Minimum Spanning Trees

For the last two lectures we will look at a few graph algorithms. We have already seen one - Floyd-Warshall's that computes the shortest paths between all pairs of vertices in a directed graph. 

In this lecture we will explore the problem of finding a minimum spanning tree in an undirected weighted graph (if one exists). First let's define a tree, a spanning tree, and a minimum spanning tree:

tree: A connected graph without cycles. (A cycle is a path that starts and ends at the same vertex.)

spanning tree: a subtree of a graph that includes each vertex of the graph. A subtree of a given graph as a subset of the components of that given graph. (Naturally, these components must form a graph as well. Thus, if your subgraph can't just have vertices A and B, but contain an edge connecting vertices B and C.)

Minimum spanning tree: This is only defined for weighted graphs. This is the spanning tree of a given graph whose sum of edge weights is minimum, compared to all other spanning trees.

Crucial Fact about Minimum Spanning Trees

Let G be a graph with vertices in the set V partitioned into two sets V1 and V2. Then the minimum weight edge, e,  that connects a vertex from V1 to V2 is part of a minimum spanning tree of G.

Proof: Consider a MST T of G that does NOT contain the minimum weight edge e. This MUST have at least one edge in between a vertex from V1 to V2. (Otherwise, no vertices between those two sets would be connected.) Let G contain edge f that connects V1 to V2. Now, add in edge e to T. This creates a cycle. In particular, there was already one path from every vertex in V1 to V2 and with the addition of e, there are two. Thus, we can form a cycle involving both e and f. Now, imagine removing f from this cycle. This new graph, T' is also a spanning tree, but it's total weight is less than or equal to T because we replaced e with f, and e was the minimum weight edge.

Each of the algorithms we will present works because of this theorem above.

Kruskal's Algorithm

The algorithm is executed as follows:

Let V = (
For i=1 to n-1, (where there are n vertices in a graph)


V = V ( e, where e is the edge with the minimum edge



    
 weight not already in V, and that does NOT




 form a cycle when added to V.

Return V

Basically, you build the MST of the graph by continually adding in the smallest weighted edge into the MST that doesn't form a cycle. When you are done, you'll have an MST. You HAVE to make sure you never add an edge the forms a cycle and that you always add the minimum of ALL the edges left that don't. 

The reason this works is that each added edge is connecting between two sets of vertices, and since we select the edges in order by weight, we are always selecting the minimum edge weight that connects the two sets of vertices.

In order to do cycle detection here, one idea is to keep track of all the separate clusters of vertices. Initially, each vertex is in its own cluster. For each edge added, you are merging two clusters together. Indicate this by changing a variable that stores the cluster ID values of a vertex to be the same as every other vertex in the cluster. An edge can NOT be added in between two vertices within the same cluster. 

Prim's Algorithm

This is quite similar to Kruskal's with one big difference:

The tree that you are "growing" ALWAYS stays connected. Whereas in Kruskal's you could add an edge to your growing tree that wasn't connected to the rest of it, here you can NOT do it.

Here is the algorithm:

1) Set S = (.

1) Pick any vertex in the graph.

2) Add the minimum edge incident to that vertex to S.

3) Continue to add edges into S (n-2 more times) using the

     following rule:

     Add the minimum edge weight to S that is incident to S

     but that doesn't form a cycle when added to S.

Once again, this works directly because of the theorem discussed before. In particular, the set you are growing is the partition of vertices and each edge you add is the smallest edge connecting that set to its complement.

For cycle detection, note that at each iteration, you must add exactly one vertex into the subgraph represented by the edges in S. (You can think of "growing" the tree as successively adding vertices that are connected instead of adding edges.)

Baruvka's Algorithm

Once again, this algorithm works because of the theorem we proved earlier. Instead of growing a tree however, this algorithm comes closer to matching Kruskal's in that separate clusters are created during the algorithm. It differs from Kruskal's in necessitating all edges to be ordered by weight.

Here is the algorithm:

1) Let T be a subgraph of G containing JUST the vertices of G, no edges.

2) while T has less than n - 1 edges do the following:


a) for each connected component Ci of T



i) Find the smallest-weight edge connecting Ci to any 



    other component 



ii) Add this to T.

(Note: That while iterating through the for loop in 2a, the number of clusters you have may very well change. For example, after looking at vertex A, you've joined vertex A to H. Now, there will be no "distinct" connected component when you are looking for vertex H, so you skip to the next connected component.)

