
COP 4516 Spring 2025 Final Individual Contest Solution Sketches 

 

Problem A: Almost Magic Square 

This problem was meant to be a straight-forward permutation problem. Try each permutation of 

the 9 input numbers given. For each permutation, calculate the 8 desired sums (3 rows, 3 columns 

and both diagonals). Take the maximum of these 8 sums and subtract from it the minimum of these 

8 sums. If this number is less than or equal to d for the case, add 1 to a running tally. 

 

Problem B: Carrying Power Strips 

For option 1, the time it takes to carry 2 boxes to PSY-111 from the parking spot is 3a, and followed 

by 2b time to carry 1 box from PSY-111 to CB1-119. Thus option 1 takes 3a + 2b seconds. For 

option 2, the time it takes to carry one box to PSY-111 from the parking spot is 2a seconds, 

followed by another a seconds to walk back to the car. From there, it will take 2c seconds to carry 

the remaining box from the car to CB-119. This takes a total of 3a + 2c seconds. Since the 3a 

contribution is equal, we see that option 1 is better if b < c, option 2 is better if c < b, otherwise, if 

b = c, then both options take the same amount of time. 

 

Incidentally, I’ve arrived at option (2) because I was spilling coffee from my mug when I tried to 

carry 2 boxes. It also feels faster, though I don’t really know! 

 

Problem C: Which Group? 

There are several ways to solve this problem. Perhaps the most straight-forward is simply to create 

a map that maps each student to either 1 or 2, and then for each query, just use the map to get the 

mapping of that student (if one is stored, if not -1 should be outputted). 

 

Alternatively, we can store two sets of names, one for group 1 and another for group 2. Then, for 

each query, look in both groups for the queried name and output accordingly. If the name is in 

neither group, output -1. 

 

Problem D: Follow the Rainbow Brick Roads 

There are 127 possible graphs that all of the queries could be on. This is because for each query 

either a color is in the query or not in it, for a total of 27 = 128 subsets of colors. But, the empty 

subset is not allowed as a possibility for a query. 

 

Thus, for each of these possible graphs, add the appropriate edges and run either Dikjstra’s or 

Bellman-Ford on it. (Note: due to the rather strict restriction on the number of edges, Bellman-

Ford is an option. For denser graphs this wouldn’t have worked.) This will store all the shortest 

distances from the starting vertex 1 to all other vertices for all subsets of roads. (This full look up 

table would be of size 127 by n, where n is the number of vertices in the graph.) Once all of these 

shortest distances are pre-calculated, then for each query, look up the desired shortest distance. For 

the purposes of implementation, the easiest way to store a subset of colors is a bitmask in between 

0 and 127, where each individual bit is set to 1 if that color is included in the subset or is set to 0 

if it’s not. This system makes it easy to store the shortest distance arrays as the first index is the 

desired bitmask for the corresponding subset and the second index is the destination vertex. 

 

 



Problem E: Divisor Series 

This is likely the hardest problem in the set. One key idea to recognize is that since n ≤ 106, for 

any given term of the form id, i will have at most 1 prime factor greater than 1000. Run a prime 

sieve to generate the 168 primes less than 1000. Then, for each integer from 1 to 1,000,000, out 

all copies of these primes and store which ones divide into i. If the leftover number isn’t 1, this 

one remaining number is prime. Add this to the list of primes that divides into i. Thus, for each 

integer upto a million, we can precompute the list of unique primes that divides into it in roughly 

168 million steps. (We could improve on this bound by building off of previous cases, but the run 

times bounds were such that this was good enough.) This pre-computation will be used across all 

25 cases. 

 

Now, let’s talk about handling each individual case. It’s easy enough for each test case to obtain 

the prime factorization of d. The issue is the computation of the number of divisors of each integer 

in the sequence d, 2d, 3d, …, nd. With the pre-computed list however, we can do the following: 

 

Run a for loop through each value of i in the sum from 1 to n. Our goal will be to swiftly calculate 

the desired number of divisors. Since we already have all the unique prime divisors of both i and 

d, precalculated, we can completely prime factorize the product id by only dividing through by 

these prime divisors. It’s important to handle duplicates only once. (If, for example, 3 divides into 

both i and d, make sure to properly count the total number of times 3 divides evenly into the 

product id. In practice, this total list will tend to be quite small, so this code actually runs quickly 

since each prime we try actually divides into the number evenly. The number of unique prime 

factors an integer formed in the way described can have is reasonably small (just try the product 

2*3*5*7… for a few terms…) so this runs faster than one might imagine.  

 

What forces us to go through each term one by one is the fact that for some values of i, i and d 

share some prime factors and for other values of i, perhaps no prime factors are shared. It varies. 

But, the calculation of number of divisors requires us to “merge” our knowledge of the number of 

times each prime factor divides into a number because 3233 doesn’t have (2 + 1)(3 + 1) = 12 

divisors, it has (5 + 1) divisors since it should be written as 35. This is what forces us to go through 

each term one by one, and we need to use the pre-computation to speed up our prime-factorization 

calculation for each term. 


