COP 3223 Final Exam Review

EXAM DATE: SATURDAY, December 7, 2013
TIME: 8 am – 11 am
PLACE: VAB – 132

Alternate Exam Times

To take an alternate exam, you must email me at dmarino@cs.ucf.edu by December 3rd, 2013 and tell me which of the three following options you would like:

1) Wednesday, 12/4/2013, 10 am – 1 pm, HEC – 117

2) Friday, 12/6/2013, 7 am – 10 am, NSB – 101

3) Friday, 12/6/2013, 10 am – 1pm, ENG – 386
Exam Format

Part I (8 am – 9:15 am)

Multiple Choice (40 questions), Closed Book, No Aids.

PLEASE BRING A RASPBERRY SCANTRON!!!!

Part II (9:30 am – 11:00 am)

Free Response (60 points): May include both writing functions and shorter type questions. Aids: 4 sheets of notes on 8.5” x 11: paper, front and back.
Sections from the textbook on the exam
Chapters 5 – 16 (NO LINKED LISTS)
What to study

1) Look over past programs and problem solving techniques.
2) Look over past exams.

3) Look over lecture notes.

4) Skim text, making sure that everything is familiar to you.

Program basics

C programs typically contain the following components:

1) Header comment

2) Set of #include directives

3) Declaration of the function int main()

4) Variable declarations at the beginning of each function

5) Code/Body of the program

The purpose of each:

1) To identify to others reading the code the author, date and general purpose of the code.

2) Often times, prewritten C functions are called in programs. In order to use these functions, the appropriate files must be included. For input and output, we must include the file <stdio.h>

3) All programs must have a main function. This is the only function in a file that actually directly gets executed.

4) Nearly all programs use variables. These must always be declared at the beginning of a function.

5) This portion of the program is the bulk of the program and contains all the actual logic behind the program.

Assignment Statement and Arithmetic Expressions

The assignment statement allows the value of a variable to change. The general syntax is as follows:

<variable> = <arithmetic expression>;

The way this statement is evaluated is as follows:

1) The value of the arithmetic expression is determined.

2) The value of the variable is changed to the value computed in step 1.

Arithmetic Expression use the following operators: +, -, *, /, %

The most important issues to pay attention to are the following:

1) The difference between integer and floating point division

2) How mod(%) works

3) Order of operations when parentheses don't clearly indicate this order.

Boolean Expressions

A boolean expression is one that evaluates to true or false. Technically, in C, there is no boolean type. Instead a boolean type is stored as an integer. The integer 1 represents true and the integer 0 represents false.

Most boolean expressions are created using the following elements:

1) Arithmetic Expressions

2) Relational Operators

3) Boolean Operators

The relational operators compare arithmetic expressions. These operators are: ==, !=, >=, <=, >, <

Note the difference between a single equal sign and a double equal sign. This difference is very important and if you interchange the two, will create an unwanted difference in how your code runs.

The boolean operators are: &&, || and !.

Both and(&&) and or(||) are binary operators, meaning that they take two operands. The function they compute is identical to the meanings of the English words and and or.

Not(!) is an unary operator that takes on operand and negates its value.

If statement

This construct allows for the conditional execution of code depending on whether or not a boolean expression is true.

The most general syntax for an if statement is as follows:

if (<boolean expression1>)

 <stmts1>

else if (<boolean expression2>)

 <stmts2>

else if (<boolean expression3>)

 <stmts3>

else

 <stmtsn>

stmtA

Each boolean expression is evaluated until the first true one is found. Then the corresponding statement is executed and the flow of control continues at the end of the if statement. If none of the boolean expressions are true, <stmtsn> is executed and then execution continues after the end of the if statement.

Key issues to remember about the if statement:

1) Matching-else problem

2) Use of the compound statement (or forgetting it)

3) The difference between separate if statements and a single if-else if type construct

While Loop

The basic construct for the while loop is as follows:

while (<boolean expression1>)

 <stmts1>;

<stmtA>

Here is how this executes:

1) Evaluate the boolean condition.

2) If it's true, execute <stmts1>

3) If it's false, skip to after the end of the while loop and

 execute stmtA.

4) After you execute <stmts1>, you have completed a loop iteration. Now, go back to step #1 in these directions and repeat.

