
C++: Custom Sort via overloading < operator for a class

One way to create a custom sort in C++ is to create a class (or struct) and then overload the <

operator, which the sort function uses. This is illustrated in the practice program, sortnames.cpp.

In this program, the objects being sorted are people, and each person has a name, age and amount

of money. We want to sort the list by money (greatest to least), breaking ties by age (least to

greatest). In the class, you define attributes and a constructor. Here is the overloaded operator from

that example:

 bool operator<(const person& other) const {

 if (money != other.money)

 return money > other.money;

 return age < other.age;

 }

The key here is that this is a method in the class, so it just takes in the other object that gets passed

into it, and the method itself is called upon the first object. So when you do a < b, this method is

being called on object a, and other is object b. If this object’s money is greater than other’s, then

we want this object to “come first” (be less than) other. If money is equal, we will drop down to

the second return, where this comes before other if and only if this object is younger.

To sort, we just do this:

sort(list.begin(), list.end());

This method is included in algorithm, and we just pass it the portion of the vector we want sorted.

(list is a vector of class person.)

C++: Use of STL class priority_queue

By default, a priority queue in C++ is a max queue. Here is how to declare a priority queue of

integers:

priority_queue<int> pq;

Here are the key operations of a priority queue, taken from this site:

https://cplusplus.com/reference/queue/priority_queue/

Member functions
(constructor)

Construct priority queue (public member function)
empty

Test whether container is empty (public member function)
size

Return size (public member function)
top

https://cplusplus.com/reference/queue/priority_queue/
https://cplusplus.com/reference/queue/priority_queue/priority_queue/
https://cplusplus.com/reference/queue/priority_queue/empty/
https://cplusplus.com/reference/queue/priority_queue/size/
https://cplusplus.com/reference/queue/priority_queue/top/

Access top element (public member function)
push

Insert element (public member function)
emplace

Construct and insert element (public member function)
pop

Remove top element (public member function)
swap

Swap contents (public member function)

Of these, we’ll mostly use push, top, pop and size. Recall that push, top and pop will all run in

O(lg n) time, where n is the number of items in the priority queue.

Let’s say we want a min queue of ints. We declare it as follows, by specifying our comparator:

priority_queue <int, vector<int>, greater<int>> pq;

This basically swaps the comparator operator, putting greater than in place for where the less

than operator “would go.”

One really important thing to note is that the pop function is void. So, you need to call top

first to get the item before you pop it!

Alternatively, if we want to do a priority_queue of a struct, but make it a min queue (for

example, Dijkstra’s algorithm requires this), then we could do the following:

struct estimate {

 int x,y,cost;

 bool operator<(const estimate& other) const {

 return other.cost < cost;

 }

};

and then declare an object the usual way:

priority_queue<estimate> pq;

Here is how to push something onto this priority queue:

pq.push(estimate{sX, sY, 0});

Here, sX is the x value of the struct, sY is the y value of the struct and 0 is the cost for this struct.

In the practice programs, a solution to the problem Add All is included.

https://cplusplus.com/reference/queue/priority_queue/push/
https://cplusplus.com/reference/queue/priority_queue/emplace/
https://cplusplus.com/reference/queue/priority_queue/pop/
https://cplusplus.com/reference/queue/priority_queue/swap/

C++: Use of STL class set

A set is a collection of objects without repeats (if you add an item that already exists in a set to it,

no change is made to the set). In C++ the amount of time it takes to add an item is O(lg n) and the

amount of time it takes to retrieve an item is O(lg n), because a set in C++ is ordered. (In Java and

Python sets are unordered and support O(1) run times.)

