. We modified step 5 of our
program to add the capability for variable reproduction rate.

13

Population size

Reproduction 16 64 256 1024
rate AAB CAB C A B C A B C
Number of expected offspring = 2 : 0 < 2 < 2.0
10% o o0 3 2 1 13 2 22 0 0 0
30% o 0o 0 3 0 4 22 7 23 17 3 36
50% 0 0 0 2 0 7 24 12 33 41 30 49
0% 0 0 0 0 4 6 23 15 30 48 31 50
90% 0 0 0 2 2 15 30 18 30 37 29 44
100% 0 0 0 5 1 3 22 15 24 16 20 40
Number of expected offspring = z : 0 < & < population_size
10% o 0o 0 4 1 0 5 1 13 8 1 5
30% o 00 2 0 0 11 3 19 17 9 22
50% o 0o o0 1 1 2 11 6 17 19 12 30
0% 0o 1 0 5 1 5 21 4 22 26 16 36
90% 0o 0 0 2 4 7 22 9 26 29 9 38
100% 0o 0 0 8 3 3 16 4 23 18 18 37
Levenick’s results (from [Levenick, 1991, Fig.3]):
10% 0 0 0 2 3 22 448
30% 0 0 0 2 2 16 4 28
50% 0 0 0 1 1 9 3 23
0% 0 0 0 0 0 8 1 11
90% 0 0 0 1 0 4 112

Table 2: This table lists the number of times the optimum was found in 50 runs. For
the runs in the top section, the number of expected offspring for each individual ranges
from zero to two. For the runs in the middle section, the number of expected offspring
for each individual ranges from zero to the population size. Levenick’s results are shown
in the bottom section. A, B, and C refer to the types of individuals used in the runs
(see Figure 1).

We ran two sets of Levenick’s experiments. In our initial attempt, each individual
was limited to a maximum of two offspring. The number of expected offspring for each
individual depends on the fitness of that individual, but this number was scaled to a
value between 0 and 2. These results are shown in the first section in Table 2. Because
of differences between our results and Levenick’s, we re-ran the experiments without
the extra scaling step. This time, the number of expected offspring was still
proportional to the fitness of each individual, but ranged from 0 to the population size.
The second set of results are shown in the second section in Table 2. Levenick’s runs
were all performed with unlimited, proportional number of offspring, like our second

14

set.

Our data and Levenick’s data are consistent on several major points. The success
rate increases as the population size increases. This trend is probably due to the fact
that larger populations provide a better sampling of individuals. The larger the
population, the more partial or full building blocks the initial population is likely to
have. The more building blocks there are, the easier the task is for the GA. In
addition, we also confirm that inserting non-coding bits between building blocks
improves the GA success rate when there is a limit on the amount of computation that
can be made. The GA finds the optimum most often in the type C runs in all three
sets of results. The type A runs generally perform better than the type B runs, but
still perform worse than the type C runs.

Our data do not agree with Levenick’s data on the relationship between success
rate and reproduction rate. In Levenick’s runs, the success rate decreases as the
reproduction rate increases. In our runs, the success rate increases as the reproduction
rate increases. According to (Levenick, 1991), the high reproduction rate runs
performed poorly because the high rates increase the chance of premature convergence.
Premature convergence occurs when all individuals in a population have evolved the
same partial set of building blocks but none of the individuals have all of the optimal
building blocks. When the fitness of an intermediate level building block is much
better than that of the basic building blocks, the individuals containing this
intermediate building block may take over the population, eliminating individuals that
contain other useful, but less fit, building blocks. A similar effect occurred in our runs.
GAs with higher reproduction rates are more likely to converge prematurely because
convergence is faster with higher reproduction rates. We also found, however, that a
number of other factors overcome or make use of this high convergence rate to benefit
high reproduction rates. First, high reproduction rate seems to have more exploratory
power. The population remains more diverse overall, even after the convergence
period. After a population converges prematurely, the standard deviation of the
population fitness at 90% reproduction rate is typically three to four times that at 10%
reproduction rate. The GA is more likely to find the optimum during the convergence
period for high reproduction rates than for low rates. This relationship between
reproduction rate and exploratory power is consistent with the notion that genetic
operators are the mechanisms for exploration in the GA and a high reproduction rate
would result in more frequent usage of the genetic operators. In addition, since
premature convergence occurs much faster in GAs with higher reproduction rates, the
GA has more time to rediscover any building blocks that may have been lost during
the convergence period. Once a building block exists in the entire population, then all
exploratory power can be directed towards finding the remainder of the building blocks.

