
COP 4516 Spring 2025 Ind Contest #5: Mathematics (Solution Sketches)

Fact

As covered in class, the number of times a prime p divides into n! can be formally represented as

⌊
𝑛

𝑝
⌋ + ⌊

𝑛

𝑝2
⌋ + ⌊

𝑛

𝑝3
⌋ + ⋯

In code, this is just a while loop where we divide n by p, add the result to an accumulator and

repeat until n goes down to 0. This runs pretty quickly (O(lg n) time). So, we can run a prime sieve

to generate all primes upto n, and then for each of the primes, compute the sum shown above.

Perfection in Numbers

The first issue many people had with this problem is that they didn't read the bounds. The input

value can be as large as 1012. Thus, the input value can't fit in an int and trying to read it in as an

int in Java (nextInt()) causes a run time error.

Once you realize you have to read in the value as a long, the next hurdle is that the standard brute

force solution of checking each divisor up to half of n takes too long, since we can't do 5 x 1011

simple operations. But the key is realizing that divisors of numbers come in pairs, except for the

square root in the case of perfect squares. Thus, we need to only check for divisors up to the square

root of the input value and this loop runs at most 106 times. When we find a divisor, there are three

cases: (a) The divisor is 1, just add 1 to the running sum since it's corresponding divisor n should't

be counted, (b) The divisor, k is less than the square root of n, in which case we want to add both

k and n/k to our running sum, or (c) The divisor k is such that k x k = n. In this case we only want

to add k once, not twice.

Profits

This is exactly the MCSS problem taught in class. In this problem however, they specify that the

contiguous subsequence must be non-empty. Thus, instead of setting the initial result to 0, it must

be set to the first value in the list, just in case all values in the list are negative. Also, since there

are up to 250,000 values in the list, the O(n) algorithm must be used.

Relatively Prime

The question is asking for the computation of the Euler Phi Function. The formula for this was

given in class. We can either find the prime factorization of n or a list of each unique prime divisors

of n. If we use the prime sieve to precompute primes less than 1,000,000 (there are about 78,000)

of these, then we can obtain the necessary information for an input case in about 78,000 simple

steps. As we are discovering primes, update our answer. There are two ways to do this. Initialize

phi = n, and then each time you find a unique prime divisor of it, update phi by dividing it by p

and multiplying it by (p – 1), which is the formula for the phi function that only utilizes the unique

prime divisor list. Alternatively start with phi = 1, and then whenever a term pk is encountered in

the prime factorization, multiply phi by (pk – pk-1). If you do this route, don’t do any double

computations, just everything in integers.

