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Abstract—Connected Internet-of-Things (IoT) devices pose sev-
eral privacy risks through the analysis of their encrypted network
traffic. According to prior studies, packet size can be utilized to
train a machine learning classifier for the identification of IoT de-
vices because of their unique functionalities and traffic patterns.
A recent defense technique aimed at addressing these privacy
concerns efficiently is random segmentation [1]. This mechanism
involves breaking down application messages into randomly sized
chunks to obscure patterns in packet sizes. However, it leads to
higher latency due to the increased number of packets and the
additional packet header overhead. Furthermore, nonadaptive
(or static) splitting in the original random segmentation approach
is inappropriate for networks with dynamically changing condi-
tions, which is common in smart homes. In this paper, we present
an adaptive segmentation approach based on optimization, which
adapts the splitting volume to changes in network usage. We
formulate an optimization problem in order to maximize network
traffic obfuscation while minimizing segmentation overhead. We
evaluated our adaptive approach through simulations using real-
world IoT data traces. Our results illustrate how the adaptive
defense system adjusts its splitting parameters to enhance privacy
protection, as measured by entropy, while minimizing the impact
on transmission performance.

Index Terms—Device Fingerprinting; Adaptive control; IoT
Privacy; Traffic Analysis Countermeasure

I. INTRODUCTION

The widespread use of IoT devices poses a privacy threat.
Despite encryption, passive observers can still exploit packet
size visibility for device fingerprinting (DF) attacks [1]. These
attacks allow observers to identify devices and determine
their operational states (e.g., whether a TV is in Active
or Idle mode [2]), enabling adversaries to deduce sensitive
information about user behaviors and activities. For instance,
Wang et al. [3] demonstrate that an observer can infer a user’s
command to a smart speaker using packet length sequences
and direction.

Various research efforts have focused on enhancing privacy
with minimal data overhead [4], [5]. Typically, these methods
aim to minimize the injected noisy data for traffic obfuscation.
However, static obfuscation often faces challenges in finding
the right balance between privacy protection and overhead [6],
resulting in either allowing high attack accuracy or adding
too much data overhead. This challenge led to the proposal
of an alternative approach that distorts length-based patterns
without adding noise [1]. It involves randomizing packet

lengths by breaking the data stream from the application layer
into random-size segments at the transport layer, instead of
introducing dummy packets to hinder traffic classification.
As a result, such randomization achieves anonymity with
significantly reduced data overhead.

Nevertheless, this packet-splitting methodology still intro-
duces latency due to the increase in packet count and data
overhead caused by the introduction of additional packet
headers. More importantly, in dynamic networks, fluctuations
in network utilization can lead to prolonged queue delays,
negatively impacting network performance. Therefore, a robust
defense system should incorporate an ”adaptive defense” fea-
ture—adaptively adjusting its configurations according to the
network condition to balance privacy protection and network
performance. Particularly, we employ optimization to maxi-
mize privacy protection (increasing the randomness in packet
size) while considering the impact of message splitting on data
transmission rate (reducing latency and overhead).

Indeed, the fundamental concept of ”adaptive defense” has
found application in various domains, including real-world
epidemic disease control, the five-tier terrorism alert system,
and others [7]. The key challenge lies in translating this
foundational principle into the design of an effective defense
system within the realm of traffic obfuscation. In this study,
we introduce a specific adaptive defense system that estimates
defense strength and its impact on performance. The adaptive
parameter adjustment involves straightforward calculations
and optimization, ensuring minimal computational overhead.

This work addresses the challenge of optimizing packet
splitting parameters in our previous work [1] to achieve
a desirable and intelligent trade-off between overhead and
protection, thereby enhancing the overall performance of the
communication network. Our goal is to determine the optimal
splitting percentage that maximizes randomness while taking
into account the impact of the defense on latency intelligently
and adaptively based on the underlying networking environ-
ment. The main contributions of this paper are as follows:

• Proposal of adaptive segmentation, a practical solution
based on optimization to defend against DF with mini-
mum latency.

• Performing simulations and verifying the effectiveness of
the algorithm using real IoT device traffic.
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The remainder of this paper is organized as follows: Sec-
tion II presents the related works. In Section III, we present the
adversary model. Section IV covers the methodology of our
proposed system. In Section V, we present our experimental
results. Finally, we draw our conclusion and discuss future
work in Section VI.