15

RR1 RR2

F&M Our runs F &M Our runs
Exponential, 500 runs
Average 62099 66280 73563 76529
Std. dev. 31081 19484 40115 19066
Std. err. 1390 871 1794 853
Exponential, Population 1024, 200 runs
Average 37453 47631 43213 66202
Std. dev. 12275 13432 18031 22917
Std. err. 868 950 1275 1620
Exponential, Building block length 4, Genome length 64, 200 runs
Average 6568 12248 11202 20605
Std. dev. 6906 10007
Std. err. 198 488 394 708
Exponential, segment length 8, 200 runs
Average 67478 75599 85720
Std. dev. 17124 38141 17123
Std. err. 1211 2697 1211
Flat, 200 runs
Average 62454 62692 70388
Std. dev. 20770 33814 19349
Std. err. 1469 2391 1368

Table 3: The average number of function evaluations until the optimum is found, the
standard deviation of this average, and the standard error of this average for Forrest
and Mitchell’s experiments. The number of runs performed for each experiment and any
changes from standard parameter values are listed above the data for each experiment.

5.2 Forrest and Mitchell

Forrest and Mitchell (1992) performed a series of experiments on the Royal Road
functions. Included in these experiments are several investigations into the effect of
non-coding segments. We have replicated a number of their experiments. Table 3 lists
Forrest and Mitchell’s results in the first column and our results in the second column.
The default parameters for the runs are the following. Any changes from these
parameters are explicitly stated in the table.

Population size: 128
Significant bits: 64
Expected # of offspring: 0 to 2

16

Name ‘ Building block fitness value

Exponential | order(building block)
Flat 1

Power base'evettl

Table 4: Royal Road fitness landscapes that we tested with RR2.

Crossover rate: 0.7 (one point)
Mutation rate: 0.005 per bit

Like Forrest and Mitchell’s program, our GA showed no improvement by including
non-coding segments in the Royal Road function, RR2.;ponentiar- In fact, the GA
performs slightly worse when non-coding segments are included. We also tested
RR1.pponentiar With non-coding segments and obtained similar results.

The differences between our results and the original data range from small to
approximately a factor of two. Though the results differ noticeably for some runs, the
relative values of the runs are almost exactly the same. That is, if we were to order the
runs by their performance (average length of time needed to find the optimum), the
order of our experiments would be the same as the order of Forrest and Mitchell’s
experiments. Qur program seems to magnify the differences for the extreme valued
(shortest and longest) runs.

5.3 Our non-coding segment experiments
5.3.1 The effect of non-coding segments on different coefficient types

Our first set of experiments was performed on the Royal Road function RR2 (see
Figure 2). We compared the effect of non-coding segments on four different coefficient
types: exponential, flat, and power (bases 3 and 5). The coefficient type determines
the contribution, ¢;, of each building block to an individual’s fitness. The coefficient
types that we used are described in Table 4. For each coefficient type, we tested the
GA with non-coding segment lengths ranging from 0 to 300 bits and evaluated the
GA’s performance on the criteria described in Section 4.4. The following parameter
settings were used for these runs:

Population size: 128
Significant bits: 64 bits
Number of levels: 4

17

800 T T T T T T
Exponential coefficient <—

750 —

700 | —

650 - 1

Average ending generation

600 [~ 1

550 | —

500 1 1 1 1 1 1
0 50 100 150 200 250 300
Non-coding segment length

Figure 4: Data from the exponential coefficient runs: the average number of generations
needed to find the optimum versus non-coding segment length.

Number of basic building blocks: 8, each 8 bits long

Number of total building blocks: 15

Crossover rate: 0.7 (one point)

Mutation rate (per bit): 0.005

Reproduction rate: 1.0

Parent selection: Roulette wheel, with replacement
Expected number offspring per individual: 0 to 2

Stopping criterion: 5000 generations

Each experiment was run 100 times and the average values of these runs are reported
here.

