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Epidemic Model —
Simple Epidemic Model

Infectious
I

Susceptible
Scontact

# of contacts ∝ I × S

Simple epidemic model for fixed 
population homogeneous system:
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Epidemic Model —
Kermack-McKendrick Model

State transition:

: # of removed from infectious            : removal rate      

Epidemic threshold theorem:
No outbreak happens if

susceptible infectious removed
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Internet Worm Modeling —
Consider Human Countermeasures

Human countermeasures: 
Clean and patch: download cleaning program, patches.
Filter: put filters on firewalls, gateways.
Disconnect computers.

Reasons for:
Suppress most new viruses/worms from outbreak. 
Eliminate virulent viruses/worms eventually.

Removal of both susceptible and infectious hosts.

susceptible

infectious

removed
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Internet Worm Modeling —
Two-Factor Worm Model

Factor #2:  Network congestion
Large amount of scan traffic.
Most scan packets with unused IP addresses ( 30% BGP routable)
Effect: slowing down of worm infection ability 

Two-factor worm model (extended from KM model):
: Slowed down infection ability due to congestion
: removal from susceptible hosts.  :from infectious
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Verification of the 
Two-Factor Worm Model

Conclusion: 
Simple epidemic model overestimates a worm’s propagation
At beginning, we can ignore these two factors.
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Summary of Two-Factor Model

Modeling Principle:
We must consider the changing environment when we 
model a dynamic process.

Two factors affecting worm propagation:
Human countermeasures.
Worm’s impact on Internet infrastructure.

At the early stage of worm propagation, we can 
ignore these two factors.

Still use simple epidemic model.
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How to detect an unknown 
worm at its early stage?

Monitoring:
Monitor worm scan traffic (non-legitimate traffic).

Connections to nonexistent IP addresses.
Connections to unused ports.

Observation data is very noisynoisy.
Old worms’ scans.
Port scans by hacking toolkits.

Detecting:
Anomaly detection for unknown worms  
Traditional anomaly detection: threshold-based

Check traffic burst (short-term or long-term).
Difficulties: False alarms; threshold tuning.
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“Trend Detection” 
 Detect traffic trend, not burst

Trend: worm exponential growth trend at the beginning
Detection: the exponential rate should be a positive, constant value
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Why exponential growth 
at the beginning?

The law of natural growth  reproduction
Exponential growth — fastest growth pattern when:

Negligible interference (beginning phase).
All objects have similar reproductive capability.
Large-scale system — law of large number.

Fast worm has exponential growth pattern
Attacker’s incentive: infect as many as possible before 
people’s counteractions.
If not, a worm does not reach its spreading speed limit.
Slow spreading worms can be detected by other ways.
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Code Red simulation 
experiments

Population: N=360,000, Infection rate: α = 1.8/hour,     
Scan rate η = N(358/min, 1002),     Initially infected: I0=10
Monitored IP space 220,                  Monitoring interval: ∆ = 1 minute
Consider background noise

Before 2% (223 min): estimate is already stabilized and 
oscillating a little around a positive constant value
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Early detection of Blaster
Blaster: sequentially scans from a 
starting IP address:

40% from local Class C address.
60% from a random IP address.

It follows simple epidemic model.
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Bias correction for 
uniform-scan worms

Bernoulli trial for a worm to hit monitors (hitting prob. = p ).

Bias correction:

Monitoring 217 IP space Monitoring 214 IP space

Bias correction can provide unbiased estimate of I(t)

: Average scan rate
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Prediction of 
Vulnerable population size N
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Summary of Early Detection

Trend detection: non-threshold based methodology
Principle: detect traffic trend, not burst
Pros : Robust to background noise → low false alarm rate

Monitoring requirement for non-uniform scan worm:
Monitor many well-distributed IP blocks; low-pass filter

For uniform-scan worms
Bias correction:

Forecasting N:                                                       ( IPv4 )

: scan hitting prob. : cumulative # of observed infectious
: scanning IP space

⇒ ⇒ Routing worm
: Average scan rate: Infection rate
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Motivation: automatic 
mitigation and its difficulties

Fast spreading worms pose serious challenges:
SQL Slammer infected 90% within 10 minutes.
Manual counteractions out of the question.

Difficulty of automatic mitigation 
high false alarm cost.

Anomaly detection for unknown worm.
False alarms vs. detection speed.
Traditional mitigation: 

No quarantine at all … long-time quarantine until passing 
human’s inspection.
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Principles in real-world 
epidemic disease control

Principle #1  Preemptive quarantine
Assuming guilty before proven innocent
Comparing with disease potential damage, we 
are willing to pay for certain false alarm cost.

