1) D – When class A inherits from class B, it doesn’t inherit its constructor – it does call it through super though. The other four choices are correct. 

2) B – Bottom Up development is when you write the “small” classes first before you work at a higher level. Top-down development is the opposite. In this method, you’d plan the overall project first and fill in the details like the Book class later.

3) B – The given constructor allows for a card to be created from any input, whether it be from the user, a file or elsewhere. Card doesn’t have a default constructor (only one that takes two parameters), toString returns the string representation of one Card object, this one. There is no equals or compareTo in the Card class, or any methods that do these tasks.

4) A – Instance Variables on the left…

5) D – If you only have an equals method, there’s no way to know which of two cards is “bigger”, thus, III is inadequate. Both I and II can be used to determine from a list of cards, which one is the biggest.
6) C – Both possible choices given for the if statement boolean expression are correct. We can check either i/13 ==1 or (i >= 13 && i <= 25). Logically these are equivalent. Since we need the index into the myDeck array changing, we’d like this index to be i. This means that either C or D has to be the correct answer. (Note that i%13 would be writing over the spaces…) The problem with choice D is that i/13 will always equal 1, so you’d be adding the same heart card in the deck 13 times. The choice C, i%13, cycles through the 13 possible heart values, 0 through 12.
7) B – Arrays can not be printed out, only objects can via a toString() method. Thus, choice I is out. Choice II is fine because the Card class has a toString() and this method just cycles through all the cards and prints them out, one by one. The problem with III is that you can’t cast a Card to a String.
8) B – It’s pretty close to n/2, but here’s where detail matters. Plug in n = 1. In this case the code runs once, so n/2 must be incorrect. Similarly, choice E is also out, due to this case. The only reasonable choice then, is (n+1)/2. We can rule out both C and D by looking at what happens when n=8 (which is that it runs 4 times.)

9) C – I wouldn’t be happy with any of these choices, but (A) is silly because in general, that is an unreasonable assumption. (B) is impossible unless you return an array of indexes, which seems fairly clunky for general purposes. (D) is also strange because someone else probably doesn’t want to call this function if it’s randomly print out messages like this. (E) is really bad because this isn’t the type of function that should modify an array.
10) B – If x starts of equal to y or less than it, then the recursion will keep on calling itself, over, and over, and over again. This will cause a stack overflow, so choice (B) is most accurate.
11) A – Both clauses are checking the same thing, so the or is doing nothing. The second clause is the classic double negative.
12) C – 15x16 + 15 = 255
13) B – The problem with (A) is that it will do an out of bounds error, attempting to set index list.size(). The problem with (C) and (D) is the same. Finally, you can add to the end of the array list, but not before the beginning, so (E) is problematic also. (B) is okay because if you are doing an add, you can do right past the very last index, which is what this does.
14) E – This is a bit tricky, you can extend Quadrilateral, but be an abstract class also, which means you don’t have to implement area and perimeter. (A) makes perfect sense, as does (B). (D) is true because no objects can be of abstract classes. (C) is true also, because if the Quadrilateral code ever gets used in a program, it must have been triggered by an instantiated object that was a type of Quadrilateral, like Rectangle.
15) C – I doesn’t set up the two Points. II is an illegal call to a constructor that doesn’t exist, but III is okay, it calls super as it must and then sets up the two points.’
16) C – I is false because Quadrilateral is an abstract class. II is false because Rectangle does NOT inherit from Point. It just HAS two points. III is true.
17) C – This is polymorphism at work. Use Quadrilateral references, then let the computer figure out at run-time what the objects are to figure which method to call.
18) A – Pretty much the same question as number 17…
19) E – This is a standard swap, written in the correct syntax for an ArrayList.
20) A – (D) and (E) are out because they return doubles. A regular cast just chops off the decimal so that -3.5 would become -3. We would like the range (-4.5, 3.5] to all round to -4. Notice that adding to -3.5 makes the situation worse, so we must subtract from it. At minimum, we must subtract .5 to get -3.5 down to -4. Subtracting this value from -4.49 will have this value round to -4 as desired. Thus, only (A) fits the requirements.
21) E – This is recursion, the last digit printed will be 347%10 which is 7, which narrows our choices to B and E. Tracing through the code with just 34 shows that this will print 34, meaning that 347 will print 347.
22) B – (A) is false because insertion sort is best on a sorted list and worst on a reverse list. (B) is true because we always do one swap at the end of each iteration of selection sort. (C) is false because the ordering of the original elements (closer to order the better) DOES affect the number of swaps, (D) is the opposite of (B) and (E) is about the same as (C).
23) D – We’re checking for 1 OR 4, so the answer must be C, D or E. We want to add n to k, in general, and only choice (D) does this.
24) E – I won’t because it calls a method on s, which isn’t pointing to an object. II is fine since both Strings exist. III is barely okay – 4 is the last index you can call substring on, on s. 
25) A – This is a typical case of round-off error. It would be better to square the ints, if we knew that the ints passed to the method were relatively small (less than 32000).
26) C – This is the typical way of taking separate digits and building a number out of it. The most significant digit in this process is the starting one, which is arr[0], thus choice (C) is correct over choice (D).
27) D – key might be in between arr[first] and arr[last], but if it isn’t it’s not in the array.
28) B – The values that get searched are 50(low=0,high=13), 220(low=7, high=13), 101(low=7, high=9) and then 205(low=9,high=9).
29) A – We want to assign index I in the array, and nextInt(101) returns values uniformly in between 0 and 100, as desired.
30) C – Using their example, you notice that the last index of character from the first string before the second string gets inserted is pos-1. (Just check out pos=1, where index 0 is the only value of the first string that appears before cat gets inserted.) This narrows down the choices to C and E. To choose between them, note that only (C) has the WHOLE second string, going to index m-1 inserted.
31) A – The substring method with two parameters gets a substring that starts at the first parameter and is the length of the second parameter. This is exactly what we want for the first part of our string. The substring method with one parameter just returns the rest of the string starting at that index, which is exactly what we want for last.
32) C – The formal name for a “HAS-A” relationship that is described here (because a PlayerGroup object has several Player objects) is called Composition.
33) E – Read the comments. All three of these ideas can work.
34) D – (A) is not the issue because getList is supposed to create the object and return it. (B) can’t happen because the compiler would catch that. (C) is not the issue because with or without setting myNumbers to null the code should work. (D) is possible since you can’t add objects to an ArrayList that doesn’t yet exist. (E) would make an ArrayListIndexOutOfBounds error.