Figures 4 to 7 show the average number of generations the GA takes to find the
optimum with exponential, flat, power(base = 5), and power(base = 3) coefficient
types, respectively. A smaller number of generations until the optimum is found
(shorter run times) indicates better performance. The exponential coefficient runs
show no improvement from adding non-coding segments. On the contrary, the GA
takes longer to find the optimum when these segments are included than when they are
not. The flat coefficient runs also show little benefit from including non-coding
segments, although short segments (less than 20 bits) do result in some improvement.
The power coefficient, on the other hand, does result in shortened run times when

18

800 T T T T T T
Flat coefficient <—

750 —

700 | —

650 - 1

Average ending generation

600 - 1

550 | —

500 1 1 1 1 1 1
0 50 100 150 200 250 300
Non-coding segment length

Figure 5: Data from the flat coefficient runs: the average number of generations needed
to find the optimum versus non-coding segment length.

Power(base = 5) coefficient <—
5400 | B

5200 E

5000 —

4800 |- y

4600 E

Average ending generation

4400 —

4200 —

4000 1 1 1 1 1 1
0 50 100 150 200 250 300
Non-coding segment length

Figure 6: Data from the power(base = 5) coefficient runs: the average number of gen-
erations needed to find the optimum versus non-coding segment length.

19

1400 T T T T T T
Power(base = 3) coefficient <—

1300 E

1200 —

1100 —

1000 —

Average ending generation

900 - 1

800 - —

700 1 1 1 1 1 1
0 50 100 150 200 250 300
Non-coding segment length

Figure 7: Data from the power(base = 3) coefficient runs: the average number of gen-
erations needed to find the optimum versus non-coding segment length.

non-coding segments are added. Though this improvement is not consistent (the
number of generations does not always decrease as the segment lengths increase), the
average number of generations for runs that include non-coding segments is always less
than that for runs without these segments.

Figures 8 to 11 show building block stability data from exponential, flat,
power(base 5), and power(base 3) coefficient types, respectively. Syqs;. refers to the
sum of the number of times each basic building block is found. S,;; refers to the sum of
the number of times all of the building blocks are found. The vertical bars indicate the
95% confidence intervals for the average values. In all of our experiments, including
non-coding segments lowers the average number of times that building blocks are
found, i.e. increases their stability. This effect is most noticeable with segment lengths
greater than 50 bits. In the majority of our experiments, the 95% confidence intervals
do not overlap the 95% confidence interval of runs without non-coding segments. In
experiments that used segments of less than 50 bits, the average number of times
building blocks are found is still less than the average without non-coding segments,
but the 95% confidence intervals may overlap the interval without non-coding
segments.

Figures 12 to 15 show the average generation at which each level is discovered for
the four coefficient types. We prefer that the average discovery generation of each

20

35 -+ ’ - S_basic ~—
Exponential coefficient ~S all e
i}
30 | R
25 1

Average number of times found

fy |
. i |

1 1 1 1 1 1
0 50 100 150 200 250 300
Non-coding segment length

Figure 8: Data from the exponential coefficient runs: the average number times building
blocks are found before the optimal solution is discovered.

T T T T T T
i . S_basic ro—
Flat coefficient ~s all e
i}
30 E
e}
c
>
o
%]
[}
E
- 25 —
o
9]
e}
1S
3
<
(]
[=)
I
g
< 20 i
15 % %} % %} % %
-+ } } } } L :
0 50 100 150 200 250 300

Non-coding segment length

Figure 9: Data from the flat coefficient runs: the average number times building blocks
are found before the optimal solution is discovered.

21

350 T T T T T T
L - S_basic e
Power(base 5) coefficient ~s all e

300 R

- i}

c

=}

=]

& 250} |

= 1

5 -

g L

g m]

2 Lo L

o 200 i

g i}

g o m

z il
150 | A i
100 -+ } } : } L }

0 50 100 150 200 250 300

Non-coding segment length

Figure 10: Data from the power(base = 5) coefficient runs: the average number times
building blocks are found before the optimal solution is discovered.

70 T T T T T T
] . S_basic o—
Power(base 3) coefficient ~s all 1o
60 |- 1
i}
e}
c
3 L
- 50 —
[} .
=
5 L
g -
£ 40 | i] -
=} m
S m
N , o o
o
s]
> L il
< % _ -
30 —

1 1 1 1 1 1
0 50 100 150 200 250 300
Non-coding segment length

Figure 11: Data from the power(base = 3) coefficient runs: the average number times
building blocks are found before the optimal solution is discovered.