Principle #2  Feedback adjustment
More serious epidemic, more aggressive 
quarantine action

Adaptive adjustment of the trade-off between disease damage 
and false alarm cost.
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Dynamic Quarantine

Assuming guilty before proven innocent
Quarantine on suspicion, release quarantine after a 
short time automatically ← reduce false alarm cost

Can use any host-based, subnet-based (e.g.,
CounterMalice) anomaly detection system.
Host or subnet based quarantine (not whole network-
level quarantine).
Quarantine is on suspicious port only.

A graceful automatic mitigation:
No quarantine Dynamic short-time 

quarantine
long-time
quarantine
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Worm 
detection 

system

Feedback Control Dynamic 
Quarantine Framework (host-level)

Feedback : More suspicious, more aggressive action
Predetermined constants:       ( for each TCP/UDP port)
Observation variables:                  :# of quarantined hosts/subnets.

Worm detection and evaluation variables:

Control variables:

Network
Activities

Worm Detection

& Evaluation

Decision & 
Control

Anomaly Detection
System

tI tt DP ,

tt HT ,

Quarantine time
Alarm threshold

Probability
Damage
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Two-level Feedback Control 
Dynamic Quarantine Framework

Network-level quarantine (Internet scale)
Dynamic quarantine is on routers/gateways of local networks.
Quarantine time, alarm threshold are recommended by MWC.

Host-level quarantine (local network scale)
Dynamic quarantine is on individual host or subnet in a network.
Quarantine time, alarm threshold are determined by:

Local network’s worm detection system.
Advisory from Malware Warning Center.

Host-level 
quarantine

Malware Warning Center

tt HT ,
tI

Network-level 
quarantine

Local network
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Host-level Dynamic 
Quarantine without Feedback Control

First step: no feedback control/optimization
Fixed quarantine time, alarm threshold.

I(t): # of infectious       S(t): # of susceptible       T: Quarantine time

R(t): # of quarantined infectious      Q(t): # of quarantined susceptible

λ1: quarantine rate of infectious λ2: quarantine rate of susceptible

Assumptions:
removed
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Extended 
Simple Epidemic Model

Before quarantine:

After quarantine:

I(t)

R(t)=p’1I(t)

S(t)

Q(t)=p’2S(t)

# of contacts ∝

Susceptible Infectious
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Extended 
Simple Epidemic Model

Vulnerable population N=75,000, worm scan rate 4000/sec
T=4 seconds, λ1 = 1,  λ2=0.000023 (twice false alarms per day per node)

Law of large number

R(t): # of quarantined infectious 

Q(t): # of quarantined susceptible
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Summary of Feedback 
Dynamic Quarantine Defense

Learn the quarantine principles in real-world epidemic 
disease control: 

Preemptive quarantine: Comparing with disease potential damage, 
we are willing to pay certain false alarm cost
Feedback adjustment: More serious epidemic, more aggressive 
quarantine action

Two-level feedback control dynamic quarantine framework
Optimal control objective:

Reduce worm spreading speed, # of infected hosts.
Reduce false alarm cost. 

Derive worm models under open-loop dynamic quarantine
Efficiently reduce worm spreading speed
Raise/generate epidemic threshold
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BGP Routing Worm

Contains BGP routing prefixes:
Fact: routable IP space < 30% of entire IPv4 space.

Scanning space is 28.6% of entire IPv4 space. 
Increasing worm’s speed by 3.5 times (Sept. 22, 2003).

Payload requirement: 175KB
Non-overlapping prefixes:

Remove “128.119.85/24” if BGP contains “128.119/16”.

140602 prefixes → 62053 prefixes (Sept. 22, 2003)
Big payload for Internet-scale worm propagation.
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Class A Routing Worm

IANA provides Class A address allocations
Class A (x.0.0.0/8); 256 Class A in IPv4 space.

