
COP 4516 Spring 2025 Week 2 Individual: Greedy (Solution Sketches) 
 
Balloons 

Sort by DIFFERENCE in distance of the balloons from A and B, with larger distance going first. 

So say team1 is 10 away from A and 50 away from B, this comes before team2 which is 1000 

away from A and 990 away from B. Basically, since all teams get balloons, if team1 gets a balloon 

from B, that's 40 more than optimal while for team2, getting a balloon from A is only 10 more 

than optimal. So, sort in this order, then give priority to the teams in this order, getting them all 

balloons from the shorter location. If at any point balloons from one location run out, hand out all 

other balloons for the remaining problems from the place that has balloons. 

 

Conference 

The payment is equal to a binary number with some ones bits turned on. A property of binary 

numbers is that turning on the most significant bit is more value than turning on all the bits below 

it. Specifically, the sum of the terms 20 + 21 + 22 + 2k = 2k+1 – 1. Thus, it’s always better to schedule 

a conference that starts earlier, even if it’s just for one day. Since the conferences all start on unique 

days, this creates a unique sorting order. Sort the conferences by start date, and then go through 

the sorted list, scheduling a conference if the venue is free at that time. The time a venue becomes 

free after booking a conference on day d that lasts s days is day d + s. No conference is too long, 

so we can add the value of each conference by adding each day one at a time… 

 

Fruit 

For each i, calculate ceiling (sum of fruits sold first i days)/i. At the very least, you need that many 

fruits each day to make it through day i with fruit. Of all of these values over all possible i, take 

the maximum. Then, rerun the simulation getting this many fruits each morning and store the 

maximum ever leftover...Example: 3, 8, 2, 5, 4, 6. Fruits needed for day 1: 3, for days 1,2: 6, days 

1,2,3:5, days1-4: 5, days1-5: 5, days1-6: 5. Max is 6. Now simulate: day 1 left with 3 fruits (6-3), 

day 2 left with 1 fruit (3+6-8), day 3 left with 5 fruits(1+6-2), day 4 left with 6 fruits (5+6-5), day 

5 left with 8 fruits (6+6-4), day 6 left with 8 fruits (8+6-6), So most you ever store is 8. 

 

 

Polling 

Keep an ordered map from String->Integer of name to # of votes. As each vote is read in, also 

keep track of the maximum # of votes any person receives. (Just keep one extra max variable and 

update it, if necessary.) After reading in the data, the # of maximum # of votes any person received 

is known. Thus, go through the ordered map in the natural order and just print a name if that person 

got the maximum # of votes. If there is no ordered map (Python), just use a regular map, and then 

instead of printing, when you go through the map, just copy each key that has the maximum 

number of votes into a list, sort the list and output. Lots of different ways to do this one. Key is to 

do O(lg n) or better individual operations. 