II. RELATED WORK

Several studies have demonstrated that packet-length infor-
mation can be used to identify IoT devices [1] and certain
events [3]. The Onion Router (Tor) addresses this issue by
transmitting data in a fixed packet length, thereby preventing
potential side-channel leakage [8]. However, it’s important
to note that Tor’s multi-hop architecture, while enhancing
privacy, also leads to increased received traffic and introduces
additional latency.

Padding packets is an effective defense, yet incurs a high
data overhead. Several packet padding strategies were de-
scribed in [9] to defeat attackers’ classification but they often
result in a substantial increase in data transmission (>500%). A
more streamlined approach, suggested by Pinheiro et al. [10],
involves incorporating random padding. While this method
may decrease the precision of IoT device identification, it still
introduces undesirable noisy traffic.

Using the data-link layer defense presented in [11], it is pos-
sible to hinder WiFi eavesdropping-based analytics. It shapes
the traffic of two devices to resemble each other by simulating
the behavior of one device with fake traffic. However, it is
important to note that the injected noise becomes detectable
for network-layer observers who leverage the encrypted flag
designed exclusively for WiFi observers. As a result, this
defense mechanism may not be suitable for a broader context.

Protection against traffic analysis attacks in wireless net-
works can be accomplished through signal-jamming strate-
gies [12], eliminating the need for introducing dummy packets
or intentional delays. Generally, this method employs antennas
to disrupt traffic in potential adversary locations, thereby
raising the noise level. However, it is essential to recognize that
this tactic generates interference that negatively impacts the
performance of nearby networks and is also deemed illegal1.

Randomizing packet sizes has been suggested in the past
to mitigate packet size leakage in secure shell (SSH) commu-
nications [13], [14]. However, such modifications are tailored
specifically for the SSH protocol. IoT devices often utilize
lightweight communication protocols to meet their connectiv-
ity needs [15], such as Hypertext Transfer Protocol (HTTP)
and Hypertext Transfer Protocol Secure (HTTPS). Hence, the
concept of random segmentation was introduced to shape
traffic at the transport layer [1], encompassing data from vari-
ous application-layer communication protocols. This approach
streamlines deployment and is well-suited for integration with
IoT architectures.

The concept of adaptive defense was previously introduced
within the realm of traffic shaping defense. Pinero et al. [4]

1https://www.fcc.gov/general/jammer-enforcement

introduced an adaptive padding system that modifies the
number of injected bytes based on changes in network usage.
However, this system is tailored for padding packets and
does not align with our random splitting method that does
not introduce noise for traffic obfuscation. In contrast, our
research offers an adaptive defense formulation for random
segmentation. This formulation adjusts the number of splitting
operations, considering factors such as randomization intensity
and latency.

III. THREAT MODEL

We consider DF attacks that leverage packet lengths and
directions in the context of encrypted WiFi traffic. Two obser-
vation points are considered for potential exploitation by an
adversary collecting the traffic:

• Active Observer: The adversary can establish a deceptive
access point (AP) mimicking the victim’s network name,
potentially redirecting IoT devices to connect to the fake
AP rather than the authentic one. Once connected, the
observer can analyze the network-layer traffic. In this
context, the attacker can observe the packet header but
lacks the capability to identify the specific device or
decrypt the content.

• Passive Eavesdropper: The attacker can utilize a WiFi
card in monitor mode to capture encrypted WiFi traf-
fic. Unlike active observation, passive eavesdropping is
challenging to detect since eavesdroppers do not need
to access or join the network. The adversary aims to
identify the device type (e.g., smart lock, baby monitor)
and monitor network events based on changes in traffic
patterns (e.g., a spike in smart lock traffic indicating the
user is entering the apartment, or an increase in baby
monitor traffic indicating the baby is awake).

IV. ADAPTIVE SEGMENTATION

A. Background

Random segmentation involves intercepting application
messages and splitting them into random chunks at the trans-
port layer. For reasons of space, we refer readers to more
detailed descriptions in [1]. The quantity of messages subject
to segmentation is determined by a predetermined splitting
percentage P . This variable serves as a control mechanism,
specifying the proportion of messages to be segmented—such
as 10% or 50%.

Notably, as P escalates, the degree of packet size random-
ization, quantified as R, increases. We assess the randomness
in packet size, denoted as R, using the same metric proposed
in a comparable network obfuscation system [16]. Specifi-
cally, we employ Shannon entropy to measure the effective-
ness of masking through randomization. Shannon entropy, an
information-theoretic metric, evaluates the uncertainty inherent
in a random variable. Given a random variable X with values
in the finite set {x1, x2, . . . , xM} and li denoting the likeli-
hood of X = xi, Shannon entropy is expressed as follows:



Fig. 1. Packet size randomness R versus latency L under different defense
splitting percentage P .