116 Class A networks contain all BGP routable space.
Scanning space: 45.3%; payload: 116 Bytes.

Routing worm based on BGP prefixes aggregation.
Trade-off: scanning space ↔ Prefix payload (“/13” ⇒ 37%, 5KB)

002/8   :  IANA - Reserved
003/8   :  General Electric Company
056/8   :  U.S. Postal Service
214/8   :  US-DOD
216/8   :  ARIN                                
217/8   :  RIPE NCC 
224/8   :  IANA - Multicast
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Routing Worm 
Propagation Study

: # of vulnerable : Scan rate : Scanning space

where

N=360,000;  η=358 scans/min; I(0)=10 ( 10,000 for the hit-list worm ) 

Comparison of the Code Red worm, a routing worm, a hit-
list worm, and a hit-list routing worm
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Routing Worm: 
A Selective Attack Worm

Selective Attack
Different behaviors on different compromised hosts.
Imposes damage based on geographical information of 
IP addresses of compromised hosts

Geographical information of IP addresses
IP address → Routing prefix → AS 

AS → Company, ISP, Country
Pinpoint attacking vulnerable hosts in a specific target
Potential terrorists cyberspace attacks

⇐ BGP routing table

⇐ Researches
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Selective Attack: 
a Generic Attacking Technique

Imposes damage based on any information a 
worm can get from compromised hosts

OS (e.g. : illegal OS, OS language, time zone )
Software (e.g. : installed a specific program) 
Hardware ( e.g. : CPU, memory, network card)

Improving propagation speed
Maximize usage of each compromised host.

Multi-thread worm: generates different numbers of 
threads based on CPU, memory, and connection 
speed of compromised computers.
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Defense: Upgrading IPv4 to IPv6

Routing worm idea: Reducing worm scanning space

Effective, easier than hit-list worm to implement
Difficult to prevent: 

public BGP tables and IP geographical information

Defense: Increasing worm scanning space
 Upgrading IPv4 to IPv6

The smallest network in IPv6 has 264 IP address space.
A worm needs 40 years to infect 50% of vulnerable hosts 
in a network when N=1,000,000,  η=100,000/sec,  I(0)=1000

Limitation: for scan-based worms only
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Summary of Routing Worm

Routing worm: a worm containing information of BGP 
routing prefixes in the worm code.

Routing worm: a faster spreading worm
Scans routable space (< 30%) instead of entire IPv4 space.
Increasing propagation speed by 2 ~ 3.5 times.

Routing worm: a selective attack worm
IP address → routing prefix → AS → ISP, Country

Pinpoint attacking vulnerable hosts in a specific target
Selective attack based on any information a worm can get from 
compromised hosts.

Defense: Increase a worm’s scanning space

⇒ IPv4 upgrade to IPv6
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Epidemic Model Introduction

Model for homogeneous system
: # of infectious

: infection ability

: # of hosts

: scan rate
For worm modeling:

: scanning space
⇐ Infinitesimal analysis

Model for interacting groups
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Idealized Worm

Knows IP addresses of all vulnerable hosts
Perfect worm

Cooperation among worm copies

Flash worm
No cooperation; random scan

Complete infection within seconds 0   2 4 6 8 10 12 14 16
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Uniform Scan Worms

Defense: Crucial to prevent attackers from
Identifying IP addresses of a large number of vulnerable hosts  
→ Flash worm, Hit-list worm
Obtaining address information to reduce a worm’s scanning space 
→ Routing worm
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• Hit-list worm has
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Local preference scan increases speed (when vulnerable hosts are
not uniformly distributed)
Local scan on Class A (“/8”) networks: p* → 1
Local scan on Class B (“/16”) networks:  p* ≅ 0.85
Code Red II: p=0.5 (Class A), p=0.375 (Class B)   ⇐ Smaller than p*

Local Preference Scan Worm

Class A local scan (K=256, m=116) Class B local scan (K=216, m=116×28)
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Sequential Scan Worm
Simulation Study

Local preference in selecting starting point is a bad idea.
Sequential scan ≡ uniform scan 
(when vulnerable hosts are uniform distributed)
Mean value analysis cannot analyze variability.
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Summary of Worm 
Scanning Strategies

Modeling basis:
Law of large number; mean value analysis; 
infinitesimal analysis.
Epidemic model: 

Conclusions:
All about worm scanning space Ω (or density of 
vulnerable population): 

Flash worm, Hit-list worm, Routing worm
Local preference, divide-and-conquer, selective attack
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Worm Research Summary 
Modeling and analysis:

Two-factor worm model.
Human counteractions and network congestion.

Routing worm.
Worm scanning strategies.

Worm defense:
Early detection: detect trend, not burst.
Feedback dynamic quarantine

preemptive quarantine and feedback adjustment.

Papers at: http://tennis.ecs.umass.edu/~czou
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Future Work

Feedback dynamic quarantine defense.
Enterprise network.
Cost function; optimal control.

Verification on real data.
Early detection.
Statistical analysis.

Realistic Internet-scale worm simulation.
First: distribution of on-line hosts. 