22

800 T T T
Exponenitial coefficient
700 L segment length 0 +— i
segment length 8 —+-
segment length 50 -8--
segment length 100 -
segment length 150 -2-
600 - segment length 200 -*-- 7]
segment length 300 -<--
500 - 1
c
i)
IS
5 400 1
c
[
O]
300 R
200 R
100 1
0
0 1 2 3
Level

Figure 12: Data from the exponential coefficient runs: the average generation at which
each level is discovered.

700 T T b
- /X
Flat coefficient /i
segment length 0 <—
600 segment length 8 -+ y
segment length 50 -8--
segment length 100 -
segment length 150 -2~
segment length 200 -
500 segment length 300 -©- - 7]
c 400 | -
i)
®
Q
c
[}
o 300 s
200 R
100 —
0 il ~ L L L
0 1 2 3
Level

Figure 13: Data from the flat coefficient runs: the average generation at which each
level is discovered.

6000 . . :
Power(base 5) coefficient
segment length 0 —<—
segment length 8 —+-
5000 - segment length 50 -o-- y R
segment length 100 - /
segment length 150 -2~ 7/ %
segment length 200 - - il
segment length 300 -<-- Vay
4000 - -
c
i)
IS
© 3000 [i
c
[
O]
2000 i
1000 | |
0 I
0 1 2 3
Level

Figure 14: Data from the power(base = 5) coefficient runs: the average generation at
which each level is discovered.

1400 T T T
Power(base 3) coefficient
segment length 0 <—
1200 segment length 8 -+]
segment length 50 -8--
segment length 100 -
segment length 150 -2~
segment length 200 -
1000 - segment length 300 o 7
c 800 - i
i)
IS
[]
c
[
© 600 | 7
400 | 1
200 T
0
0 1 2 3
Level

Figure 15: Data from the power(base = 3) coefficient runs: the average generation at
which each level is discovered.

S1 = 1111 %kskakskokskokkokok ok ok ok skok ok skok ok ok skok ok K ok ok koK ok ok oK ok ok ok ok K ok ok ok ok ko kR ok [1 =0

So = kkkkl 111 kokskokkaokokkskokkokokokok ok ok kok sk kok ok okok ok kokok ok ok ok ok kokokok ok ok kkok ok kb ok okok 3 [=
S3 = kkkksokok 1111 kaokokskskokkokok ok kokok ook skok sk kok ok kok ok skokok ok ok ok skok ok kokokokkok ok kskok ok kok ok okok 3 [5 =
sS4 = kkkkdokokkokkok 1111 sk kkokokokokokokokskok sk kok ok kok ok kokok ok ok ok skok ok kokokok ok ok kkok ok kokokokok 3 [y =
Sp = kkkkickokokkokkokokokk 111 1ok kokkokokakokok kkok ook ok ook kol ok ok kok ok kokokok ok ok kkok ok kokokokok 3 [—

Sg = kkkkikckkkkkokkiokkkookk 11 1 kokokskokokkokkokokokkokok kol ok ik ok kokokok ok ok kkok ok kok ok okk § [g =
S7 = kkkkickokokkokkokokdokkookkiokokok 1 1 1 1 dokkskokkokoskokokskok ok ok ik ok kokokokokkkskok ok ok ok okk 3 [=

Sg = Rkkkkkkkkokkkkdkokokkokkokkokdokkokk 111 ok kokokkkok ok kokok ko ok ok ok ok ok koo ok ok ok ok ok [g —

