Sorting and Searching – Multiple Choice Solutions
1) E – All three of these things matter.

2) D – we keep on going so long as the value is not found, but need to watch out for array out of bounds.

3) C – A binary search only works on a sorted list whereas a sequential search will work on any list.

4) B – Only II is more efficient in a sorted array. It’s easier to do I in an unsorted array, and III is the same difficulty in both, since you need to see all the elements regardless.

5) C – In a large array, binary search will take a few steps to get to the beginning. In all other cases, binary search is better.

6) E – We know nothing about a[1], a[2], but we do know that a[0] is the largest.

7) C – An array out of bounds will occur if key is not in the array.

8) A – I would say that both A and D are necessary because the loop quits as soon as it hits something greater than or equal to key, but v[k] could be greater than it without the stipulation in D.

9) C – we compare at index 3 and see its too small, so low = 4, high stays at 7.

10) B – First we compare with 11, then 24 and then 30. At this point high = 5 and low = 6 and we’ve got the crossover.
11) D – The method returns the index in the array in which the item was found.

12) A – It won’t work for the edge values because low = high = 0 to get there. So, it won’t find 4.

13) E – has everything to make it correct. Either we’ve found the value, OR it’s sandwiched in between array[low] and array[high], or it’s just not in the array.

14) E – is correct here. It basically matches the answer to 13.

15) B – Sort the first four in descending order and don’t touch the rest.

16) B – Just go through and count. The more closely sorted, the better. B just does 3 swaps.

17) A – This list is almost in opposite order and needs 23 swaps, which is close to the maximum of 28.

18) D – I could be true, because it prevents the array out of bounds at the lower edge of the array. II could be true also. III specifically can not be true because this WOULD cause the error.

19) E – they are in non-increasing order which is specified by A, C and E, with the range starting at i=1 and the last item in the list ending in a[i-1].