Full list of method can be found here: https://cplusplus.com/reference/set/set/

Here are the some methods from the set class in C++:

insert
Insert element (public member function)

erase
Erase elements (public member function)

swap
Swap content (public member function)

clear
Clear content (public member function)

emplace
Construct and insert element (public member function)

emplace_hint
Construct and insert element with hint (public member function)

find
Get iterator to element (public member function)

count
Count elements with a specific value (public member function)

lower_bound
Return iterator to lower bound (public member function)

upper_bound
Return iterator to upper bound (public member function)

equal_range
Get range of equal elements (public member function)

Typically, with a set, we want to insert, remove and search for items quickly, where duplicates

don’t matter. In the posted solution for the problem CD, we simply create an set of ints for Jack’s

CDs and then we can quickly try to find each of Jill’s CDs in the set. Thus, we just use the insert

and find methods in the solution. This is fairly typical use of sets.

https://cplusplus.com/reference/set/set/
https://cplusplus.com/reference/set/set/insert/
https://cplusplus.com/reference/set/set/erase/
https://cplusplus.com/reference/set/set/swap/
https://cplusplus.com/reference/set/set/clear/
https://cplusplus.com/reference/set/set/emplace/
https://cplusplus.com/reference/set/set/emplace_hint/
https://cplusplus.com/reference/set/set/find/
https://cplusplus.com/reference/set/set/count/
https://cplusplus.com/reference/set/set/lower_bound/
https://cplusplus.com/reference/set/set/upper_bound/
https://cplusplus.com/reference/set/set/equal_range/

C++: Use of STL class map

A map is similar to a set, maintaining a set of objects. But in addition, in a map, we are allowed to

link each object with an associated piece of data, similar to a dictionary (which stores words, and

then links each word to a definition.) We call the pieces of data in the map keys, and the

information linked to a key is its associated value. Here are some examples of uses of a map:

1) Mapping names of people to integers, sort of as a code:

Bob → 0

Aline → 1

Cindy → 2

Damarcus → 3

The purpose of this would be then to use an array where index 2, for example refers to Cindy…

2) Mapping names to ages or phone numbers or any other piece of information you want to

associate with a person.

3) Mapping names to say, the number of votes they’ve earned in an election, this is the example

program election3.cpp.

Full set of methods can be found here: https://cplusplus.com/reference/map/map/

Here are some methods from the map class in C++:

operator[]
Access element (public member function)

at
Access element (public member function)

Modifiers:

insert
Insert elements (public member function)

erase
Erase elements (public member function)

swap
Swap content (public member function)

clear
Clear content (public member function)

emplace
Construct and insert element (public member function)

emplace_hint
Construct and insert element with hint (public member function)

https://cplusplus.com/reference/map/map/operator%5b%5d/
https://cplusplus.com/reference/map/map/at/
https://cplusplus.com/reference/map/map/insert/
https://cplusplus.com/reference/map/map/erase/
https://cplusplus.com/reference/map/map/swap/
https://cplusplus.com/reference/map/map/clear/
https://cplusplus.com/reference/map/map/emplace/
https://cplusplus.com/reference/map/map/emplace_hint/

Observers:

key_comp
Return key comparison object (public member function)

value_comp
Return value comparison object (public member function)

Operations:

find
Get iterator to element (public member function)

count
Count elements with a specific key (public member function)

lower_bound
Return iterator to lower bound (public member function)

upper_bound
Return iterator to upper bound (public member function)

equal_range
Get range of equal elements (public member function)

In the example election3.cpp, we map names to the number of votes a name has gotten.

Each time we read in a vote, we check our map to see if that person’s gotten a vote before. If they

haven’t we add them to the map with 1 vote. If they have, we retrieve their number of votes,

remove their entry from the map, and then place that person with 1 more vote back into the map.

In Python and Java, we could just insert the item and it would overwrite the old one, but in C++,

we must remove the item and then reinsert it with the newly mapped value.

https://cplusplus.com/reference/map/map/key_comp/
https://cplusplus.com/reference/map/map/value_comp/
https://cplusplus.com/reference/map/map/find/
https://cplusplus.com/reference/map/map/count/
https://cplusplus.com/reference/map/map/lower_bound/
https://cplusplus.com/reference/map/map/upper_bound/
https://cplusplus.com/reference/map/map/equal_range/