Sg = Rkkkkkkkkokkkkkookokokkokkokdokokokokokkokok] 11 1 kokkok ok kR okokok kR ok kR R okkokkk ;. [g = 0
S10 = RRkkkkkkkkkkkkookkokkokkokokokokokkokookokokk 1 11 1ok kkokkkokokokkokkkkkokokk ok kkk ;) (19 = 0
S11 = Rkkkkkkkkokkkokkokokkokokkkkokdokkokokkokokokokokkokkokok 11 1 1 kokskokokok ok koo okokokkokkk ;[= O
S12 = kkkkkkkkkokkokokdkokokkokokokkokokdokkokok Rk ok ook ok okkkkkok ok ok 1 11 1Ak kokkkokkokkkokkkkk ; [10 = 0
S13 = kkkkkkkkkokkokokkokokkokokokokokokdok bk ok ko ok ok bk ok kkok ok ok okokkk 11 1 T kkokkokkkkkkkk; [15 = O
S14 = Rkkkkkkkkokkkokkokokkokokokkokokdok Rk ok Rk ok ook bRk kkkok ok okokok kbbb ok ok 1 1 L Tkkokkkkkk ; [, = O
S15 = Rkkkkkkkkkokkokkokokokokkokokok ok Rk ok ok ok ook ok ok kokok ok kR kb okok ok okkokokk 111 1k kkk; (15 = O
S16 = FREkkkkkkkokkokokdkokokkokokokokokokdokkokok ko okokok ok ok ok kokok ok ko Rk ok ok ok okkkkkokkk k1111 [16 = O
517 = 11111111 % kkkokakskokkokokokokokok ok okok dkokokokok ok ok ok ok kokok ok ok ok kbbb ok ok ok kokakokok ok okokokokk 5 [17 = 1
$18 = kkkkdokkok] 111111 1 sk ko kokakokok kkok ok okok ok kokok ok ok ok kok ok kokokokkokokkkok ok kb ok okk 5 [1g = 1
S19 = Rkkkkkkkkkkkkdkook 1111111 1k kkkkakokokokdkokokkkokokdok kokokkkokokok bk kkkokokokokkkkk ;. [19 = 1
Sog = Rkkkkkkkkkkkkdokokkokkokookokk] 111111 1k kkkkokkokdok ko kokkok ook ok okkkkkokokkokkkkk ; [og = 1
So1 = kkkkkkkkkkkkokkkokkokkokkdkokdokkokokokakokk 1111111 1k kokokkakkkokokokkokokkokokkokkokkk ; [o] = 1
Sop = kkkkkkkkkkkkokkkokkokkokkkokdokkokok ok kokokokokkokokkk 1111111 akkkkkkokskokokkkkkkk ; [o0 = 1
So3 = Rkkkkkkkkokkokkkokokkokkokkkokdok kR kR ok ook bk kokkkok ok okkokokkk 11111 1 11 kkkkkkkk; [o9 = 1
Soq = Rkkkkkkkkokkokokkokokkokokokokokdok Rk ok Rk ok ook ok ok kkkok ok kR Rk okokok ok okkokkk 111111115 oy = 1
Sop = 11111111111 11111 skokokarskokskok sk kokdkokokskok ok ko ok kokok ok ok ok kbbb ok ok ok kokokokok ok okokokokk ;[0 — 2
Sog = Rkkkkkkkkkkkkkkk111111111111111 1k kkkokakskokskokdkokkkkkdkokkokkkkdkokkkkkkkk; [og = 2
So7 = kkkkckkkkokokkkokkokokkdokkokkokokaokk ok k1111111111111 11 Dskokskaokkksiokkkkokkk ; [o7 = 2
Sog = Rkkkkkkkkokkkokkokokkokkokkkokdokkokokkdokodokokokkokkkokdokokkokokkk1111111111111111; [og = 2

So9 = 1111111111111111111111111111111 Lskskskokskskskskkskkskkkdkkkkskrkkkkkkkkkkk; o9 = 3
$30 = RRkkkkkkkkkkokkokkokkdkokdkokkokkkokkokkokx11111111111111111111111111111111; 30 = 3

Sopt = 1111111111114111441111141441144114411114411411411144111119111314 5 [op = 4

Figure 16: A five level Royal Road function, RR3. Additional levels are added by dou-
bling the length of the individual and, consequently, doubling the number of schemata
for each level.

level to be as low as possible. At the lower levels, there is very little variation in the
average discovery generation as the non-coding segment lengths vary. There is a
significant spread at the highest level, but the ordering seems to be completely
arbitrary. There is no obvious correlation between segment length and discovery
generation. We should note that with the power coefficient, including segments of
length 50 or larger does result in a significant improvement over short or no segments.

5.3.2 The effect of non-coding segments on different leveled Royal Road
functions

Our second set of experiments was performed on the Royal Road function, RR3, shown
in Figure 16. The goal of this set of experiments was to see if the effects of non-coding
segments become more apparent when the number of levels in the Royal Road function
increases. Figure 16 shows a five level Royal Road function. The number of levels is

25

changed by doubling or halving the length of an individual and the number of
schemata in each level. We decided to pursue this work because of the data that we
collected in Figures 12 to 15. The higher the level, the larger the range of the average
discovery generations. If this trend continues as the number of levels increase, then the
differences in behavior due to different non-coding segment lengths should be more
obvious in functions with more levels. In our experiments, we test the function from
Figure 16 with four, five, and six levels. The following parameter settings were used for

these runs:
Population size: 128
Crossover rate: 0.7
Mutation rate (per bit): 0.005
Reproduction rate: 1.0
Parent selection: Roulette wheel, with replacement
Expected number offspring per individual: 0 to 2
Stopping criterion: 10000 generations
Number of levels: 4 5 6
Significant bits: 32 64 128
Number of basic building blocks: 8 16 32
Number of total building blocks: 15 31 63

Each experiment was run 100 times and the average values of these runs are reported
here.