Both the for and do-while loop have similar constructs. The most important issues about loops to remember are:

1) Watch out for infinite loops

2) Often times, a loop uses a int variable that acts as a counter indicating the number of times the loop has run.

3) Don't forget the {} when you intend to have a block of statements inside of a loop. (Know what happens when they are forgotten.)

Function Mechanics

Some distinctions to remember about functions:

All functions either

(1) return a value, or are

(2) void.

Typically,

(1) you call a function that returns a value as part of a statement, but

(2) you call a void function on a line by itself

The reason for this is when a function returns a value, that value MUST be used somehow or is lost.

All functions have a parameter list. There are two types of parameters:

(1) Actual Parameters

(2) Formal Parameters

Actual Parameters are the parameters you ACTUALLY call/invoke a function with.

Formal Parameters are the parameters in the formal function definition.

These two are DIFFERENT. Hopefully all the drawings we've done through the semester have illustrated that formal parameters reside only in the function while actual parameters are a variable or expression in the calling function.

There are two ways that parameters are passed into a function

(1) Pass by Value

(2) Pass by Reference

Each of these has different rules.

For pass by value, the actual parameter must be ANY EXPRESSION that is the proper type.

For pass by reference, the acutal parameter must be a memory address, or a pointer.

The mechanics of these work differently. It's very important to understand these mechanics.

There will be tracing questions that involve both pass by value and pass by reference.

Functional Program Design

Once the mechanics of functions are understood, one needs to understand the importance of creating functions that will simplify the coding process, and clarify the code as well. When solving a problem, it's important to break the problem down into smaller subtasks. These subtasks often represent functions. Once functions are created, it's important to call them in a manner to help solve your problem.

For the exam, please remember the following: when I ask you to write a function, DO NOT TRY TO READ IN THE VALUES OF THE FORMAL PARAMETERS, UNLESS I EXPLICITLY TELL YOU TO DO SO. The job of a function is to USE the formal parameters, NOT IGNORE THEM!!!

Character Processing

Remember internally, characters are stored as integers. These integers are the characters' ascii values. Because the uppercase letters, lowercase letters and digits are stored "in order", some tasks that involve processing characters can be simplfied.

Consider the following idea:

If we were counting the frequency of lowercase letters in a file that was known to be all lowercase letters, we could store the frequency information in a frequency array:

int freq[26];

Now, if we read in a character and store it in the char variable c, we could do the following to adjust the frequency:

freq[c-'a']++;

The functions getchar() and putchar() allow you to read and print out characters individually, without ignoring whitespace.

Some of the macros from ctype.h will be useful:
Macros from ctype.h

int isalpha(int c);

int isdigit(int c);

int islower(int c);

int isupper(int c);

int tolower(int c);

int toupper(int c);
Arrays

Arrays allow you to store more than one related variable of the same type. They are great for processing of numerical data. (Also, they are used for C strings.) Here is how you declare an array:

int scores[10];

This array is indexed from 0 to 9. The expression scores[3] accesses array index 3. This expression acts exactly like an integer.

Common Array Errors

1. Out of Bounds error

2. Not initializing all values of an array.

3. Trying to assign an entire array a value such as: scores = 4;

4. Not differentiating between an array index and the value stored in an array at a particular index.

In a two dimensional array, you have two array indexes. Here's an example:

int table[10][20];

The expression table[1][2], access element (1,2) in this array.

Strings

Strings are character arrays terminated by the null character('\0'). Thus, a character array of size 20 can only store a string of size 19. When using strings, the following string functions are often useful:

strcat

strcmp

strcpy

strlen

Writing your own functions for strings involves using the null character termination.

Here are some ways to initialize a string:

char s[] = {'a', 'b', 'c', '\0'}

char s[] = "abc";

Or, more typically we can read into a string from the user or a file.

Structs

Structs allow the user to create their own data type. When creating your own struct, you must give it a name, as well as determine which components will comprise your struct. Once you have determined the components, you must give a variable name to each component, as an example, we have:

struct card {

 int kind;

 char suit;

};

Here's how you can create a variable of this type:

struct card one;

Now to access the components of that variable, use the dot operator:

one.kind = 4;

one.suit = 'H';

Once you have a struct, you can use it just like any other type. You can declare multiple variables of that type, or even an array of that type, or even declare another struct that uses it as a component.

A struct is useful for storing related information of different types, or information about a particular entity, such as a playing card, or a student.