R(X) = −
M∑
i=1

li log(li) (1)

where:
• R(X) is the entropy of the random variable X ,
• M is the number of possible outcomes in the discrete

random variable X ,
• xi represents each possible outcome, and
• l(xi) is the likelihood/probability of the occurrence of xi.
However, the increase in randomness is likely to lead to

higher latency L, stemming from the construction of additional
packets and data overhead introduced by extra packet headers.
To validate this relationship, we utilized a program to emulate
an IoT application sending an array of data (≈ 976 KB) to a
cloud server, where each message in the array has a length of
1000 bytes. The program sent the same array using various P
values, ranging from 0 to 1, and calculated the elapsed time for
each P . We conducted five sets of experiments, calculating the
average latency overhead normalized by the maximum value
(i.e., when P = 1).

Figure 1 illustrates the interrelationship between R and L.
On the x-axis, 0.2 indicates a defense split of 20% of the
total packets, while 1 signifies a defense split involving all
messages (100%). R was calculated by simulating our defense
on data traces collected from four IoT devices in our previous
study [1]. We normalized R on the y-axis by each device’s
maximum, aggregating the performance of all devices into
a single curve for comparable results with L. The latter is
calculated based on our client-server experiment described
above.

In Figure 1, a clear linear upward trend is observed for both
R and L with the increase in P ; therefore, it is reasonable
to assume they linearly increase with P for the sake of
simulation. This assumption is made because the linear or
exponential increase will have the same effect on the reward
and penalty scheme of our optimization, given that R is
the only dimension we aim to maximize, and L is the only
dimension we aim to minimize.

Fig. 2. Performance of our adaptive defense system using different weights
w.

B. Obfuscation Optimization Problem

At a conceptual level, our goal is to randomize the packet
sizes of a device, thereby thwarting potential classifiers from
identifying patterns that facilitate DF. The model determines
the optimal P for maximizing R while considering its impact
on L. Hence, the objective function defines a score S, com-
bining the defense benefit measured by traffic randomness R,
with a penalty term associated with the increase in latency L.
Thus, our goal is to maximize the objective function, defined
as:

Maximize S = w ·R− (1− w) · L (2)

where w is a weight constant that predetermines the trade-
off between R and L before running the adaptive optimization.
It could be predetermined by a field expert to express how
much we value privacy protection compared with the network
performance degradation.

Based on the analysis reported in [17], the latency shows
a slight increase with the rise in network usage u. However,
when the usage reaches 60%, the latency starts to increase
rapidly. Hence, we set our defense to ensure maximum pro-
tection when u is below 60%; otherwise, our optimization
model is triggered to find the optimal parameter Poptimal for
the desired tradeoff.

P =

{
1 if u < 0.6

Poptimal otherwise
(3)

V. EXPERIMENTS AND RESULTS

We evaluate the performance of the adaptive obfuscation
system using data traces collected from four IoT devices in
our previous study [1]. We partition the packet length traces
within each device’s traffic into sequences within 30-second
time windows. Next, we deploy our defense across a range of
u from 0 to 100%, calculating the corresponding P for each
setting.



As shown in Figure 2, our optimization is triggered when
u exceeds the threshold (i.e., u ≥ 0.6), returning the op-
timal solution for the maximum score S. We demonstrate
the effectiveness of our approach using different weights,
whigh, wmoderate, and wlow. To ensure high protection, a user
can adjust w similarly to whigh to place more emphasis on
privacy than performance. Alternatively, wmoderate provides
lower obfuscation for reduced overhead, or one can opt for
wlow for weaker protection but improved network performance.

VI. CONCLUSION AND FUTURE WORK

Our adaptive segmentation approach provides a systematic
and effective means of optimizing privacy with controllable
costs. By considering both entropy and latency, the method
offers a balanced solution that enhances the overall efficiency
of communication networks. Unlike previous defenses that
prioritize traffic obfuscation at any cost, our approach is
designed to give users the flexibility to balance protection and
performance according to their preferences.

For future work, our aim is to integrate network traffic ob-
fuscation with machine learning techniques to enhance defense
effectiveness. We envision creating a machine learning model
to optimize obfuscation quality while mitigating performance
degradation. Our plan includes implementing reinforcement
learning, where the agent is rewarded for effectively confusing
traffic analysis tools and penalized in the event of a decline in
system performance.
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