Initially we planned to run these experiments on RR2. After some testing,
however, we found that adding levels to RR2 made the problem much too big.
Running all of the runs we needed would take too much time. We decided to switch to
a Royal Road function with building blocks of length four instead of eight. On small
problems (individuals with eight or less building blocks), the short length of the
building blocks makes the problem almost trivial for the GA. This is evident in the
results from our four level runs. Little information was gained from these runs because
there is very little variation in the data values with changing non-coding segment
lengths. As a result, we will list these values in Table 5 rather than graphing them as
we do for the other data. We found that when the number of building blocks, and
consequently levels, are increased, this problem becomes more challenging for the GA
and produces interesting results.

Figures 17 and 18 show the average number of generations the GA uses to find the
optimum with the five and six level RR3 functions, respectively. In both sets of
experiments, adding non-coding segments reduces the number of generations required
to find the optimum. The effect is especially clear in the six level experiment where
increasing the segment lengths result in steadily decreasing generation numbers.

26

T T T T T T T
Flat - 5 levels <—
240 - B
220 B
c
§e]
©
Q
c
[
(=]
(=]
£ 200 E
©
c
(]
[
[}
I
[}
>
<
180 B
160 E
1 1 1 1 1 1 1

o
N
o

40 60 80 100 120 140
Non-coding segment length

Figure 17: Data from the five level flat coefficient runs: the average number of genera-
tions needed to find the optimum versus non-coding segment length.

1250 T T T T T

Flat - 6 levels <—

1200 E

1150 —

1100 b

Average ending generation

1050 —

1000 —

950 1 1 1 1 1
0 10 20 30 40 50
Non-coding segment length

Figure 18: Data from the six level flat coefficient runs: the average number of generations
needed to find the optimum versus non-coding segment length.

27

Segment Final Level 0 Level 1 Level 2 Level 3
length | generation | S_basic S_all | (Ist gen.) (1st gen.) (lst gen.) (Ist gen.)

0 25 9 17 0 0 7 25
100 26 9 17 0 0 6 26
200 29 9 17 0 0 d 29
300 26 9 17 0 0 6 26

Table 5: Average values from the four level RR3 runs.

75 T T T T T T T

S_basic e
Flat, 5 levels S all He—

sy 5

50 -

45 4

Average number of times found

40 4
35 &t .

Ly

25 . } . } . L L } L L
0 20 40 60 80 100 120 140
Non-coding segment length

Figure 19: Data from the five level flat coefficient runs: the average number times
building blocks are found before the optimal solution is discovered.

Figures 19 and 20 show the building block stability data from the five and six level
RR3 runs. Again, Sy, refers to the sum of the number of times each basic building
block is found, S,;; refers to the sum of the number of times all of the building blocks
are found, and the vertical bars indicate the 95% confidence intervals for the average
values. Both the five and six level runs show a significant improvement when
non-coding segments are added. The improvement seems to be more apparent in Sy
than in Spgse.

Figures 21 and 22 show the average generation at which each level is discovered in
the five level and six level RR3 runs. In both sets of runs, including non-coding

28

450 - ' ' ' .
- S_basic
Flat, 6 levels S all He—
m
400 1
350 | % 1
e}
c
>
2
o 300 | 1
Q
E
5
5 250 | |
Qo
€
=
<
S 200 1
9]
>
<
150 + 1
100 F i |
¢ 3 3 3 ¢ 3
50 ’ y ! ! !
0 10 20 30 40 %0

Non-coding segment length

Figure 20: Data from the six level flat coefficient runs: the average number times building
blocks are found before the optimal solution is discovered.

250 T T T T
Flat, 5 levels
segment length 0 —<—
segment length 10 -+--
segment length 20 -8--
200 | segment length 30 - |
segment length 40 -2
segment length 50 -
segment length 100 -<- -
segment length 150 -+---
150 B
c
i)
IS
[]
c
[
O]
100 R
50 —
0 B _
0 1 2 3 4
Level

Figure 21: Data from the five level flat coefficient runs: the average generation at which
each level is discovered.

1400 T T T T T
Flat, 6 levels

segment length 0 —<—
1200 | segment length 10 —+-- i
segment length 20 -8--

segment length 30 - +
segment length 40 -&-- Fal
segment length 50 -~ IS
1000

800 -

Generation

600 |

400

200 |

Level

Figure 22: Data from the six level flat coefficient runs: the average generation at which
each level is discovered.

segments shows a distinct improvement over not including the segments. Like our
experiments with RR2, the distinction seems to depend on whether non-coding
segments are used, and not on the size of the segments. Once these segments are
added, there does not seem to be any correlation between segment length and the
average level discovery generations.

6 Conclusions

We can draw a number of conclusions from the results described in this paper.

First, we were able to successfully reproduce portions of Levenick’s research and
Forrest and Mitchell’s research. Of particular significance to us is that we were able to
reproduce Levenick’s results showing that non-coding segments increase the likelihood
of finding a particular solution within a limited time frame. The random nature of the
GA makes exact replication of experiments difficult. Under similar run-time
conditions, however, we have been able to obtain statistically similar results.

Second, the effect of non-coding segments varies depending on the fitness landscape
of the problem. The exponential and flat RR2 runs performed worse when non-coding
segments are added (see Figures 4 and 5). Both the power RR2 runs (Figures 6 and 7)

30

and the RR3 runs (Figures 17 and 18) from the second experiments showed
improvement (shorter run times) with the addition of non-coding segments. Problems
in which there is a large increase in fitness when the GA discovers a new level seem to
benefit more from the inclusion of non-coding segments than problems in which the
fitness increase from level to level is relatively small. Since the larger the fitness
increase between levels, the more pronounced the hitchhiking effect will be, non-coding
segments must have some effect on reducing the hitchhiking effect.

Among the arguments given in Section 3 for using non-coding segments is the
hypothesis that non-coding segments may reduce the chance of crossover breaking up
existing building blocks by reducing crossover activity within building blocks. While
lowering the activity level within building blocks makes it harder for the GA to destroy
existing building blocks, it also decreases the chance that the GA will put together a
building block using crossover. As a result, the discovery of building blocks is partially
inhibited and depends more on mutation alone. Thus, longer run times are not an
unexpected side effect of adding non-coding segments.

Third, all of our experiments indicate that including non-coding segments in a GA
reduces the number of times that building blocks are found (see Figures 8 to 11, 19,
and 20). This, in turn, means that the GA is more stable with non-coding segments —
the GA is less likely to lose building blocks after they have been found. Theoretical
analysis of this situation supports our experimental results. Taking RR2 as an
example, we have 64 significant bits grouped into eight building blocks. Any location is
equally likely to be chosen as a crossover location. With no non-coding segments, there
are eight crossover locations (counting both ends as the same location) that would not
break up a basic building block. Thus, 8/64 = 1/8 = 0.125 of the crossover locations
will never destroy any basic building blocks and 7/8 = 0.875 of the locations could
potentially destroy basic building blocks. If non-coding segments of length n are added
in between each basic building block, the individual becomes 64 + 8n long. Now there
are 8(n + 1) crossover locations that will not break up a basic building block. This
means that S8 — ntl

64+8n ~ n+8
(64+8n)—(8n+8)

of all crossovers will never destroy a basic building block and

7
it = &, of all crossovers could potentially destroy a basic building block.

Given that n > 0, the following two inequalities always hold:

n-+1 1
n+8
and
7 < z
8+n 8

. The first inequality shows that including non-coding segments increases the
percentage of crossover locations that do not break up a basic building block. The
second inequality shows that including non-coding segments decreases the percentage
of crossover locations that could destroy a basic building block.

31

Fourth, the differences observed from different lengths of non-coding segments
seem to be more pronounced at higher levels (see Figures 21 and 22). The more levels
a Royal Road function has, the more building blocks there are to find, and the more
difficult the problem is to solve. In our second set of experiments, we can see a definite
advantage in all performance criteria for runs that use non-coding segments over runs
that do not use non-coding segments. In both the five level and six level runs, the
difference between having non-coding segments and not having non-coding segments is
very clear. In the six level runs, performance improves steadily as segment length
increases. In the five level runs, however, there does not seem to be any correlation
between segment length and performance. These data suggest that large problems
with many levels may be the most useful candidates for further studies on the effects of
non-coding segments.

The purpose of this work is not to optimize GA performance on the Royal Road
functions using non-coding segments. Rather, we use the Royal Road functions as a
tool for studying the effects of non-coding segments on the GA. The hierarchical
structure of this artificial function allows us to monitor the progress of the GA as it
solves a problem. The pre-defined nature of this function allows us to rigorously test
specific characteristics of the function while maintaining a constant value for all other
characteristics. Our results suggest that non-coding segments may be beneficial in more
complex problems, but not very influential in simpler problems. Though non-coding
segments may slow down the discovery of new building blocks, they also stabilize the
GA and reduce the chance of losing good building blocks. This type of information
could be useful in helping others set up their problems in a GA. The better we
understand the GA’s problem solving process, the more effectively we can use the GA.

There are a number of extensions to this work that would be interesting to
investigate. Our next area of study will involve location independent building blocks
and non-coding segments. In these experiments, the placement (location and ordering)
of the basic building blocks will be decided dynamically during a run by the GA. Other
topics of interest that stem from the research described here include testing random
length non-coding segments, comparing non-coding segment runs to runs with variable
crossover probabilities, and testing the effects of non-coding segments on a real
problem.

Acknowledgements
This research was sponsored by NASA/JSC under grant NGT-51057. The authors

would like to thank John Holland and Michael Smith for many interesting discussions
and helpful suggestions relating to this work.

32

References

Back, T. (1991). Self-adaptation in genetic algorithms. In Toward a practice of
autonomous systems: Proceedings of the First European Conference on Artificial

Life, (pp. 263-271).
Curtis, H. (1983). Biology. Worth Publishers.

De Jong, K. A. (1975). Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan.

Eshelman, L. J., Caruana, R. A., & Schaffer, J. D. (1989). Biases in the crossover
landscape. In Proceedings of the Third International Conference on Genetic
Algorithms, (pp. 10-19).

Eshelman, L. J. & Schaffer, J. D. (1993). Crossover’s niche. In Proceedings of the Fifth
International Conference on Genetic Algorithms, (pp. 9-14).

Fogarty, T. C. (1989). Varying the probability of mutation in the genetic algorithm. In
Proceedings of the Third International Conference on Genetic Algorithms, (pp.
104-109).

Forrest, S. & Mitchell, M. (1992). Relative building-block fitness and the building-block
hypothesis. In Proceedings of the Foundations of Genetic Algorithms Workshop.

Forrest, S. & Mitchell, M. (1993). What makes a problem hard for a genetic algorithm?

Some anomalous results and their explanation. Machine Learning, 13, 285-319.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems, 3, 493-530.

Goldberg, D. E., Korb, B., & Deb, K. (1990). Messy genetic algorithms revisited:
Studies in mixed size and scale. Complex Systems, 4, 415-444.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-16(1), 122-128.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Lee, M. A. & Takagi, H. (1993). Dynamic control of genetic algorithms using fuzzy
logic techniques. In Proceedings of the Fifth International Conference on Genetic
Algorithms, (pp. 76-83).

33

Levenick, J. R. (1991). Inserting introns improves genetic algorithm success rate:
Taking a cue from biology. In Proceedings of the Fourth International Conference
on Genetic Algorithms, (pp. 123-127).

Lewin, B. (1994). Genes 5. John Wiley & Sons.

Mitchell, M. & Holland, J. H. (1993). When will a genetic algorithm outperform
hillclimbing? In Proceedings of the Fifth International Conference on Genetic
Algorithms.

Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press.

Oliver, I. M., Smith, D. J., & Holland, J. R. C. (1987). A study of permutation
crossover operations on the traveling salesman problem. In Proceedings of the
Second International Conference on Genetic Algorithms, (pp. 224-230).

Patrusky, B. (1992). The intron story. MOSAIC, 23(3), 22-33.

Schaffer, J. D. & Eshelman, L. J. (1991). On crossover as an evolutionarily viable
strategy. In Proceedings of the Fourth International Conference on Genetic

Algorithms, (pp. 61-68).

Schaffer, J. D. & Morishima, A. (1987). An adaptive crossover distribution mechanism
for genetic algorithms. In Proceedings of the Second International Conference on
Genetic Algorithms, (pp. 36-40).

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the
Third International Conference on Genetic Algorithms, (pp. 2-9).

34

